Plastid genome and composition analysis of two medical ferns: Dryopteris crassirhizoma Nakai and Osmunda japonica Thunb. View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Liang Xu, Yanping Xing, Bing Wang, Chunsheng Liu, Wenquan Wang, Tingguo Kang

ABSTRACT

Background: Dryopteris crassirhizoma Nakai and Osmunda japonica Thunb. are ferns that are popularly used for medicine, as recorded by the Chinese pharmacopoeia, and are distributed in different regions of China. However, O. japonica is not record in the Standards of Chinese Herbal Medicines in Hong Kong. Research on identification methods of D. crassirhizoma and O. japonica is necessary and the phylogenetic position of the two species should be identified. The plastid genome is structurally highly conserved, providing valuable sources of genetic markers for phylogenetic analyses and development of molecule makers for identification. Methods: The plastid genome DNA was extracted from both fern species and then sequenced on the Illumina Hiseq 4000. Sequences were assembled into contigs by SOAPdenovo2.04, aligned to the reference genome using BLAST, and then manually corrected. Genome annotation was performed by the online DOGMA tool. General characteristics of the plastid genomes of the two species were analyzed and compared with closely related species. Additionally, phylogenetical trees were reconstructed by maximum likelihood methods. The content of dryocrassin of the two species were determined according to the Standards of Chinese Herbal Medicines in Hong Kong. Results: The genome structures of D. crassirhizoma and O. japonica have different characteristics including the genome size, the size of each area, gene location, and types. Moreover, the (simple sequence repeats) SSRs of the plastid genomes were more similar to other species in the same genera. Compared with D. fragrans, D. crassirhizoma shows an inversion (approximately 1.6 kb), and O. japonica shows two inversions (1.9 kb and 216 bp). The nucleotide diversity (polymorphism information, Pi) analysis showed that the psbK gene and rpl14-rpl16 region have the highest Pi value in Dryopteris, and the ycf2-CDS3 and rpl14-rpl16 regions show the highest Pi vale in O. japonica. Phylogenetic analyses showed that the two species were grouped in two separate clades from each other, with both individually located with other members of their genus. The marker content of dryocrassin is not found in O. japonica. Conclusions: The study is the first to identify plastid genome features of D. crassirhizoma and O. japonica. The results may provide a theoretical basis for the identification and the application of the two medically important fern species. More... »

PAGES

9

References to SciGraph publications

  • 2007-12. Comparative chloroplast genomics: analyses including new sequences from the angiosperms Nuphar advena and Ranunculus macranthus in BMC GENOMICS
  • 2000-05. Gene Ontology: tool for the unification of biology in NATURE GENETICS
  • 2009-12. Complete chloroplast genome sequence of a tree fern Alsophila spinulosa: insights into evolutionary changes in fern chloroplast genomes in BMC EVOLUTIONARY BIOLOGY
  • 2018-12. Chloroplast genome analyses and genomic resource development for epilithic sister genera Oresitrophe and Mukdenia (Saxifragaceae), using genome skimming data in BMC GENOMICS
  • 2003-12. The COG database: an updated version includes eukaryotes in BMC BIOINFORMATICS
  • 2013-12. Capturing chloroplast variation for molecular ecology studies: a simple next generation sequencing approach applied to a rainforest tree in BMC ECOLOGY
  • 2015-10. Comparative Analysis of Asteraceae Chloroplast Genomes: Structural Organization, RNA Editing and Evolution in PLANT MOLECULAR BIOLOGY REPORTER
  • 2005-03. Chloroplast SSR polymorphisms in the Compositae and the mode of organellar inheritance in Helianthus annuus in THEORETICAL AND APPLIED GENETICS
  • 2017-12. Comparative analysis of inverted repeats of polypod fern (Polypodiales) plastomes reveals two hypervariable regions in BMC PLANT BIOLOGY
  • 2009-12. Patent applications for using DNA technologies to authenticate medicinal herbal material in CHINESE MEDICINE
  • 2012-12. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler in GIGASCIENCE
  • 2008-03. An update on chloroplast genomes in PLANT SYSTEMATICS AND EVOLUTION
  • 2014-12. A chloroplast genomic strategy for designing taxon specific DNA mini-barcodes: a case study on ginsengs in BMC GENETICS
  • 2015-08. Use of chloroplast DNA barcodes to identify Osmunda japonica and its adulterants in PLANT SYSTEMATICS AND EVOLUTION
  • 2013-12. Complete plastid genomes from Ophioglossum californicum, Psilotum nudum, and Equisetum hyemale reveal an ancestral land plant genome structure and resolve the position of Equisetales among monilophytes in BMC EVOLUTIONARY BIOLOGY
  • 2016-12. Chloroplast genomes: diversity, evolution, and applications in genetic engineering in GENOME BIOLOGY
  • 2018-12. Complete chloroplast genome of the medicinal plant Amomum compactum: gene organization, comparative analysis, and phylogenetic relationships within Zingiberales in CHINESE MEDICINE
  • 2001-02. Horsetails and ferns are a monophyletic group and the closest living relatives to seed plants in NATURE
  • 2010-12. Genome-wide analysis of tandem repeats in Daphnia pulex - a comparative approach in BMC GENOMICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s13020-019-0230-4

    DOI

    http://dx.doi.org/10.1186/s13020-019-0230-4

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1112767236

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30911328


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Liaoning University of Traditional Chinese Medicine", 
              "id": "https://www.grid.ac/institutes/grid.411464.2", 
              "name": [
                "School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China", 
                "School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Xu", 
            "givenName": "Liang", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Liaoning University of Traditional Chinese Medicine", 
              "id": "https://www.grid.ac/institutes/grid.411464.2", 
              "name": [
                "School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Xing", 
            "givenName": "Yanping", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Liaoning University of Traditional Chinese Medicine", 
              "id": "https://www.grid.ac/institutes/grid.411464.2", 
              "name": [
                "School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Bing", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Beijing University of Chinese Medicine", 
              "id": "https://www.grid.ac/institutes/grid.24695.3c", 
              "name": [
                "School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Liu", 
            "givenName": "Chunsheng", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Tsinghua University", 
              "id": "https://www.grid.ac/institutes/grid.12527.33", 
              "name": [
                "School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China", 
                "Institute of Medicinal Plant Development, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Wenquan", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Liaoning University of Traditional Chinese Medicine", 
              "id": "https://www.grid.ac/institutes/grid.411464.2", 
              "name": [
                "School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kang", 
            "givenName": "Tingguo", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.14348/molcells.2014.2296", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000252395"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/database/bar009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002484367"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/dnares/10.2.59", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003499143"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-11-277", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004318568", 
              "https://doi.org/10.1186/1471-2164-11-277"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1146/annurev.arplant.51.1.111", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004835401"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1749-8546-4-21", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005119475", 
              "https://doi.org/10.1186/1749-8546-4-21"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2148-13-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006039492", 
              "https://doi.org/10.1186/1471-2148-13-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1640/0002-8444(2007)97[95:tcpgso]2.0.co;2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006115360"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/molbev/msi174", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008885890"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/molbev/msi174", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008885890"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0019119", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011161078"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.gene.2015.07.020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012222260"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0035071", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012980256"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12863-014-0138-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013030567", 
              "https://doi.org/10.1186/s12863-014-0138-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12863-014-0138-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013030567", 
              "https://doi.org/10.1186/s12863-014-0138-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-4-41", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013163036", 
              "https://doi.org/10.1186/1471-2105-4-41"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0022-2836(05)80360-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013618994"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0012762", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016440387"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/2047-217x-1-18", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016521225", 
              "https://doi.org/10.1186/2047-217x-1-18"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkh063", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017271040"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2148-9-130", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020104454", 
              "https://doi.org/10.1186/1471-2148-9-130"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1472-6785-13-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020768419", 
              "https://doi.org/10.1186/1472-6785-13-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btp187", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021484173"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3109/19401736.2015.1063131", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021555788"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0168-9525(97)01223-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022738563"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0169-5347(00)02097-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026229109"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/16.11.1046", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026953484"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkj102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028128110"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13059-016-1004-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028676039", 
              "https://doi.org/10.1186/s13059-016-1004-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13059-016-1004-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028676039", 
              "https://doi.org/10.1186/s13059-016-1004-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/gbe/evu087", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028892049"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0073053", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029190478"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-8-174", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029379402", 
              "https://doi.org/10.1186/1471-2164-8-174"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00606-007-0608-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029614971", 
              "https://doi.org/10.1007/s00606-007-0608-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00606-007-0608-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029614971", 
              "https://doi.org/10.1007/s00606-007-0608-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.bse.2010.12.011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036410108"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkn502", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037164940"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00606-015-1197-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038151245", 
              "https://doi.org/10.1007/s00606-015-1197-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35054555", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038499798", 
              "https://doi.org/10.1038/35054555"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35054555", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038499798", 
              "https://doi.org/10.1038/35054555"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.278.5338.631", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039646901"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3390/genes7120115", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039695896"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11105-015-0853-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041029695", 
              "https://doi.org/10.1007/s11105-015-0853-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/nph.14135", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041145635"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/75556", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044135237", 
              "https://doi.org/10.1038/75556"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/75556", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044135237", 
              "https://doi.org/10.1038/75556"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/sysbio/syq010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046004748"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/29.22.4633", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046065243"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0000508", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046302972"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/gbe/evt099", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046472038"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/bth352", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050086076"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3732/ajb.94.3.275", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050985240"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-004-1914-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053101193", 
              "https://doi.org/10.1007/s00122-004-1914-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1086/376817", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058670030"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.12677/bp.2011.12003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064602173"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3390/molecules22020249", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083696481"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3390/molecules22020249", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083696481"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/acs.jafc.7b00925", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085615448"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/gbe/evx107", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086005951"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4268/cjcmm20162216", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1087168018"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0184257", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091408573"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12870-017-1195-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100102273", 
              "https://doi.org/10.1186/s12870-017-1195-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13020-018-0164-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100995401", 
              "https://doi.org/10.1186/s13020-018-0164-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12864-018-4633-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103128552", 
              "https://doi.org/10.1186/s12864-018-4633-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12864-018-4633-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103128552", 
              "https://doi.org/10.1186/s12864-018-4633-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12864-018-4633-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103128552", 
              "https://doi.org/10.1186/s12864-018-4633-x"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-12", 
        "datePublishedReg": "2019-12-01", 
        "description": "Background: Dryopteris crassirhizoma Nakai and Osmunda japonica Thunb. are ferns that are popularly used for medicine, as recorded by the Chinese pharmacopoeia, and are distributed in different regions of China. However, O. japonica is not record in the Standards of Chinese Herbal Medicines in Hong Kong. Research on identification methods of D. crassirhizoma and O. japonica is necessary and the phylogenetic position of the two species should be identified. The plastid genome is structurally highly conserved, providing valuable sources of genetic markers for phylogenetic analyses and development of molecule makers for identification.\nMethods: The plastid genome DNA was extracted from both fern species and then sequenced on the Illumina Hiseq 4000. Sequences were assembled into contigs by SOAPdenovo2.04, aligned to the reference genome using BLAST, and then manually corrected. Genome annotation was performed by the online DOGMA tool. General characteristics of the plastid genomes of the two species were analyzed and compared with closely related species. Additionally, phylogenetical trees were reconstructed by maximum likelihood methods. The content of dryocrassin of the two species were determined according to the Standards of Chinese Herbal Medicines in Hong Kong.\nResults: The genome structures of D. crassirhizoma and O. japonica have different characteristics including the genome size, the size of each area, gene location, and types. Moreover, the (simple sequence repeats) SSRs of the plastid genomes were more similar to other species in the same genera. Compared with D. fragrans, D. crassirhizoma shows an inversion (approximately 1.6\u00a0kb), and O. japonica shows two inversions (1.9\u00a0kb and 216\u00a0bp). The nucleotide diversity (polymorphism information, Pi) analysis showed that the psbK gene and rpl14-rpl16 region have the highest Pi value in Dryopteris, and the ycf2-CDS3 and rpl14-rpl16 regions show the highest Pi vale in O. japonica. Phylogenetic analyses showed that the two species were grouped in two separate clades from each other, with both individually located with other members of their genus. The marker content of dryocrassin is not found in O. japonica.\nConclusions: The study is the first to identify plastid genome features of D. crassirhizoma and O. japonica. The results may provide a theoretical basis for the identification and the application of the two medically important fern species.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1186/s13020-019-0230-4", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1313369", 
            "issn": [
              "1991-0150", 
              "1749-8546"
            ], 
            "name": "Chinese Medicine", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "14"
          }
        ], 
        "name": "Plastid genome and composition analysis of two medical ferns: Dryopteris crassirhizoma Nakai and Osmunda japonica Thunb.", 
        "pagination": "9", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "d2c448700a399cec06b8a0671761a2d60ec7a7906985158e24242c0d888536ba"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30911328"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101265109"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s13020-019-0230-4"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1112767236"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s13020-019-0230-4", 
          "https://app.dimensions.ai/details/publication/pub.1112767236"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T14:00", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130826_00000006.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1186%2Fs13020-019-0230-4"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13020-019-0230-4'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13020-019-0230-4'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13020-019-0230-4'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13020-019-0230-4'


     

    This table displays all metadata directly associated to this object as RDF triples.

    296 TRIPLES      21 PREDICATES      86 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s13020-019-0230-4 schema:about anzsrc-for:06
    2 anzsrc-for:0604
    3 schema:author Nc27e6d5b68cf44bc987752955d3122cb
    4 schema:citation sg:pub.10.1007/s00122-004-1914-3
    5 sg:pub.10.1007/s00606-007-0608-0
    6 sg:pub.10.1007/s00606-015-1197-y
    7 sg:pub.10.1007/s11105-015-0853-2
    8 sg:pub.10.1038/35054555
    9 sg:pub.10.1038/75556
    10 sg:pub.10.1186/1471-2105-4-41
    11 sg:pub.10.1186/1471-2148-13-8
    12 sg:pub.10.1186/1471-2148-9-130
    13 sg:pub.10.1186/1471-2164-11-277
    14 sg:pub.10.1186/1471-2164-8-174
    15 sg:pub.10.1186/1472-6785-13-8
    16 sg:pub.10.1186/1749-8546-4-21
    17 sg:pub.10.1186/2047-217x-1-18
    18 sg:pub.10.1186/s12863-014-0138-z
    19 sg:pub.10.1186/s12864-018-4633-x
    20 sg:pub.10.1186/s12870-017-1195-z
    21 sg:pub.10.1186/s13020-018-0164-2
    22 sg:pub.10.1186/s13059-016-1004-2
    23 https://doi.org/10.1016/j.bse.2010.12.011
    24 https://doi.org/10.1016/j.gene.2015.07.020
    25 https://doi.org/10.1016/s0022-2836(05)80360-2
    26 https://doi.org/10.1016/s0168-9525(97)01223-7
    27 https://doi.org/10.1016/s0169-5347(00)02097-8
    28 https://doi.org/10.1021/acs.jafc.7b00925
    29 https://doi.org/10.1086/376817
    30 https://doi.org/10.1093/bioinformatics/16.11.1046
    31 https://doi.org/10.1093/bioinformatics/bth352
    32 https://doi.org/10.1093/bioinformatics/btp187
    33 https://doi.org/10.1093/database/bar009
    34 https://doi.org/10.1093/dnares/10.2.59
    35 https://doi.org/10.1093/gbe/evt099
    36 https://doi.org/10.1093/gbe/evu087
    37 https://doi.org/10.1093/gbe/evx107
    38 https://doi.org/10.1093/molbev/msi174
    39 https://doi.org/10.1093/nar/29.22.4633
    40 https://doi.org/10.1093/nar/gkh063
    41 https://doi.org/10.1093/nar/gkj102
    42 https://doi.org/10.1093/nar/gkn502
    43 https://doi.org/10.1093/sysbio/syq010
    44 https://doi.org/10.1111/nph.14135
    45 https://doi.org/10.1126/science.278.5338.631
    46 https://doi.org/10.1146/annurev.arplant.51.1.111
    47 https://doi.org/10.12677/bp.2011.12003
    48 https://doi.org/10.1371/journal.pone.0000508
    49 https://doi.org/10.1371/journal.pone.0012762
    50 https://doi.org/10.1371/journal.pone.0019119
    51 https://doi.org/10.1371/journal.pone.0035071
    52 https://doi.org/10.1371/journal.pone.0073053
    53 https://doi.org/10.1371/journal.pone.0184257
    54 https://doi.org/10.14348/molcells.2014.2296
    55 https://doi.org/10.1640/0002-8444(2007)97[95:tcpgso]2.0.co;2
    56 https://doi.org/10.3109/19401736.2015.1063131
    57 https://doi.org/10.3390/genes7120115
    58 https://doi.org/10.3390/molecules22020249
    59 https://doi.org/10.3732/ajb.94.3.275
    60 https://doi.org/10.4268/cjcmm20162216
    61 schema:datePublished 2019-12
    62 schema:datePublishedReg 2019-12-01
    63 schema:description Background: Dryopteris crassirhizoma Nakai and Osmunda japonica Thunb. are ferns that are popularly used for medicine, as recorded by the Chinese pharmacopoeia, and are distributed in different regions of China. However, O. japonica is not record in the Standards of Chinese Herbal Medicines in Hong Kong. Research on identification methods of D. crassirhizoma and O. japonica is necessary and the phylogenetic position of the two species should be identified. The plastid genome is structurally highly conserved, providing valuable sources of genetic markers for phylogenetic analyses and development of molecule makers for identification. Methods: The plastid genome DNA was extracted from both fern species and then sequenced on the Illumina Hiseq 4000. Sequences were assembled into contigs by SOAPdenovo2.04, aligned to the reference genome using BLAST, and then manually corrected. Genome annotation was performed by the online DOGMA tool. General characteristics of the plastid genomes of the two species were analyzed and compared with closely related species. Additionally, phylogenetical trees were reconstructed by maximum likelihood methods. The content of dryocrassin of the two species were determined according to the Standards of Chinese Herbal Medicines in Hong Kong. Results: The genome structures of D. crassirhizoma and O. japonica have different characteristics including the genome size, the size of each area, gene location, and types. Moreover, the (simple sequence repeats) SSRs of the plastid genomes were more similar to other species in the same genera. Compared with D. fragrans, D. crassirhizoma shows an inversion (approximately 1.6 kb), and O. japonica shows two inversions (1.9 kb and 216 bp). The nucleotide diversity (polymorphism information, Pi) analysis showed that the psbK gene and rpl14-rpl16 region have the highest Pi value in Dryopteris, and the ycf2-CDS3 and rpl14-rpl16 regions show the highest Pi vale in O. japonica. Phylogenetic analyses showed that the two species were grouped in two separate clades from each other, with both individually located with other members of their genus. The marker content of dryocrassin is not found in O. japonica. Conclusions: The study is the first to identify plastid genome features of D. crassirhizoma and O. japonica. The results may provide a theoretical basis for the identification and the application of the two medically important fern species.
    64 schema:genre research_article
    65 schema:inLanguage en
    66 schema:isAccessibleForFree true
    67 schema:isPartOf N045455a50d7548fab6f3c60b85d421b1
    68 Nc8235c699a21498faeb0b50608b445ae
    69 sg:journal.1313369
    70 schema:name Plastid genome and composition analysis of two medical ferns: Dryopteris crassirhizoma Nakai and Osmunda japonica Thunb.
    71 schema:pagination 9
    72 schema:productId N3616893a5429435dbf6a121ef93b243e
    73 N4cc18843f71e4baa8e7a6f7dc11b37cb
    74 N878ec52331124f85ae0332ca73711755
    75 Nefb0d052a512410fa7dbc611e3700a52
    76 Nf53947e4ad2a4b1d81cd1b17490fb02f
    77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112767236
    78 https://doi.org/10.1186/s13020-019-0230-4
    79 schema:sdDatePublished 2019-04-11T14:00
    80 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    81 schema:sdPublisher Ne7e3e4c8e1844fd0a18d2d92bfb4cc88
    82 schema:url https://link.springer.com/10.1186%2Fs13020-019-0230-4
    83 sgo:license sg:explorer/license/
    84 sgo:sdDataset articles
    85 rdf:type schema:ScholarlyArticle
    86 N045455a50d7548fab6f3c60b85d421b1 schema:volumeNumber 14
    87 rdf:type schema:PublicationVolume
    88 N15385e35e473402e8092a17f0508d46b schema:affiliation https://www.grid.ac/institutes/grid.411464.2
    89 schema:familyName Xu
    90 schema:givenName Liang
    91 rdf:type schema:Person
    92 N2a7e453f369047f2a9cf78fce8f416ce schema:affiliation https://www.grid.ac/institutes/grid.24695.3c
    93 schema:familyName Liu
    94 schema:givenName Chunsheng
    95 rdf:type schema:Person
    96 N3616893a5429435dbf6a121ef93b243e schema:name dimensions_id
    97 schema:value pub.1112767236
    98 rdf:type schema:PropertyValue
    99 N4756e1a125c54fc785aa098615c70c5a schema:affiliation https://www.grid.ac/institutes/grid.411464.2
    100 schema:familyName Kang
    101 schema:givenName Tingguo
    102 rdf:type schema:Person
    103 N4cc18843f71e4baa8e7a6f7dc11b37cb schema:name nlm_unique_id
    104 schema:value 101265109
    105 rdf:type schema:PropertyValue
    106 N65177f8f0a6d4ea89341f514d4710400 rdf:first N8e8dc92f1e0643a69f3c9be2d506cc1b
    107 rdf:rest Ncf61094a09a946779b94a9ac845ce1b1
    108 N78920eab8ad4417aae19512991b11447 rdf:first Nc23062ec8c9743868c54bd96059f4638
    109 rdf:rest Na3706c4152ed4c93bdeb9cbf258d3939
    110 N878ec52331124f85ae0332ca73711755 schema:name pubmed_id
    111 schema:value 30911328
    112 rdf:type schema:PropertyValue
    113 N8e8dc92f1e0643a69f3c9be2d506cc1b schema:affiliation https://www.grid.ac/institutes/grid.411464.2
    114 schema:familyName Wang
    115 schema:givenName Bing
    116 rdf:type schema:Person
    117 Na3706c4152ed4c93bdeb9cbf258d3939 rdf:first N4756e1a125c54fc785aa098615c70c5a
    118 rdf:rest rdf:nil
    119 Na5fa19576f9b41d6860c039937c8d805 rdf:first Nbc84b0b47fc94bfb8f2585b19e3afed5
    120 rdf:rest N65177f8f0a6d4ea89341f514d4710400
    121 Nbc84b0b47fc94bfb8f2585b19e3afed5 schema:affiliation https://www.grid.ac/institutes/grid.411464.2
    122 schema:familyName Xing
    123 schema:givenName Yanping
    124 rdf:type schema:Person
    125 Nc23062ec8c9743868c54bd96059f4638 schema:affiliation https://www.grid.ac/institutes/grid.12527.33
    126 schema:familyName Wang
    127 schema:givenName Wenquan
    128 rdf:type schema:Person
    129 Nc27e6d5b68cf44bc987752955d3122cb rdf:first N15385e35e473402e8092a17f0508d46b
    130 rdf:rest Na5fa19576f9b41d6860c039937c8d805
    131 Nc8235c699a21498faeb0b50608b445ae schema:issueNumber 1
    132 rdf:type schema:PublicationIssue
    133 Ncf61094a09a946779b94a9ac845ce1b1 rdf:first N2a7e453f369047f2a9cf78fce8f416ce
    134 rdf:rest N78920eab8ad4417aae19512991b11447
    135 Ne7e3e4c8e1844fd0a18d2d92bfb4cc88 schema:name Springer Nature - SN SciGraph project
    136 rdf:type schema:Organization
    137 Nefb0d052a512410fa7dbc611e3700a52 schema:name readcube_id
    138 schema:value d2c448700a399cec06b8a0671761a2d60ec7a7906985158e24242c0d888536ba
    139 rdf:type schema:PropertyValue
    140 Nf53947e4ad2a4b1d81cd1b17490fb02f schema:name doi
    141 schema:value 10.1186/s13020-019-0230-4
    142 rdf:type schema:PropertyValue
    143 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    144 schema:name Biological Sciences
    145 rdf:type schema:DefinedTerm
    146 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    147 schema:name Genetics
    148 rdf:type schema:DefinedTerm
    149 sg:journal.1313369 schema:issn 1749-8546
    150 1991-0150
    151 schema:name Chinese Medicine
    152 rdf:type schema:Periodical
    153 sg:pub.10.1007/s00122-004-1914-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053101193
    154 https://doi.org/10.1007/s00122-004-1914-3
    155 rdf:type schema:CreativeWork
    156 sg:pub.10.1007/s00606-007-0608-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029614971
    157 https://doi.org/10.1007/s00606-007-0608-0
    158 rdf:type schema:CreativeWork
    159 sg:pub.10.1007/s00606-015-1197-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1038151245
    160 https://doi.org/10.1007/s00606-015-1197-y
    161 rdf:type schema:CreativeWork
    162 sg:pub.10.1007/s11105-015-0853-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041029695
    163 https://doi.org/10.1007/s11105-015-0853-2
    164 rdf:type schema:CreativeWork
    165 sg:pub.10.1038/35054555 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038499798
    166 https://doi.org/10.1038/35054555
    167 rdf:type schema:CreativeWork
    168 sg:pub.10.1038/75556 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044135237
    169 https://doi.org/10.1038/75556
    170 rdf:type schema:CreativeWork
    171 sg:pub.10.1186/1471-2105-4-41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013163036
    172 https://doi.org/10.1186/1471-2105-4-41
    173 rdf:type schema:CreativeWork
    174 sg:pub.10.1186/1471-2148-13-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006039492
    175 https://doi.org/10.1186/1471-2148-13-8
    176 rdf:type schema:CreativeWork
    177 sg:pub.10.1186/1471-2148-9-130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020104454
    178 https://doi.org/10.1186/1471-2148-9-130
    179 rdf:type schema:CreativeWork
    180 sg:pub.10.1186/1471-2164-11-277 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004318568
    181 https://doi.org/10.1186/1471-2164-11-277
    182 rdf:type schema:CreativeWork
    183 sg:pub.10.1186/1471-2164-8-174 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029379402
    184 https://doi.org/10.1186/1471-2164-8-174
    185 rdf:type schema:CreativeWork
    186 sg:pub.10.1186/1472-6785-13-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020768419
    187 https://doi.org/10.1186/1472-6785-13-8
    188 rdf:type schema:CreativeWork
    189 sg:pub.10.1186/1749-8546-4-21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005119475
    190 https://doi.org/10.1186/1749-8546-4-21
    191 rdf:type schema:CreativeWork
    192 sg:pub.10.1186/2047-217x-1-18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016521225
    193 https://doi.org/10.1186/2047-217x-1-18
    194 rdf:type schema:CreativeWork
    195 sg:pub.10.1186/s12863-014-0138-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1013030567
    196 https://doi.org/10.1186/s12863-014-0138-z
    197 rdf:type schema:CreativeWork
    198 sg:pub.10.1186/s12864-018-4633-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1103128552
    199 https://doi.org/10.1186/s12864-018-4633-x
    200 rdf:type schema:CreativeWork
    201 sg:pub.10.1186/s12870-017-1195-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1100102273
    202 https://doi.org/10.1186/s12870-017-1195-z
    203 rdf:type schema:CreativeWork
    204 sg:pub.10.1186/s13020-018-0164-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100995401
    205 https://doi.org/10.1186/s13020-018-0164-2
    206 rdf:type schema:CreativeWork
    207 sg:pub.10.1186/s13059-016-1004-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028676039
    208 https://doi.org/10.1186/s13059-016-1004-2
    209 rdf:type schema:CreativeWork
    210 https://doi.org/10.1016/j.bse.2010.12.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036410108
    211 rdf:type schema:CreativeWork
    212 https://doi.org/10.1016/j.gene.2015.07.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012222260
    213 rdf:type schema:CreativeWork
    214 https://doi.org/10.1016/s0022-2836(05)80360-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013618994
    215 rdf:type schema:CreativeWork
    216 https://doi.org/10.1016/s0168-9525(97)01223-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022738563
    217 rdf:type schema:CreativeWork
    218 https://doi.org/10.1016/s0169-5347(00)02097-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026229109
    219 rdf:type schema:CreativeWork
    220 https://doi.org/10.1021/acs.jafc.7b00925 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085615448
    221 rdf:type schema:CreativeWork
    222 https://doi.org/10.1086/376817 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058670030
    223 rdf:type schema:CreativeWork
    224 https://doi.org/10.1093/bioinformatics/16.11.1046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026953484
    225 rdf:type schema:CreativeWork
    226 https://doi.org/10.1093/bioinformatics/bth352 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050086076
    227 rdf:type schema:CreativeWork
    228 https://doi.org/10.1093/bioinformatics/btp187 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021484173
    229 rdf:type schema:CreativeWork
    230 https://doi.org/10.1093/database/bar009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002484367
    231 rdf:type schema:CreativeWork
    232 https://doi.org/10.1093/dnares/10.2.59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003499143
    233 rdf:type schema:CreativeWork
    234 https://doi.org/10.1093/gbe/evt099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046472038
    235 rdf:type schema:CreativeWork
    236 https://doi.org/10.1093/gbe/evu087 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028892049
    237 rdf:type schema:CreativeWork
    238 https://doi.org/10.1093/gbe/evx107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086005951
    239 rdf:type schema:CreativeWork
    240 https://doi.org/10.1093/molbev/msi174 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008885890
    241 rdf:type schema:CreativeWork
    242 https://doi.org/10.1093/nar/29.22.4633 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046065243
    243 rdf:type schema:CreativeWork
    244 https://doi.org/10.1093/nar/gkh063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017271040
    245 rdf:type schema:CreativeWork
    246 https://doi.org/10.1093/nar/gkj102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028128110
    247 rdf:type schema:CreativeWork
    248 https://doi.org/10.1093/nar/gkn502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037164940
    249 rdf:type schema:CreativeWork
    250 https://doi.org/10.1093/sysbio/syq010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046004748
    251 rdf:type schema:CreativeWork
    252 https://doi.org/10.1111/nph.14135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041145635
    253 rdf:type schema:CreativeWork
    254 https://doi.org/10.1126/science.278.5338.631 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039646901
    255 rdf:type schema:CreativeWork
    256 https://doi.org/10.1146/annurev.arplant.51.1.111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004835401
    257 rdf:type schema:CreativeWork
    258 https://doi.org/10.12677/bp.2011.12003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064602173
    259 rdf:type schema:CreativeWork
    260 https://doi.org/10.1371/journal.pone.0000508 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046302972
    261 rdf:type schema:CreativeWork
    262 https://doi.org/10.1371/journal.pone.0012762 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016440387
    263 rdf:type schema:CreativeWork
    264 https://doi.org/10.1371/journal.pone.0019119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011161078
    265 rdf:type schema:CreativeWork
    266 https://doi.org/10.1371/journal.pone.0035071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012980256
    267 rdf:type schema:CreativeWork
    268 https://doi.org/10.1371/journal.pone.0073053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029190478
    269 rdf:type schema:CreativeWork
    270 https://doi.org/10.1371/journal.pone.0184257 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091408573
    271 rdf:type schema:CreativeWork
    272 https://doi.org/10.14348/molcells.2014.2296 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000252395
    273 rdf:type schema:CreativeWork
    274 https://doi.org/10.1640/0002-8444(2007)97[95:tcpgso]2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006115360
    275 rdf:type schema:CreativeWork
    276 https://doi.org/10.3109/19401736.2015.1063131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021555788
    277 rdf:type schema:CreativeWork
    278 https://doi.org/10.3390/genes7120115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039695896
    279 rdf:type schema:CreativeWork
    280 https://doi.org/10.3390/molecules22020249 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083696481
    281 rdf:type schema:CreativeWork
    282 https://doi.org/10.3732/ajb.94.3.275 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050985240
    283 rdf:type schema:CreativeWork
    284 https://doi.org/10.4268/cjcmm20162216 schema:sameAs https://app.dimensions.ai/details/publication/pub.1087168018
    285 rdf:type schema:CreativeWork
    286 https://www.grid.ac/institutes/grid.12527.33 schema:alternateName Tsinghua University
    287 schema:name Institute of Medicinal Plant Development, Beijing, China
    288 School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
    289 rdf:type schema:Organization
    290 https://www.grid.ac/institutes/grid.24695.3c schema:alternateName Beijing University of Chinese Medicine
    291 schema:name School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
    292 rdf:type schema:Organization
    293 https://www.grid.ac/institutes/grid.411464.2 schema:alternateName Liaoning University of Traditional Chinese Medicine
    294 schema:name School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
    295 School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
    296 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...