Arterial stiffness is a predictor for acute kidney injury following coronary artery bypass graft surgery View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Sharlene A. Greenwood, Emmanuel Mangahis, Ellen M. Castle, Joe Wang, Jackie Campbell, Ranjit Deshpande, Satish Jayawardene

ABSTRACT

BACKGROUND: Cardiac surgery-associated acute kidney injury (CSA-AKI) is a serious postoperative complication of cardiac surgery, an episode of which impacts on patient morbidity and mortality. Pulse wave velocity (PWV; a non-invasive measurement tool to assess arterial stiffness) has been shown to predict kidney disease progression, and cardiovascular and all-cause mortality in patients with chronic kidney disease. We hypothesised that PWV would also predict acute kidney injury in subjects who have undergone non-valve repair elective coronary artery bypass graft (CABG) surgery . METHODS: This was a prospective, observational, exploratory study. PWV was determined with a Vicorder device, together with standard clinical and biochemical parameters. AKI staging was defined according to the Kidney Disease Improving Global Outcomes (KDIGO) Clinical Practice Guidelines. RESULTS: 137 patients were included in the study. 85% were male, and mean age was 66.3 years (SD = 9.7 years). There were 40 episodes (29%) of CSA-AKI. Each 1 unit increase in PWV score was associated with a 1.5 fold greater odds of a CSA-AKI event (p = 0.006(odds ratio = 1.5; confidence interval:1.13-2.10). A 1 unit increase in estimated glomerular filtration rate resulted in an estimated 85% decrease in the odds of developing AKI, each year, men have an odds reduction of 15% of developing AKI compared with females and each 1 year increase in age lowered the odds of developing AKI by 87%. CONCLUSIONS: This pilot exploratory study revealed that PWV, assessed prior to non-valve repair elective CABG surgery, independently predicts CSA-AKI events. PWV is a simple, non-invasive technique that could potentially be used to risk stratify for CSA- AKI following elective cardiac surgery. TRIAL REGISTRATION: ClinTrial.Gov NCT02364427 . Registered 18 February 2015. More... »

PAGES

51

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13019-019-0873-3

DOI

http://dx.doi.org/10.1186/s13019-019-0873-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112606586

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30845970


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Acute Kidney Injury", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Coronary Artery Bypass", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Coronary Disease", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Glomerular Filtration Rate", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pilot Projects", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Predictive Value of Tests", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pulse Wave Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Risk Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Vascular Stiffness", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "King's College London", 
          "id": "https://www.grid.ac/institutes/grid.13097.3c", 
          "name": [
            "Department of Therapies, King\u2019s College Hospital, London, UK", 
            "Department of Renal Medicine, King\u2019s College Hospital, London, UK", 
            "Renal Sciences, Department of Transplantation, Immunology and Mucosal Biology, King\u2019s College London, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Greenwood", 
        "givenName": "Sharlene A.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "King's College Hospital", 
          "id": "https://www.grid.ac/institutes/grid.46699.34", 
          "name": [
            "Department of Therapies, King\u2019s College Hospital, London, UK", 
            "Department of Renal Medicine, King\u2019s College Hospital, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mangahis", 
        "givenName": "Emmanuel", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "King's College London", 
          "id": "https://www.grid.ac/institutes/grid.13097.3c", 
          "name": [
            "Department of Therapies, King\u2019s College Hospital, London, UK", 
            "Department of Renal Medicine, King\u2019s College Hospital, London, UK", 
            "Renal Sciences, Department of Transplantation, Immunology and Mucosal Biology, King\u2019s College London, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Castle", 
        "givenName": "Ellen M.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "St Helier Hospital", 
          "id": "https://www.grid.ac/institutes/grid.416404.3", 
          "name": [
            "Department of Renal Medicine, Epsom & St Helier Hospital, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Joe", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Northampton", 
          "id": "https://www.grid.ac/institutes/grid.44870.3f", 
          "name": [
            "Faculty of Health and Social Care, University of Northampton, Northampton, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Campbell", 
        "givenName": "Jackie", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "King's College Hospital", 
          "id": "https://www.grid.ac/institutes/grid.46699.34", 
          "name": [
            "Department of Cardiovascular Sciences, King\u2019s College Hospital, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Deshpande", 
        "givenName": "Ranjit", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "King's College London", 
          "id": "https://www.grid.ac/institutes/grid.13097.3c", 
          "name": [
            "Department of Renal Medicine, King\u2019s College Hospital, London, UK", 
            "Renal Sciences, Department of Transplantation, Immunology and Mucosal Biology, King\u2019s College London, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jayawardene", 
        "givenName": "Satish", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.amjcard.2012.11.047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002464478"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1749-8090-9-89", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007757201", 
          "https://doi.org/10.1186/1749-8090-9-89"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ndt/gfr578", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011483280"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2215/cjn.05571008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012401129"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1681/asn.2009121210", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020789449"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1681/asn.2009121210", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020789449"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/hr.2009.154", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022692881", 
          "https://doi.org/10.1038/hr.2009.154"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1053/j.ajkd.2004.11.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022803091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/aje/kwk052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026139704"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/eurheartj/ehl254", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026272416"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circheartfailure.112.971705", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030174237"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circheartfailure.112.971705", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030174237"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0895-4356(96)00236-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048737616"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/icvts/ivu014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049716498"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(00)95580-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053575522"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(00)95580-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053575522"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.asn.0000130340.93930.dd", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060319629"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.asn.00000130340.93930.dd", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060319629"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.asn.00000130340.93930.dd", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060319629"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "BACKGROUND: Cardiac surgery-associated acute kidney injury (CSA-AKI) is a serious postoperative complication of cardiac surgery, an episode of which impacts on patient morbidity and mortality. Pulse wave velocity (PWV; a non-invasive measurement tool to assess arterial stiffness) has been shown to predict kidney disease progression, and cardiovascular and all-cause mortality in patients with chronic kidney disease. We hypothesised that PWV would also predict acute kidney injury in subjects who have undergone non-valve repair elective coronary artery bypass graft (CABG) surgery .\nMETHODS: This was a prospective, observational, exploratory study. PWV was determined with a Vicorder device, together with standard clinical and biochemical parameters. AKI staging was defined according to the Kidney Disease Improving Global Outcomes (KDIGO) Clinical Practice Guidelines.\nRESULTS: 137 patients were included in the study. 85% were male, and mean age was 66.3\u2009years (SD\u2009=\u20099.7\u2009years). There were 40 episodes (29%) of CSA-AKI. Each 1 unit increase in PWV score was associated with a 1.5 fold greater odds of a CSA-AKI event (p\u00a0=\u20090.006(odds ratio\u2009=\u20091.5; confidence interval:1.13-2.10). A 1 unit increase in estimated glomerular filtration rate resulted in an estimated 85% decrease in the odds of developing AKI, each year, men have an odds reduction of 15% of developing AKI compared with females and each 1\u2009year increase in age lowered the odds of developing AKI by 87%.\nCONCLUSIONS: This pilot exploratory study revealed that PWV, assessed prior to non-valve repair elective CABG surgery, independently predicts CSA-AKI events. PWV is a simple, non-invasive technique that could potentially be used to risk stratify for CSA- AKI following elective cardiac surgery.\nTRIAL REGISTRATION: ClinTrial.Gov NCT02364427 . Registered 18 February 2015.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s13019-019-0873-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1036453", 
        "issn": [
          "1749-8090"
        ], 
        "name": "Journal of Cardiothoracic Surgery", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "14"
      }
    ], 
    "name": "Arterial stiffness is a predictor for acute kidney injury following coronary artery bypass graft surgery", 
    "pagination": "51", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "98821de10589d183dce3419cc7301e823033d2d618e30231316aa2aa784d23b4"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30845970"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101265113"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13019-019-0873-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112606586"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13019-019-0873-3", 
      "https://app.dimensions.ai/details/publication/pub.1112606586"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:17", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78935_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs13019-019-0873-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13019-019-0873-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13019-019-0873-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13019-019-0873-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13019-019-0873-3'


 

This table displays all metadata directly associated to this object as RDF triples.

223 TRIPLES      21 PREDICATES      59 URIs      36 LITERALS      24 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13019-019-0873-3 schema:about N0b652ca27025463d8c4a35345fd7bb2d
2 N3d460eaaf7364f0aa9e0845edbfc78cc
3 N431b30bdb0c14d45a6c077e5dac4b4c1
4 N4542f84ce4014c939f870bb120a534b2
5 N5332238301e84a17ac428de5ccd38898
6 N6aeae7b50e1d44c2bd4805916f4bf722
7 N6b5324146d154828a95bdf891de193b8
8 N756c4a00011a4c2f8bd1adc7ae4f09c4
9 N818da72de7de4cb2928d4f840939bb2a
10 Nc5450b5165e54008990a932621d95345
11 Nd0b2549165ce43df926b44ef0ee24067
12 Nd400b4cd9f6f430f860e3bd2ca2010ae
13 Nd8823d68090a48ceb89120396e15a30b
14 Ndc35e9f646784a5a8f9056b1e6113263
15 Nfe5617d281da47a5909d3ecc849e9589
16 anzsrc-for:11
17 anzsrc-for:1103
18 schema:author Nd56fd324bf6a4f87b5dfa3fbc002c4b2
19 schema:citation sg:pub.10.1038/hr.2009.154
20 sg:pub.10.1186/1749-8090-9-89
21 https://doi.org/10.1016/j.amjcard.2012.11.047
22 https://doi.org/10.1016/s0140-6736(00)95580-6
23 https://doi.org/10.1016/s0895-4356(96)00236-3
24 https://doi.org/10.1053/j.ajkd.2004.11.011
25 https://doi.org/10.1093/aje/kwk052
26 https://doi.org/10.1093/eurheartj/ehl254
27 https://doi.org/10.1093/icvts/ivu014
28 https://doi.org/10.1093/ndt/gfr578
29 https://doi.org/10.1097/01.asn.00000130340.93930.dd
30 https://doi.org/10.1097/01.asn.0000130340.93930.dd
31 https://doi.org/10.1161/circheartfailure.112.971705
32 https://doi.org/10.1681/asn.2009121210
33 https://doi.org/10.2215/cjn.05571008
34 schema:datePublished 2019-12
35 schema:datePublishedReg 2019-12-01
36 schema:description BACKGROUND: Cardiac surgery-associated acute kidney injury (CSA-AKI) is a serious postoperative complication of cardiac surgery, an episode of which impacts on patient morbidity and mortality. Pulse wave velocity (PWV; a non-invasive measurement tool to assess arterial stiffness) has been shown to predict kidney disease progression, and cardiovascular and all-cause mortality in patients with chronic kidney disease. We hypothesised that PWV would also predict acute kidney injury in subjects who have undergone non-valve repair elective coronary artery bypass graft (CABG) surgery . METHODS: This was a prospective, observational, exploratory study. PWV was determined with a Vicorder device, together with standard clinical and biochemical parameters. AKI staging was defined according to the Kidney Disease Improving Global Outcomes (KDIGO) Clinical Practice Guidelines. RESULTS: 137 patients were included in the study. 85% were male, and mean age was 66.3 years (SD = 9.7 years). There were 40 episodes (29%) of CSA-AKI. Each 1 unit increase in PWV score was associated with a 1.5 fold greater odds of a CSA-AKI event (p = 0.006(odds ratio = 1.5; confidence interval:1.13-2.10). A 1 unit increase in estimated glomerular filtration rate resulted in an estimated 85% decrease in the odds of developing AKI, each year, men have an odds reduction of 15% of developing AKI compared with females and each 1 year increase in age lowered the odds of developing AKI by 87%. CONCLUSIONS: This pilot exploratory study revealed that PWV, assessed prior to non-valve repair elective CABG surgery, independently predicts CSA-AKI events. PWV is a simple, non-invasive technique that could potentially be used to risk stratify for CSA- AKI following elective cardiac surgery. TRIAL REGISTRATION: ClinTrial.Gov NCT02364427 . Registered 18 February 2015.
37 schema:genre research_article
38 schema:inLanguage en
39 schema:isAccessibleForFree true
40 schema:isPartOf N335297f00a534971a130608fc4907342
41 N6135f98b5650494bba6ca3e61eea04a0
42 sg:journal.1036453
43 schema:name Arterial stiffness is a predictor for acute kidney injury following coronary artery bypass graft surgery
44 schema:pagination 51
45 schema:productId N46467b9b9bf045abbd6e2ebde91abd5b
46 N867780318a21403dbe16f873fa219074
47 N94828ee89bda4e5f8901250528cdcac5
48 Nbe5f16d4ea624ad3961067e015220f73
49 Ne0cfef8769c24b1da041d0cbeb03d0f1
50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112606586
51 https://doi.org/10.1186/s13019-019-0873-3
52 schema:sdDatePublished 2019-04-11T13:17
53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
54 schema:sdPublisher N0901ca23a4f341c2bf1cd5bc60ea5dc8
55 schema:url https://link.springer.com/10.1186%2Fs13019-019-0873-3
56 sgo:license sg:explorer/license/
57 sgo:sdDataset articles
58 rdf:type schema:ScholarlyArticle
59 N0901ca23a4f341c2bf1cd5bc60ea5dc8 schema:name Springer Nature - SN SciGraph project
60 rdf:type schema:Organization
61 N0b652ca27025463d8c4a35345fd7bb2d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
62 schema:name Glomerular Filtration Rate
63 rdf:type schema:DefinedTerm
64 N0c90ad6e761645ed91fc65aabf7e2987 schema:affiliation https://www.grid.ac/institutes/grid.44870.3f
65 schema:familyName Campbell
66 schema:givenName Jackie
67 rdf:type schema:Person
68 N28edb54a0f55493887460afaaf93300b rdf:first Nd99a906cf12a48dd801d3baea34f33bc
69 rdf:rest rdf:nil
70 N335297f00a534971a130608fc4907342 schema:issueNumber 1
71 rdf:type schema:PublicationIssue
72 N33a1b3e71cb24563a6e76a99d2d44550 rdf:first N888fd89325f3433ea693ce641a687f39
73 rdf:rest N87a01fe6d03a4393b4a9ba129ba2dbff
74 N3d460eaaf7364f0aa9e0845edbfc78cc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
75 schema:name Acute Kidney Injury
76 rdf:type schema:DefinedTerm
77 N431b30bdb0c14d45a6c077e5dac4b4c1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
78 schema:name Predictive Value of Tests
79 rdf:type schema:DefinedTerm
80 N4542f84ce4014c939f870bb120a534b2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
81 schema:name Male
82 rdf:type schema:DefinedTerm
83 N46467b9b9bf045abbd6e2ebde91abd5b schema:name doi
84 schema:value 10.1186/s13019-019-0873-3
85 rdf:type schema:PropertyValue
86 N5332238301e84a17ac428de5ccd38898 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Pilot Projects
88 rdf:type schema:DefinedTerm
89 N5c43e4e94a6c484fad1d09bfb967273a schema:affiliation https://www.grid.ac/institutes/grid.416404.3
90 schema:familyName Wang
91 schema:givenName Joe
92 rdf:type schema:Person
93 N6135f98b5650494bba6ca3e61eea04a0 schema:volumeNumber 14
94 rdf:type schema:PublicationVolume
95 N6aeae7b50e1d44c2bd4805916f4bf722 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Female
97 rdf:type schema:DefinedTerm
98 N6b5324146d154828a95bdf891de193b8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Prospective Studies
100 rdf:type schema:DefinedTerm
101 N756c4a00011a4c2f8bd1adc7ae4f09c4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Coronary Disease
103 rdf:type schema:DefinedTerm
104 N818da72de7de4cb2928d4f840939bb2a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Humans
106 rdf:type schema:DefinedTerm
107 N867780318a21403dbe16f873fa219074 schema:name readcube_id
108 schema:value 98821de10589d183dce3419cc7301e823033d2d618e30231316aa2aa784d23b4
109 rdf:type schema:PropertyValue
110 N87a01fe6d03a4393b4a9ba129ba2dbff rdf:first N9d03c786dbbd419fbe6e0c58e1409cde
111 rdf:rest Nde1d4dbd1edc486dac14500be864d8a2
112 N888fd89325f3433ea693ce641a687f39 schema:affiliation https://www.grid.ac/institutes/grid.46699.34
113 schema:familyName Mangahis
114 schema:givenName Emmanuel
115 rdf:type schema:Person
116 N94828ee89bda4e5f8901250528cdcac5 schema:name nlm_unique_id
117 schema:value 101265113
118 rdf:type schema:PropertyValue
119 N948d28193b614c919df5a4c04ff45cef schema:affiliation https://www.grid.ac/institutes/grid.46699.34
120 schema:familyName Deshpande
121 schema:givenName Ranjit
122 rdf:type schema:Person
123 N97a89ba1856543dcbde022f807c6bc54 schema:affiliation https://www.grid.ac/institutes/grid.13097.3c
124 schema:familyName Greenwood
125 schema:givenName Sharlene A.
126 rdf:type schema:Person
127 N9d03c786dbbd419fbe6e0c58e1409cde schema:affiliation https://www.grid.ac/institutes/grid.13097.3c
128 schema:familyName Castle
129 schema:givenName Ellen M.
130 rdf:type schema:Person
131 Nbce20c4fee584481ba1ab43fde3c6751 rdf:first N0c90ad6e761645ed91fc65aabf7e2987
132 rdf:rest Ne1dfea56f17a4349abc09ae60561ce6f
133 Nbe5f16d4ea624ad3961067e015220f73 schema:name dimensions_id
134 schema:value pub.1112606586
135 rdf:type schema:PropertyValue
136 Nc5450b5165e54008990a932621d95345 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Middle Aged
138 rdf:type schema:DefinedTerm
139 Nd0b2549165ce43df926b44ef0ee24067 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Vascular Stiffness
141 rdf:type schema:DefinedTerm
142 Nd400b4cd9f6f430f860e3bd2ca2010ae schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Risk Factors
144 rdf:type schema:DefinedTerm
145 Nd56fd324bf6a4f87b5dfa3fbc002c4b2 rdf:first N97a89ba1856543dcbde022f807c6bc54
146 rdf:rest N33a1b3e71cb24563a6e76a99d2d44550
147 Nd8823d68090a48ceb89120396e15a30b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Aged
149 rdf:type schema:DefinedTerm
150 Nd99a906cf12a48dd801d3baea34f33bc schema:affiliation https://www.grid.ac/institutes/grid.13097.3c
151 schema:familyName Jayawardene
152 schema:givenName Satish
153 rdf:type schema:Person
154 Ndc35e9f646784a5a8f9056b1e6113263 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name Coronary Artery Bypass
156 rdf:type schema:DefinedTerm
157 Nde1d4dbd1edc486dac14500be864d8a2 rdf:first N5c43e4e94a6c484fad1d09bfb967273a
158 rdf:rest Nbce20c4fee584481ba1ab43fde3c6751
159 Ne0cfef8769c24b1da041d0cbeb03d0f1 schema:name pubmed_id
160 schema:value 30845970
161 rdf:type schema:PropertyValue
162 Ne1dfea56f17a4349abc09ae60561ce6f rdf:first N948d28193b614c919df5a4c04ff45cef
163 rdf:rest N28edb54a0f55493887460afaaf93300b
164 Nfe5617d281da47a5909d3ecc849e9589 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
165 schema:name Pulse Wave Analysis
166 rdf:type schema:DefinedTerm
167 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
168 schema:name Medical and Health Sciences
169 rdf:type schema:DefinedTerm
170 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
171 schema:name Clinical Sciences
172 rdf:type schema:DefinedTerm
173 sg:journal.1036453 schema:issn 1749-8090
174 schema:name Journal of Cardiothoracic Surgery
175 rdf:type schema:Periodical
176 sg:pub.10.1038/hr.2009.154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022692881
177 https://doi.org/10.1038/hr.2009.154
178 rdf:type schema:CreativeWork
179 sg:pub.10.1186/1749-8090-9-89 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007757201
180 https://doi.org/10.1186/1749-8090-9-89
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1016/j.amjcard.2012.11.047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002464478
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/s0140-6736(00)95580-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053575522
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1016/s0895-4356(96)00236-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048737616
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1053/j.ajkd.2004.11.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022803091
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1093/aje/kwk052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026139704
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1093/eurheartj/ehl254 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026272416
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1093/icvts/ivu014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049716498
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1093/ndt/gfr578 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011483280
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1097/01.asn.00000130340.93930.dd schema:sameAs https://app.dimensions.ai/details/publication/pub.1060319629
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1097/01.asn.0000130340.93930.dd schema:sameAs https://app.dimensions.ai/details/publication/pub.1060319629
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1161/circheartfailure.112.971705 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030174237
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1681/asn.2009121210 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020789449
205 rdf:type schema:CreativeWork
206 https://doi.org/10.2215/cjn.05571008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012401129
207 rdf:type schema:CreativeWork
208 https://www.grid.ac/institutes/grid.13097.3c schema:alternateName King's College London
209 schema:name Department of Renal Medicine, King’s College Hospital, London, UK
210 Department of Therapies, King’s College Hospital, London, UK
211 Renal Sciences, Department of Transplantation, Immunology and Mucosal Biology, King’s College London, London, UK
212 rdf:type schema:Organization
213 https://www.grid.ac/institutes/grid.416404.3 schema:alternateName St Helier Hospital
214 schema:name Department of Renal Medicine, Epsom & St Helier Hospital, London, UK
215 rdf:type schema:Organization
216 https://www.grid.ac/institutes/grid.44870.3f schema:alternateName University of Northampton
217 schema:name Faculty of Health and Social Care, University of Northampton, Northampton, UK
218 rdf:type schema:Organization
219 https://www.grid.ac/institutes/grid.46699.34 schema:alternateName King's College Hospital
220 schema:name Department of Cardiovascular Sciences, King’s College Hospital, London, UK
221 Department of Renal Medicine, King’s College Hospital, London, UK
222 Department of Therapies, King’s College Hospital, London, UK
223 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...