Improved de novo peptide sequencing using LC retention time information View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Yves Frank, Tomas Hruz, Thomas Tschager, Valentin Venzin

ABSTRACT

Background: Liquid chromatography combined with tandem mass spectrometry is an important tool in proteomics for peptide identification. Liquid chromatography temporally separates the peptides in a sample. The peptides that elute one after another are analyzed via tandem mass spectrometry by measuring the mass-to-charge ratio of a peptide and its fragments. De novo peptide sequencing is the problem of reconstructing the amino acid sequences of a peptide from this measurement data. Past de novo sequencing algorithms solely consider the mass spectrum of the fragments for reconstructing a sequence. Results: We propose to additionally exploit the information obtained from liquid chromatography. We study the problem of computing a sequence that is not only in accordance with the experimental mass spectrum, but also with the chromatographic retention time. We consider three models for predicting the retention time and develop algorithms for de novo sequencing for each model. Conclusions: Based on an evaluation for two prediction models on experimental data from synthesized peptides we conclude that the identification rates are improved by exploiting the chromatographic information. In our evaluation, we compare our algorithms using the retention time information with algorithms using the same scoring model, but not the retention time. More... »

PAGES

14

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13015-018-0132-5

DOI

http://dx.doi.org/10.1186/s13015-018-0132-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1106413181

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30181767


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0301", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Analytical Chemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Swiss Federal Institute of Technology in Zurich", 
          "id": "https://www.grid.ac/institutes/grid.5801.c", 
          "name": [
            "Department of Computer Science, ETH Zurich, Universit\u00e4tstrasse 6, 8092, Z\u00fcrich, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Frank", 
        "givenName": "Yves", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Swiss Federal Institute of Technology in Zurich", 
          "id": "https://www.grid.ac/institutes/grid.5801.c", 
          "name": [
            "Department of Computer Science, ETH Zurich, Universit\u00e4tstrasse 6, 8092, Z\u00fcrich, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hruz", 
        "givenName": "Tomas", 
        "id": "sg:person.01271152363.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01271152363.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Swiss Federal Institute of Technology in Zurich", 
          "id": "https://www.grid.ac/institutes/grid.5801.c", 
          "name": [
            "Department of Computer Science, ETH Zurich, Universit\u00e4tstrasse 6, 8092, Z\u00fcrich, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tschager", 
        "givenName": "Thomas", 
        "id": "sg:person.012661117501.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012661117501.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Swiss Federal Institute of Technology in Zurich", 
          "id": "https://www.grid.ac/institutes/grid.5801.c", 
          "name": [
            "Department of Computer Science, ETH Zurich, Universit\u00e4tstrasse 6, 8092, Z\u00fcrich, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Venzin", 
        "givenName": "Valentin", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/pmic.200700692", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004185624"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0021-9673(86)80102-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016980360"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.3959", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017141397", 
          "https://doi.org/10.1038/nmeth.3959"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-007-5896-4_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018998730", 
          "https://doi.org/10.1007/978-94-007-5896-4_1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nprot.2015.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020133728", 
          "https://doi.org/10.1038/nprot.2015.015"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mas.21488", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022710378"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btt338", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023695280"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac025747h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030226321"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac025747h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030226321"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/mcp.m400031-mcp200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030760278"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13361-015-1204-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035128908", 
          "https://doi.org/10.1007/s13361-015-1204-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.2841", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039179600", 
          "https://doi.org/10.1038/nbt.2841"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/rcm.1196", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040319213"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac060777w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040740737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac060777w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040740737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pmic.201200439", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041352565"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-60761-444-9_8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048916917", 
          "https://doi.org/10.1007/978-1-60761-444-9_8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-60761-444-9_8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048916917", 
          "https://doi.org/10.1007/978-1-60761-444-9_8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac0256890", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054994121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac0256890", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054994121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac102228a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055000903"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac102228a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055000903"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/pr049965y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056290628"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/10665270152530872", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059204893"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/106652799318300", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059205062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13015-017-0104-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085386740", 
          "https://doi.org/10.1186/s13015-017-0104-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13015-017-0104-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085386740", 
          "https://doi.org/10.1186/s13015-017-0104-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1109491934", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1109491934", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "Background: Liquid chromatography combined with tandem mass spectrometry is an important tool in proteomics for peptide identification. Liquid chromatography temporally separates the peptides in a sample. The peptides that elute one after another are analyzed via tandem mass spectrometry by measuring the mass-to-charge ratio of a peptide and its fragments. De novo peptide sequencing is the problem of reconstructing the amino acid sequences of a peptide from this measurement data. Past de novo sequencing algorithms solely consider the mass spectrum of the fragments for reconstructing a sequence.\nResults: We propose to additionally exploit the information obtained from liquid chromatography. We study the problem of computing a sequence that is not only in accordance with the experimental mass spectrum, but also with the chromatographic retention time. We consider three models for predicting the retention time and develop algorithms for de novo sequencing for each model.\nConclusions: Based on an evaluation for two prediction models on experimental data from synthesized peptides we conclude that the identification rates are improved by exploiting the chromatographic information. In our evaluation, we compare our algorithms using the retention time information with algorithms using the same scoring model, but not the retention time.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s13015-018-0132-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1036449", 
        "issn": [
          "1748-7188"
        ], 
        "name": "Algorithms for Molecular Biology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "13"
      }
    ], 
    "name": "Improved de novo peptide sequencing using LC retention time information", 
    "pagination": "14", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ce5b737f1d66125a02640373caa8ed712282e5eb252808fb2c06ed6b79405c7e"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30181767"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101265088"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13015-018-0132-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1106413181"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13015-018-0132-5", 
      "https://app.dimensions.ai/details/publication/pub.1106413181"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:15", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000605.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs13015-018-0132-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13015-018-0132-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13015-018-0132-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13015-018-0132-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13015-018-0132-5'


 

This table displays all metadata directly associated to this object as RDF triples.

159 TRIPLES      21 PREDICATES      51 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13015-018-0132-5 schema:about anzsrc-for:03
2 anzsrc-for:0301
3 schema:author N797c296a29f2429c8725c680a2748e03
4 schema:citation sg:pub.10.1007/978-1-60761-444-9_8
5 sg:pub.10.1007/978-94-007-5896-4_1
6 sg:pub.10.1007/s13361-015-1204-0
7 sg:pub.10.1038/nbt.2841
8 sg:pub.10.1038/nmeth.3959
9 sg:pub.10.1038/nprot.2015.015
10 sg:pub.10.1186/s13015-017-0104-1
11 https://app.dimensions.ai/details/publication/pub.1109491934
12 https://doi.org/10.1002/mas.21488
13 https://doi.org/10.1002/pmic.200700692
14 https://doi.org/10.1002/pmic.201200439
15 https://doi.org/10.1002/rcm.1196
16 https://doi.org/10.1016/0021-9673(86)80102-9
17 https://doi.org/10.1021/ac0256890
18 https://doi.org/10.1021/ac025747h
19 https://doi.org/10.1021/ac060777w
20 https://doi.org/10.1021/ac102228a
21 https://doi.org/10.1021/pr049965y
22 https://doi.org/10.1074/mcp.m400031-mcp200
23 https://doi.org/10.1089/10665270152530872
24 https://doi.org/10.1089/106652799318300
25 https://doi.org/10.1093/bioinformatics/btt338
26 schema:datePublished 2018-12
27 schema:datePublishedReg 2018-12-01
28 schema:description Background: Liquid chromatography combined with tandem mass spectrometry is an important tool in proteomics for peptide identification. Liquid chromatography temporally separates the peptides in a sample. The peptides that elute one after another are analyzed via tandem mass spectrometry by measuring the mass-to-charge ratio of a peptide and its fragments. De novo peptide sequencing is the problem of reconstructing the amino acid sequences of a peptide from this measurement data. Past de novo sequencing algorithms solely consider the mass spectrum of the fragments for reconstructing a sequence. Results: We propose to additionally exploit the information obtained from liquid chromatography. We study the problem of computing a sequence that is not only in accordance with the experimental mass spectrum, but also with the chromatographic retention time. We consider three models for predicting the retention time and develop algorithms for de novo sequencing for each model. Conclusions: Based on an evaluation for two prediction models on experimental data from synthesized peptides we conclude that the identification rates are improved by exploiting the chromatographic information. In our evaluation, we compare our algorithms using the retention time information with algorithms using the same scoring model, but not the retention time.
29 schema:genre research_article
30 schema:inLanguage en
31 schema:isAccessibleForFree true
32 schema:isPartOf N0cb6fef9186e4db798f7ccfe7a466ab9
33 N88ff2a8371f143c9a426cebf97681183
34 sg:journal.1036449
35 schema:name Improved de novo peptide sequencing using LC retention time information
36 schema:pagination 14
37 schema:productId N5c4e15ad9ca74756b7e65d1d28d7fc22
38 N8e6f063cdc7f4e5e8f94aae494f3fe1e
39 Naf9cec097e40478691d737dcbac270b2
40 Ndf1f977bcad34e618bf55163aaa45d13
41 Nf1f36b6cd6a04aa2bcf022a9182e8725
42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106413181
43 https://doi.org/10.1186/s13015-018-0132-5
44 schema:sdDatePublished 2019-04-10T15:15
45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
46 schema:sdPublisher N5859d304e82f4621830f44b00aa91198
47 schema:url https://link.springer.com/10.1186%2Fs13015-018-0132-5
48 sgo:license sg:explorer/license/
49 sgo:sdDataset articles
50 rdf:type schema:ScholarlyArticle
51 N0cb6fef9186e4db798f7ccfe7a466ab9 schema:issueNumber 1
52 rdf:type schema:PublicationIssue
53 N46f607a0e2244031b051c71b00c4bc20 schema:affiliation https://www.grid.ac/institutes/grid.5801.c
54 schema:familyName Venzin
55 schema:givenName Valentin
56 rdf:type schema:Person
57 N5859d304e82f4621830f44b00aa91198 schema:name Springer Nature - SN SciGraph project
58 rdf:type schema:Organization
59 N5c4e15ad9ca74756b7e65d1d28d7fc22 schema:name dimensions_id
60 schema:value pub.1106413181
61 rdf:type schema:PropertyValue
62 N797c296a29f2429c8725c680a2748e03 rdf:first Nb2b74fa7fbc24e458a052e77f22343f7
63 rdf:rest Nc9180258c57c4ad1b5f413769abdea68
64 N88ff2a8371f143c9a426cebf97681183 schema:volumeNumber 13
65 rdf:type schema:PublicationVolume
66 N8e6f063cdc7f4e5e8f94aae494f3fe1e schema:name doi
67 schema:value 10.1186/s13015-018-0132-5
68 rdf:type schema:PropertyValue
69 N9eff385c72ca4ba3b6da12734e41b9e0 rdf:first N46f607a0e2244031b051c71b00c4bc20
70 rdf:rest rdf:nil
71 Naf9cec097e40478691d737dcbac270b2 schema:name nlm_unique_id
72 schema:value 101265088
73 rdf:type schema:PropertyValue
74 Nb2b74fa7fbc24e458a052e77f22343f7 schema:affiliation https://www.grid.ac/institutes/grid.5801.c
75 schema:familyName Frank
76 schema:givenName Yves
77 rdf:type schema:Person
78 Nbf748296d03b40e787bee4dbb02c82b8 rdf:first sg:person.012661117501.01
79 rdf:rest N9eff385c72ca4ba3b6da12734e41b9e0
80 Nc9180258c57c4ad1b5f413769abdea68 rdf:first sg:person.01271152363.00
81 rdf:rest Nbf748296d03b40e787bee4dbb02c82b8
82 Ndf1f977bcad34e618bf55163aaa45d13 schema:name pubmed_id
83 schema:value 30181767
84 rdf:type schema:PropertyValue
85 Nf1f36b6cd6a04aa2bcf022a9182e8725 schema:name readcube_id
86 schema:value ce5b737f1d66125a02640373caa8ed712282e5eb252808fb2c06ed6b79405c7e
87 rdf:type schema:PropertyValue
88 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
89 schema:name Chemical Sciences
90 rdf:type schema:DefinedTerm
91 anzsrc-for:0301 schema:inDefinedTermSet anzsrc-for:
92 schema:name Analytical Chemistry
93 rdf:type schema:DefinedTerm
94 sg:journal.1036449 schema:issn 1748-7188
95 schema:name Algorithms for Molecular Biology
96 rdf:type schema:Periodical
97 sg:person.012661117501.01 schema:affiliation https://www.grid.ac/institutes/grid.5801.c
98 schema:familyName Tschager
99 schema:givenName Thomas
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012661117501.01
101 rdf:type schema:Person
102 sg:person.01271152363.00 schema:affiliation https://www.grid.ac/institutes/grid.5801.c
103 schema:familyName Hruz
104 schema:givenName Tomas
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01271152363.00
106 rdf:type schema:Person
107 sg:pub.10.1007/978-1-60761-444-9_8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048916917
108 https://doi.org/10.1007/978-1-60761-444-9_8
109 rdf:type schema:CreativeWork
110 sg:pub.10.1007/978-94-007-5896-4_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018998730
111 https://doi.org/10.1007/978-94-007-5896-4_1
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/s13361-015-1204-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035128908
114 https://doi.org/10.1007/s13361-015-1204-0
115 rdf:type schema:CreativeWork
116 sg:pub.10.1038/nbt.2841 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039179600
117 https://doi.org/10.1038/nbt.2841
118 rdf:type schema:CreativeWork
119 sg:pub.10.1038/nmeth.3959 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017141397
120 https://doi.org/10.1038/nmeth.3959
121 rdf:type schema:CreativeWork
122 sg:pub.10.1038/nprot.2015.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020133728
123 https://doi.org/10.1038/nprot.2015.015
124 rdf:type schema:CreativeWork
125 sg:pub.10.1186/s13015-017-0104-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085386740
126 https://doi.org/10.1186/s13015-017-0104-1
127 rdf:type schema:CreativeWork
128 https://app.dimensions.ai/details/publication/pub.1109491934 schema:CreativeWork
129 https://doi.org/10.1002/mas.21488 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022710378
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1002/pmic.200700692 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004185624
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1002/pmic.201200439 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041352565
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1002/rcm.1196 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040319213
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/0021-9673(86)80102-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016980360
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1021/ac0256890 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054994121
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1021/ac025747h schema:sameAs https://app.dimensions.ai/details/publication/pub.1030226321
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1021/ac060777w schema:sameAs https://app.dimensions.ai/details/publication/pub.1040740737
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1021/ac102228a schema:sameAs https://app.dimensions.ai/details/publication/pub.1055000903
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1021/pr049965y schema:sameAs https://app.dimensions.ai/details/publication/pub.1056290628
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1074/mcp.m400031-mcp200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030760278
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1089/10665270152530872 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059204893
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1089/106652799318300 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059205062
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1093/bioinformatics/btt338 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023695280
156 rdf:type schema:CreativeWork
157 https://www.grid.ac/institutes/grid.5801.c schema:alternateName Swiss Federal Institute of Technology in Zurich
158 schema:name Department of Computer Science, ETH Zurich, Universitätstrasse 6, 8092, Zürich, Switzerland
159 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...