Quantitative bone single-photon emission computed tomography imaging for uninfected nonunion: comparison of hypertrophic nonunion and non-hypertrophic nonunion View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-02-10

AUTHORS

Keisuke Oe, Feibi Zeng, Tomoaki Fukui, Munenobu Nogami, Takamichi Murakami, Tomoyuki Matsumoto, Ryosuke Kuroda, Takahiro Niikura

ABSTRACT

BackgroundRecently, a standardized uptake value (SUV) has been used to evaluate bone single-photon emission computed tomography (SPECT). The aim of this study was to investigate quantitative SPECT imaging of uninfected nonunion to compare hypertrophic nonunion and non-hypertrophic nonunion using volume-based parameters.MethodsWe evaluated 23 patients with uninfected nonunion who underwent SPECT acquisition 3 h after an injection of 99mTc-hydroxymethylene diphosphonate or 99mTc-methylene diphosphonate from April 2014 to November 2019. We reconstructed the acquired data and performed voxel-based quantitative analysis using the GI-BONE software. Quantitative parameters, maximum SUV (SUVmax), peak SUV (SUVpeak), and mean SUV (SUVmean) in the high and low uptake areas of nonunion were compared between hypertrophic nonunion and non-hypertrophic nonunion. The contralateral limb was used as a control, and the ratios of the quantitative parameters were calculated.ResultsThe values for the quantitative parameters (high uptake area/low uptake area, respectively), SUVmax control ratio (12.13 ± 4.95/6.44 ± 4.71), SUVpeak control ratio (11.65 ± 4.58/6.45 ± 4.64), and SUVmean control ratio (11.94 ± 5.03/6.28 ± 4.95) for hypertrophic nonunion were higher than those for non-hypertrophic nonunion (7.82 ± 4.76/3.41 ± 2.09 (p = 0.065/0.12), 7.56 ± 4.51/3.61 ± 2.23 (p = 0.065/0.22), and 7.59 ± 5.18/3.05 ± 1.91 (p = 0.076/0.23)).ConclusionsSUVmax, SUVpeak, and SUVmean control ratios obtained from bone SPECT images can quantitatively evaluate the biological activity of nonunions and may be an effective evaluation method for treatment decisions, especially the necessity of autologous bone grafting. More... »

PAGES

125

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13018-021-02279-8

DOI

http://dx.doi.org/10.1186/s13018-021-02279-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1135272097

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/33568159


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adolescent", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bone Transplantation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bone and Bones", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Decision Making", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fractures, Bone", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fractures, Ununited", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hypertrophy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tomography, Emission-Computed, Single-Photon", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Transplantation, Autologous", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Young Adult", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, 650-0017, Kobe, Japan", 
          "id": "http://www.grid.ac/institutes/grid.31432.37", 
          "name": [
            "Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, 650-0017, Kobe, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Oe", 
        "givenName": "Keisuke", 
        "id": "sg:person.01004763715.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01004763715.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, 650-0017, Kobe, Japan", 
          "id": "http://www.grid.ac/institutes/grid.31432.37", 
          "name": [
            "Department of Radiology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, 650-0017, Kobe, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zeng", 
        "givenName": "Feibi", 
        "id": "sg:person.014072707111.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014072707111.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, 650-0017, Kobe, Japan", 
          "id": "http://www.grid.ac/institutes/grid.31432.37", 
          "name": [
            "Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, 650-0017, Kobe, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fukui", 
        "givenName": "Tomoaki", 
        "id": "sg:person.0715234724.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0715234724.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, 650-0017, Kobe, Japan", 
          "id": "http://www.grid.ac/institutes/grid.31432.37", 
          "name": [
            "Department of Radiology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, 650-0017, Kobe, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nogami", 
        "givenName": "Munenobu", 
        "id": "sg:person.0655433137.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0655433137.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, 650-0017, Kobe, Japan", 
          "id": "http://www.grid.ac/institutes/grid.31432.37", 
          "name": [
            "Department of Radiology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, 650-0017, Kobe, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Murakami", 
        "givenName": "Takamichi", 
        "id": "sg:person.01243532107.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01243532107.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, 650-0017, Kobe, Japan", 
          "id": "http://www.grid.ac/institutes/grid.31432.37", 
          "name": [
            "Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, 650-0017, Kobe, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Matsumoto", 
        "givenName": "Tomoyuki", 
        "id": "sg:person.0673774654.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0673774654.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, 650-0017, Kobe, Japan", 
          "id": "http://www.grid.ac/institutes/grid.31432.37", 
          "name": [
            "Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, 650-0017, Kobe, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kuroda", 
        "givenName": "Ryosuke", 
        "id": "sg:person.01025022257.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025022257.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, 650-0017, Kobe, Japan", 
          "id": "http://www.grid.ac/institutes/grid.31432.37", 
          "name": [
            "Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, 650-0017, Kobe, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Niikura", 
        "givenName": "Takahiro", 
        "id": "sg:person.016327606050.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016327606050.40"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00776-013-0472-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015916096", 
          "https://doi.org/10.1007/s00776-013-0472-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13550-017-0300-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086112349", 
          "https://doi.org/10.1186/s13550-017-0300-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00776-012-0316-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013472079", 
          "https://doi.org/10.1007/s00776-012-0316-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12149-019-01390-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1119812459", 
          "https://doi.org/10.1007/s12149-019-01390-5"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-02-10", 
    "datePublishedReg": "2021-02-10", 
    "description": "BackgroundRecently, a standardized uptake value (SUV) has been used to evaluate bone single-photon emission computed tomography (SPECT). The aim of this study was to investigate quantitative SPECT imaging of uninfected nonunion to compare hypertrophic nonunion and non-hypertrophic nonunion using volume-based parameters.MethodsWe evaluated 23 patients with uninfected nonunion who underwent SPECT acquisition 3\u2009h after an injection of 99mTc-hydroxymethylene diphosphonate or 99mTc-methylene diphosphonate from April 2014 to November 2019. We reconstructed the acquired data and performed voxel-based quantitative analysis using the GI-BONE software. Quantitative parameters, maximum SUV (SUVmax), peak SUV (SUVpeak), and mean SUV (SUVmean) in the high and low uptake areas of nonunion were compared between hypertrophic nonunion and non-hypertrophic nonunion. The contralateral limb was used as a control, and the ratios of the quantitative parameters were calculated.ResultsThe values for the quantitative parameters (high uptake area/low uptake area, respectively), SUVmax control ratio (12.13 \u00b1 4.95/6.44 \u00b1 4.71), SUVpeak control ratio (11.65 \u00b1 4.58/6.45 \u00b1 4.64), and SUVmean control ratio (11.94 \u00b1 5.03/6.28 \u00b1 4.95) for hypertrophic nonunion were higher than those for non-hypertrophic nonunion (7.82 \u00b1 4.76/3.41 \u00b1 2.09 (p = 0.065/0.12), 7.56 \u00b1 4.51/3.61 \u00b1 2.23 (p = 0.065/0.22), and 7.59 \u00b1 5.18/3.05 \u00b1 1.91 (p = 0.076/0.23)).ConclusionsSUVmax, SUVpeak, and SUVmean control ratios obtained from bone SPECT images can quantitatively evaluate the biological activity of nonunions and may be an effective evaluation method for treatment decisions, especially the necessity of autologous bone grafting.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s13018-021-02279-8", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1036452", 
        "issn": [
          "1749-799X"
        ], 
        "name": "Journal of Orthopaedic Surgery and Research", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "16"
      }
    ], 
    "keywords": [
      "standardized uptake value", 
      "bone single photon emission", 
      "hypertrophic nonunion", 
      "uninfected nonunion", 
      "single photon emission", 
      "control ratio", 
      "maximum standardized uptake value", 
      "voxel-based quantitative analysis", 
      "peak standardized uptake value", 
      "quantitative bone single-photon emission", 
      "volume-based parameters", 
      "low-uptake areas", 
      "treatment decisions", 
      "contralateral limb", 
      "nonunion", 
      "uptake value", 
      "autologous bone", 
      "uptake area", 
      "quantitative parameters", 
      "SPECT imaging", 
      "bone SPECT images", 
      "SPECT images", 
      "diphosphonate", 
      "tomography", 
      "quantitative SPECT imaging", 
      "patients", 
      "BackgroundRecently", 
      "ConclusionsSUVmax", 
      "SUVpeak", 
      "MethodsWe", 
      "biological activity", 
      "limb", 
      "injection", 
      "bone", 
      "imaging", 
      "aim", 
      "ratio", 
      "control", 
      "activity", 
      "study", 
      "quantitative analysis", 
      "data", 
      "values", 
      "effective evaluation method", 
      "comparison", 
      "analysis", 
      "area", 
      "parameters", 
      "decisions", 
      "necessity", 
      "evaluation method", 
      "method", 
      "images", 
      "software", 
      "emission"
    ], 
    "name": "Quantitative bone single-photon emission computed tomography imaging for uninfected nonunion: comparison of hypertrophic nonunion and non-hypertrophic nonunion", 
    "pagination": "125", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1135272097"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13018-021-02279-8"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "33568159"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13018-021-02279-8", 
      "https://app.dimensions.ai/details/publication/pub.1135272097"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:49", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_917.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s13018-021-02279-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13018-021-02279-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13018-021-02279-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13018-021-02279-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13018-021-02279-8'


 

This table displays all metadata directly associated to this object as RDF triples.

246 TRIPLES      21 PREDICATES      100 URIs      88 LITERALS      23 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13018-021-02279-8 schema:about N00fece63a4054ceabd176bfd8fd41123
2 N1c2dffc521354f71b6534dfc47fbd13f
3 N2e07796118c241f79bf3be3c8da96263
4 N32505fc72c4444eaab2d3c5534ee5d59
5 N6a7256eb8dab49cd9551de34514a3688
6 N709f7f4b07d24cc599bd993be11f8c45
7 N716b681bc87a4db78e222d995306d02f
8 N85e239b0f2cf42e0ba04050c8cfcd94d
9 N8c5914acc9aa4dd583720b75d117fa81
10 Nab72a89a9d2943e1aaa5e80713361080
11 Nc8197bf127de4110a126f90bcac39c09
12 Nd7d7d3a6dc3d4f3992048521ba6f1a03
13 Ndd3b1e51441d4534b68aeeeac3cab615
14 Ne2ea2c7894cb494d87d51dcea2b4a01b
15 Ne8ea7ce982b14b838a81497aded57473
16 Nf794539e993947eba4c77f7f0ceb7dab
17 anzsrc-for:11
18 anzsrc-for:1103
19 schema:author Nb6bd3750cd8c4dec9648563e733d5221
20 schema:citation sg:pub.10.1007/s00776-012-0316-7
21 sg:pub.10.1007/s00776-013-0472-4
22 sg:pub.10.1007/s12149-019-01390-5
23 sg:pub.10.1186/s13550-017-0300-5
24 schema:datePublished 2021-02-10
25 schema:datePublishedReg 2021-02-10
26 schema:description BackgroundRecently, a standardized uptake value (SUV) has been used to evaluate bone single-photon emission computed tomography (SPECT). The aim of this study was to investigate quantitative SPECT imaging of uninfected nonunion to compare hypertrophic nonunion and non-hypertrophic nonunion using volume-based parameters.MethodsWe evaluated 23 patients with uninfected nonunion who underwent SPECT acquisition 3 h after an injection of 99mTc-hydroxymethylene diphosphonate or 99mTc-methylene diphosphonate from April 2014 to November 2019. We reconstructed the acquired data and performed voxel-based quantitative analysis using the GI-BONE software. Quantitative parameters, maximum SUV (SUVmax), peak SUV (SUVpeak), and mean SUV (SUVmean) in the high and low uptake areas of nonunion were compared between hypertrophic nonunion and non-hypertrophic nonunion. The contralateral limb was used as a control, and the ratios of the quantitative parameters were calculated.ResultsThe values for the quantitative parameters (high uptake area/low uptake area, respectively), SUVmax control ratio (12.13 ± 4.95/6.44 ± 4.71), SUVpeak control ratio (11.65 ± 4.58/6.45 ± 4.64), and SUVmean control ratio (11.94 ± 5.03/6.28 ± 4.95) for hypertrophic nonunion were higher than those for non-hypertrophic nonunion (7.82 ± 4.76/3.41 ± 2.09 (p = 0.065/0.12), 7.56 ± 4.51/3.61 ± 2.23 (p = 0.065/0.22), and 7.59 ± 5.18/3.05 ± 1.91 (p = 0.076/0.23)).ConclusionsSUVmax, SUVpeak, and SUVmean control ratios obtained from bone SPECT images can quantitatively evaluate the biological activity of nonunions and may be an effective evaluation method for treatment decisions, especially the necessity of autologous bone grafting.
27 schema:genre article
28 schema:isAccessibleForFree true
29 schema:isPartOf N34e3c358f26b42099b2418c34a36f291
30 N7d646ead4b544c80abfa4cd9e8c4d946
31 sg:journal.1036452
32 schema:keywords BackgroundRecently
33 ConclusionsSUVmax
34 MethodsWe
35 SPECT images
36 SPECT imaging
37 SUVpeak
38 activity
39 aim
40 analysis
41 area
42 autologous bone
43 biological activity
44 bone
45 bone SPECT images
46 bone single photon emission
47 comparison
48 contralateral limb
49 control
50 control ratio
51 data
52 decisions
53 diphosphonate
54 effective evaluation method
55 emission
56 evaluation method
57 hypertrophic nonunion
58 images
59 imaging
60 injection
61 limb
62 low-uptake areas
63 maximum standardized uptake value
64 method
65 necessity
66 nonunion
67 parameters
68 patients
69 peak standardized uptake value
70 quantitative SPECT imaging
71 quantitative analysis
72 quantitative bone single-photon emission
73 quantitative parameters
74 ratio
75 single photon emission
76 software
77 standardized uptake value
78 study
79 tomography
80 treatment decisions
81 uninfected nonunion
82 uptake area
83 uptake value
84 values
85 volume-based parameters
86 voxel-based quantitative analysis
87 schema:name Quantitative bone single-photon emission computed tomography imaging for uninfected nonunion: comparison of hypertrophic nonunion and non-hypertrophic nonunion
88 schema:pagination 125
89 schema:productId N36fea57573a641e9b34d704f31b9cda4
90 Nb7b50aa38b184747b44590758ed7e121
91 Ne675edeff1eb496c8400d9722332489c
92 schema:sameAs https://app.dimensions.ai/details/publication/pub.1135272097
93 https://doi.org/10.1186/s13018-021-02279-8
94 schema:sdDatePublished 2022-10-01T06:49
95 schema:sdLicense https://scigraph.springernature.com/explorer/license/
96 schema:sdPublisher Nfb85c7d47d5e4569a30216cc257d7ddd
97 schema:url https://doi.org/10.1186/s13018-021-02279-8
98 sgo:license sg:explorer/license/
99 sgo:sdDataset articles
100 rdf:type schema:ScholarlyArticle
101 N00fece63a4054ceabd176bfd8fd41123 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Tomography, Emission-Computed, Single-Photon
103 rdf:type schema:DefinedTerm
104 N1c2dffc521354f71b6534dfc47fbd13f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Bone and Bones
106 rdf:type schema:DefinedTerm
107 N2591150d922b4bce87a21103f3c45baa rdf:first sg:person.01243532107.07
108 rdf:rest N25b7a6ee344642e3aaaa28058035ba7c
109 N25b7a6ee344642e3aaaa28058035ba7c rdf:first sg:person.0673774654.56
110 rdf:rest N47ef5adfaf8d4774899113064d9eee19
111 N2e07796118c241f79bf3be3c8da96263 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Adolescent
113 rdf:type schema:DefinedTerm
114 N32505fc72c4444eaab2d3c5534ee5d59 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Decision Making
116 rdf:type schema:DefinedTerm
117 N34e3c358f26b42099b2418c34a36f291 schema:volumeNumber 16
118 rdf:type schema:PublicationVolume
119 N36fea57573a641e9b34d704f31b9cda4 schema:name pubmed_id
120 schema:value 33568159
121 rdf:type schema:PropertyValue
122 N47ef5adfaf8d4774899113064d9eee19 rdf:first sg:person.01025022257.04
123 rdf:rest N868be69342d04b3fa0ecd1409ed4847d
124 N5eeaccdac5ce49b1a45338c75e211270 rdf:first sg:person.014072707111.18
125 rdf:rest Nb9b82fb607a34213a9a363d6e2cc18f5
126 N6a7256eb8dab49cd9551de34514a3688 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Fractures, Ununited
128 rdf:type schema:DefinedTerm
129 N709f7f4b07d24cc599bd993be11f8c45 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Hypertrophy
131 rdf:type schema:DefinedTerm
132 N716b681bc87a4db78e222d995306d02f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Adult
134 rdf:type schema:DefinedTerm
135 N7d646ead4b544c80abfa4cd9e8c4d946 schema:issueNumber 1
136 rdf:type schema:PublicationIssue
137 N85e239b0f2cf42e0ba04050c8cfcd94d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Young Adult
139 rdf:type schema:DefinedTerm
140 N868be69342d04b3fa0ecd1409ed4847d rdf:first sg:person.016327606050.40
141 rdf:rest rdf:nil
142 N8c5914acc9aa4dd583720b75d117fa81 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Male
144 rdf:type schema:DefinedTerm
145 Na9750502d20342d1b0fe0e845e19d2d5 rdf:first sg:person.0655433137.97
146 rdf:rest N2591150d922b4bce87a21103f3c45baa
147 Nab72a89a9d2943e1aaa5e80713361080 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Fractures, Bone
149 rdf:type schema:DefinedTerm
150 Nb6bd3750cd8c4dec9648563e733d5221 rdf:first sg:person.01004763715.25
151 rdf:rest N5eeaccdac5ce49b1a45338c75e211270
152 Nb7b50aa38b184747b44590758ed7e121 schema:name dimensions_id
153 schema:value pub.1135272097
154 rdf:type schema:PropertyValue
155 Nb9b82fb607a34213a9a363d6e2cc18f5 rdf:first sg:person.0715234724.14
156 rdf:rest Na9750502d20342d1b0fe0e845e19d2d5
157 Nc8197bf127de4110a126f90bcac39c09 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
158 schema:name Bone Transplantation
159 rdf:type schema:DefinedTerm
160 Nd7d7d3a6dc3d4f3992048521ba6f1a03 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
161 schema:name Female
162 rdf:type schema:DefinedTerm
163 Ndd3b1e51441d4534b68aeeeac3cab615 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
164 schema:name Aged
165 rdf:type schema:DefinedTerm
166 Ne2ea2c7894cb494d87d51dcea2b4a01b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
167 schema:name Humans
168 rdf:type schema:DefinedTerm
169 Ne675edeff1eb496c8400d9722332489c schema:name doi
170 schema:value 10.1186/s13018-021-02279-8
171 rdf:type schema:PropertyValue
172 Ne8ea7ce982b14b838a81497aded57473 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
173 schema:name Middle Aged
174 rdf:type schema:DefinedTerm
175 Nf794539e993947eba4c77f7f0ceb7dab schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
176 schema:name Transplantation, Autologous
177 rdf:type schema:DefinedTerm
178 Nfb85c7d47d5e4569a30216cc257d7ddd schema:name Springer Nature - SN SciGraph project
179 rdf:type schema:Organization
180 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
181 schema:name Medical and Health Sciences
182 rdf:type schema:DefinedTerm
183 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
184 schema:name Clinical Sciences
185 rdf:type schema:DefinedTerm
186 sg:journal.1036452 schema:issn 1749-799X
187 schema:name Journal of Orthopaedic Surgery and Research
188 schema:publisher Springer Nature
189 rdf:type schema:Periodical
190 sg:person.01004763715.25 schema:affiliation grid-institutes:grid.31432.37
191 schema:familyName Oe
192 schema:givenName Keisuke
193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01004763715.25
194 rdf:type schema:Person
195 sg:person.01025022257.04 schema:affiliation grid-institutes:grid.31432.37
196 schema:familyName Kuroda
197 schema:givenName Ryosuke
198 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025022257.04
199 rdf:type schema:Person
200 sg:person.01243532107.07 schema:affiliation grid-institutes:grid.31432.37
201 schema:familyName Murakami
202 schema:givenName Takamichi
203 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01243532107.07
204 rdf:type schema:Person
205 sg:person.014072707111.18 schema:affiliation grid-institutes:grid.31432.37
206 schema:familyName Zeng
207 schema:givenName Feibi
208 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014072707111.18
209 rdf:type schema:Person
210 sg:person.016327606050.40 schema:affiliation grid-institutes:grid.31432.37
211 schema:familyName Niikura
212 schema:givenName Takahiro
213 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016327606050.40
214 rdf:type schema:Person
215 sg:person.0655433137.97 schema:affiliation grid-institutes:grid.31432.37
216 schema:familyName Nogami
217 schema:givenName Munenobu
218 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0655433137.97
219 rdf:type schema:Person
220 sg:person.0673774654.56 schema:affiliation grid-institutes:grid.31432.37
221 schema:familyName Matsumoto
222 schema:givenName Tomoyuki
223 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0673774654.56
224 rdf:type schema:Person
225 sg:person.0715234724.14 schema:affiliation grid-institutes:grid.31432.37
226 schema:familyName Fukui
227 schema:givenName Tomoaki
228 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0715234724.14
229 rdf:type schema:Person
230 sg:pub.10.1007/s00776-012-0316-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013472079
231 https://doi.org/10.1007/s00776-012-0316-7
232 rdf:type schema:CreativeWork
233 sg:pub.10.1007/s00776-013-0472-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015916096
234 https://doi.org/10.1007/s00776-013-0472-4
235 rdf:type schema:CreativeWork
236 sg:pub.10.1007/s12149-019-01390-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1119812459
237 https://doi.org/10.1007/s12149-019-01390-5
238 rdf:type schema:CreativeWork
239 sg:pub.10.1186/s13550-017-0300-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086112349
240 https://doi.org/10.1186/s13550-017-0300-5
241 rdf:type schema:CreativeWork
242 grid-institutes:grid.31432.37 schema:alternateName Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, 650-0017, Kobe, Japan
243 Department of Radiology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, 650-0017, Kobe, Japan
244 schema:name Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, 650-0017, Kobe, Japan
245 Department of Radiology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, 650-0017, Kobe, Japan
246 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...