ITV versus mid-ventilation for treatment planning in lung SBRT: a comparison of target coverage and PTV adequacy by using in-treatment ... View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2020-03-03

AUTHORS

J. Bellec, F. Arab-Ceschia, J. Castelli, C. Lafond, E. Chajon

ABSTRACT

BACKGROUND: The internal target volume (ITV) approach and the mid-ventilation (MidV) concept are the two main respiratory motion-management strategies under free breathing. The purpose of this work was to compare the actual in-treatment target coverage during volumetric modulated arctherapy (VMAT) delivered through both ITV-based and MidV-based planning target volume (PTV) and to provide knowledge in choosing the optimal PTV for stereotactic body radiotherapy (SBRT) for lung lesions. METHODS AND MATERIALS: Thirty-two lung cancer patients treated by a VMAT technique were included in the study. For each fraction, the mean time-weighted position of the target was localized by using a 4-dimensional cone-beam CT (4D-CBCT)-based image guidance procedure. The respiratory-correlated location of the gross tumor volume (GTV) during treatment delivery was determined for each fraction by using in-treatment 4D-CBCT images acquired concurrently with VMAT delivery (4D-CBCTin-treat). The GTV was delineated from each of the ten respiratory phase-sorted 4D-CBCTin-treat datasets for each fraction. We defined target coverage as the average percentage of the GTV included within the PTV during the patient's breathing cycle averaged over the treatment course. Target coverage and PTVs were reported for a MidV-based PTV (PTVMidV) using dose-probabilistic margins and three ITV-based PTVs using isotropic margins of 5 mm (PTVITV + 5mm), 4 mm (PTVITV + 4mm) and 3 mm (PTVITV + 3mm). The in-treatment baseline displacements and target motion amplitudes were reported to evaluate the impact of both parameters on target coverage. RESULTS: Overall, 100 4D-CBCTin-treat images were analyzed. The mean target coverage was 98.6, 99.6, 98.9 and 97.2% for PTVMidV, PTVITV + 5mm, PTVITV + 4mm and PTVITV + 3mm, respectively. All the PTV margins led to a target coverage per treatment higher than 95% in at least 90% of the evaluated cases. Compared to PTVITV + 5mm, PTVMidV, PTVITV + 4mm and PTVITV + 3mm had mean PTV reductions of 16, 19 and 33%, respectively. CONCLUSION: When implementing VMAT with 4D-CBCT-based image guidance, an ITV-based approach with a tighter margin than the commonly used 5 mm margin remains an alternative to the MidV-based approach for reducing healthy tissue exposure in lung SBRT. Compared to PTVMidV, PTVITV + 3mm significantly reduced the PTV while still maintaining an adequate in-treatment target coverage. More... »

PAGES

54

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13014-020-01496-5

DOI

http://dx.doi.org/10.1186/s13014-020-01496-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1125339297

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/32127010


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cone-Beam Computed Tomography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Four-Dimensional Computed Tomography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lung Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiosurgery", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiotherapy Planning, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiotherapy, Intensity-Modulated", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Medical Physics Department, Centre Eug\u00e8ne Marquis, avenue de La Bataille Flandres Dunkerque \u2013 CS 44229, F-35042 Rennes, France", 
          "id": "http://www.grid.ac/institutes/grid.417988.b", 
          "name": [
            "Medical Physics Department, Centre Eug\u00e8ne Marquis, avenue de La Bataille Flandres Dunkerque \u2013 CS 44229, F-35042 Rennes, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bellec", 
        "givenName": "J.", 
        "id": "sg:person.01204044273.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01204044273.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Medical Physics Department, Centre Eug\u00e8ne Marquis, avenue de La Bataille Flandres Dunkerque \u2013 CS 44229, F-35042 Rennes, France", 
          "id": "http://www.grid.ac/institutes/grid.417988.b", 
          "name": [
            "Medical Physics Department, Centre Eug\u00e8ne Marquis, avenue de La Bataille Flandres Dunkerque \u2013 CS 44229, F-35042 Rennes, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Arab-Ceschia", 
        "givenName": "F.", 
        "id": "sg:person.013443063573.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013443063573.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universit\u00e9 de Rennes-1, LTSI, F-35000 Rennes, France", 
          "id": "http://www.grid.ac/institutes/grid.463996.7", 
          "name": [
            "Radiotherapy Department, Centre Eug\u00e8ne Marquis, avenue de La Bataille Flandres Dunkerque \u2013 CS 44229, F-35042 Rennes, France", 
            "Inserm, U1099, F-35000 Rennes, France", 
            "Universit\u00e9 de Rennes-1, LTSI, F-35000 Rennes, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Castelli", 
        "givenName": "J.", 
        "id": "sg:person.0576143704.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0576143704.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universit\u00e9 de Rennes-1, LTSI, F-35000 Rennes, France", 
          "id": "http://www.grid.ac/institutes/grid.463996.7", 
          "name": [
            "Medical Physics Department, Centre Eug\u00e8ne Marquis, avenue de La Bataille Flandres Dunkerque \u2013 CS 44229, F-35042 Rennes, France", 
            "Inserm, U1099, F-35000 Rennes, France", 
            "Universit\u00e9 de Rennes-1, LTSI, F-35000 Rennes, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lafond", 
        "givenName": "C.", 
        "id": "sg:person.01366122564.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01366122564.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Radiotherapy Department, Centre Eug\u00e8ne Marquis, avenue de La Bataille Flandres Dunkerque \u2013 CS 44229, F-35042 Rennes, France", 
          "id": "http://www.grid.ac/institutes/grid.417988.b", 
          "name": [
            "Radiotherapy Department, Centre Eug\u00e8ne Marquis, avenue de La Bataille Flandres Dunkerque \u2013 CS 44229, F-35042 Rennes, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chajon", 
        "givenName": "E.", 
        "id": "sg:person.01206560744.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206560744.19"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/1748-717x-7-81", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052394621", 
          "https://doi.org/10.1186/1748-717x-7-81"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2020-03-03", 
    "datePublishedReg": "2020-03-03", 
    "description": "BACKGROUND: The internal target volume (ITV) approach and the mid-ventilation (MidV) concept are the two main respiratory motion-management strategies under free breathing. The purpose of this work was to compare the actual in-treatment target coverage during volumetric modulated arctherapy (VMAT) delivered through both ITV-based and MidV-based planning target volume (PTV) and to provide knowledge in choosing the optimal PTV for stereotactic body radiotherapy (SBRT) for lung lesions.\nMETHODS AND MATERIALS: Thirty-two lung cancer patients treated by a VMAT technique were included in the study. For each fraction, the mean time-weighted position of the target was localized by using a 4-dimensional cone-beam CT (4D-CBCT)-based image guidance procedure. The respiratory-correlated location of the gross tumor volume (GTV) during treatment delivery was determined for each fraction by using in-treatment 4D-CBCT images acquired concurrently with VMAT delivery (4D-CBCTin-treat). The GTV was delineated from each of the ten respiratory phase-sorted 4D-CBCTin-treat datasets for each fraction. We defined target coverage as the average percentage of the GTV included within the PTV during the patient's breathing cycle averaged over the treatment course. Target coverage and PTVs were reported for a MidV-based PTV (PTVMidV) using dose-probabilistic margins and three ITV-based PTVs using isotropic margins of 5\u2009mm (PTVITV\u2009+\u20095mm), 4\u2009mm (PTVITV\u2009+\u20094mm) and 3\u2009mm (PTVITV\u2009+\u20093mm). The in-treatment baseline displacements and target motion amplitudes were reported to evaluate the impact of both parameters on target coverage.\nRESULTS: Overall, 100 4D-CBCTin-treat images were analyzed. The mean target coverage was 98.6, 99.6, 98.9 and 97.2% for PTVMidV, PTVITV\u2009+\u20095mm, PTVITV\u2009+\u20094mm and PTVITV\u2009+\u20093mm, respectively. All the PTV margins led to a target coverage per treatment higher than 95% in at least 90% of the evaluated cases. Compared to PTVITV\u2009+\u20095mm, PTVMidV, PTVITV\u2009+\u20094mm and PTVITV\u2009+\u20093mm had mean PTV reductions of 16, 19 and 33%, respectively.\nCONCLUSION: When implementing VMAT with 4D-CBCT-based image guidance, an ITV-based approach with a tighter margin than the commonly used 5\u2009mm margin remains an alternative to the MidV-based approach for reducing healthy tissue exposure in lung SBRT. Compared to PTVMidV, PTVITV\u2009+\u20093mm significantly reduced the PTV while still maintaining an adequate in-treatment target coverage.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s13014-020-01496-5", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1036451", 
        "issn": [
          "1748-717X"
        ], 
        "name": "Radiation Oncology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "15"
      }
    ], 
    "keywords": [
      "stereotactic body radiotherapy", 
      "planning target volume", 
      "gross tumor volume", 
      "lung stereotactic body radiotherapy", 
      "target coverage", 
      "cone-beam CT", 
      "internal target volume (ITV) approach", 
      "lung cancer patients", 
      "optimal planning target volume", 
      "healthy tissue exposure", 
      "mean target coverage", 
      "breathing cycle", 
      "body radiotherapy", 
      "treatment course", 
      "PTV reduction", 
      "lung lesions", 
      "cancer patients", 
      "VMAT technique", 
      "tumor volume", 
      "motion management strategies", 
      "isotropic margin", 
      "tissue exposure", 
      "image guidance procedures", 
      "target volume", 
      "PTV margins", 
      "free breathing", 
      "treatment delivery", 
      "patient's breathing cycle", 
      "treatment planning", 
      "beam CT", 
      "image guidance", 
      "baseline displacement", 
      "CT", 
      "VMAT delivery", 
      "delivery", 
      "patients", 
      "tight margins", 
      "radiotherapy", 
      "MidV", 
      "lesions", 
      "arctherapy", 
      "breathing", 
      "average percentage", 
      "VMAT", 
      "guidance procedures", 
      "treatment", 
      "ITV", 
      "exposure", 
      "volume", 
      "margin", 
      "percentage", 
      "course", 
      "motion amplitude", 
      "fraction", 
      "target", 
      "study", 
      "cases", 
      "coverage", 
      "reduction", 
      "adequacy", 
      "procedure", 
      "guidance", 
      "purpose", 
      "strategies", 
      "knowledge", 
      "alternative", 
      "sub", 
      "impact", 
      "comparison", 
      "approach", 
      "amplitude", 
      "cycle", 
      "location", 
      "planning", 
      "images", 
      "technique", 
      "method", 
      "materials", 
      "parameters", 
      "position", 
      "displacement", 
      "concept", 
      "work", 
      "dataset", 
      "volume approach", 
      "target volume (ITV) approach", 
      "mid-ventilation (MidV) concept", 
      "main respiratory motion-management strategies", 
      "respiratory motion-management strategies", 
      "treatment target coverage", 
      "mean time-weighted position", 
      "time-weighted position", 
      "respiratory-correlated location", 
      "treatment 4D-CBCT images", 
      "respiratory phase-sorted 4D-CBCT", 
      "phase-sorted 4D-CBCT", 
      "dose-probabilistic margins", 
      "treatment baseline displacements", 
      "mean PTV reductions", 
      "PTV adequacy", 
      "treatment 4D cone beam CT"
    ], 
    "name": "ITV versus mid-ventilation for treatment planning in lung SBRT: a comparison of target coverage and PTV adequacy by using in-treatment 4D cone beam CT", 
    "pagination": "54", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1125339297"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13014-020-01496-5"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "32127010"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13014-020-01496-5", 
      "https://app.dimensions.ai/details/publication/pub.1125339297"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:56", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_857.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s13014-020-01496-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13014-020-01496-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13014-020-01496-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13014-020-01496-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13014-020-01496-5'


 

This table displays all metadata directly associated to this object as RDF triples.

230 TRIPLES      22 PREDICATES      135 URIs      126 LITERALS      14 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13014-020-01496-5 schema:about N1fcc6250ddeb40fdba6bfb8f2319e9f8
2 N49b4c074052e4c49af7a4a59daf13238
3 N5c7757cc70014c0488829b10d60049a9
4 N77a8f29f399043068a09885c999afb3a
5 N80f02989ce3b42529425c699383e7a41
6 N959739ab37d04919962ffebf9ae518e0
7 Ned870803763d47d48a1fb3d5c06522f7
8 anzsrc-for:11
9 anzsrc-for:1112
10 schema:author N4d9a8bb14a91469abe96cb844d8d6023
11 schema:citation sg:pub.10.1186/1748-717x-7-81
12 schema:datePublished 2020-03-03
13 schema:datePublishedReg 2020-03-03
14 schema:description BACKGROUND: The internal target volume (ITV) approach and the mid-ventilation (MidV) concept are the two main respiratory motion-management strategies under free breathing. The purpose of this work was to compare the actual in-treatment target coverage during volumetric modulated arctherapy (VMAT) delivered through both ITV-based and MidV-based planning target volume (PTV) and to provide knowledge in choosing the optimal PTV for stereotactic body radiotherapy (SBRT) for lung lesions. METHODS AND MATERIALS: Thirty-two lung cancer patients treated by a VMAT technique were included in the study. For each fraction, the mean time-weighted position of the target was localized by using a 4-dimensional cone-beam CT (4D-CBCT)-based image guidance procedure. The respiratory-correlated location of the gross tumor volume (GTV) during treatment delivery was determined for each fraction by using in-treatment 4D-CBCT images acquired concurrently with VMAT delivery (4D-CBCT<sub>in-treat</sub>). The GTV was delineated from each of the ten respiratory phase-sorted 4D-CBCT<sub>in-treat</sub> datasets for each fraction. We defined target coverage as the average percentage of the GTV included within the PTV during the patient's breathing cycle averaged over the treatment course. Target coverage and PTVs were reported for a MidV-based PTV (PTV<sub>MidV</sub>) using dose-probabilistic margins and three ITV-based PTVs using isotropic margins of 5 mm (PTV<sub>ITV + 5mm</sub>), 4 mm (PTV<sub>ITV + 4mm</sub>) and 3 mm (PTV<sub>ITV + 3mm</sub>). The in-treatment baseline displacements and target motion amplitudes were reported to evaluate the impact of both parameters on target coverage. RESULTS: Overall, 100 4D-CBCT<sub>in-treat</sub> images were analyzed. The mean target coverage was 98.6, 99.6, 98.9 and 97.2% for PTV<sub>MidV</sub>, PTV<sub>ITV + 5mm</sub>, PTV<sub>ITV + 4mm</sub> and PTV<sub>ITV + 3mm</sub>, respectively. All the PTV margins led to a target coverage per treatment higher than 95% in at least 90% of the evaluated cases. Compared to PTV<sub>ITV + 5mm</sub>, PTV<sub>MidV</sub>, PTV<sub>ITV + 4mm</sub> and PTV<sub>ITV + 3mm</sub> had mean PTV reductions of 16, 19 and 33%, respectively. CONCLUSION: When implementing VMAT with 4D-CBCT-based image guidance, an ITV-based approach with a tighter margin than the commonly used 5 mm margin remains an alternative to the MidV-based approach for reducing healthy tissue exposure in lung SBRT. Compared to PTV<sub>MidV</sub>, PTV<sub>ITV + 3mm</sub> significantly reduced the PTV while still maintaining an adequate in-treatment target coverage.
15 schema:genre article
16 schema:inLanguage en
17 schema:isAccessibleForFree true
18 schema:isPartOf Nc2b21fcd37d24f739e1df8ea1db35247
19 Nfa32ee29683c4bc982435b89245311d6
20 sg:journal.1036451
21 schema:keywords CT
22 ITV
23 MidV
24 PTV adequacy
25 PTV margins
26 PTV reduction
27 VMAT
28 VMAT delivery
29 VMAT technique
30 adequacy
31 alternative
32 amplitude
33 approach
34 arctherapy
35 average percentage
36 baseline displacement
37 beam CT
38 body radiotherapy
39 breathing
40 breathing cycle
41 cancer patients
42 cases
43 comparison
44 concept
45 cone-beam CT
46 course
47 coverage
48 cycle
49 dataset
50 delivery
51 displacement
52 dose-probabilistic margins
53 exposure
54 fraction
55 free breathing
56 gross tumor volume
57 guidance
58 guidance procedures
59 healthy tissue exposure
60 image guidance
61 image guidance procedures
62 images
63 impact
64 internal target volume (ITV) approach
65 isotropic margin
66 knowledge
67 lesions
68 location
69 lung cancer patients
70 lung lesions
71 lung stereotactic body radiotherapy
72 main respiratory motion-management strategies
73 margin
74 materials
75 mean PTV reductions
76 mean target coverage
77 mean time-weighted position
78 method
79 mid-ventilation (MidV) concept
80 motion amplitude
81 motion management strategies
82 optimal planning target volume
83 parameters
84 patient's breathing cycle
85 patients
86 percentage
87 phase-sorted 4D-CBCT
88 planning
89 planning target volume
90 position
91 procedure
92 purpose
93 radiotherapy
94 reduction
95 respiratory motion-management strategies
96 respiratory phase-sorted 4D-CBCT
97 respiratory-correlated location
98 stereotactic body radiotherapy
99 strategies
100 study
101 sub
102 target
103 target coverage
104 target volume
105 target volume (ITV) approach
106 technique
107 tight margins
108 time-weighted position
109 tissue exposure
110 treatment
111 treatment 4D cone beam CT
112 treatment 4D-CBCT images
113 treatment baseline displacements
114 treatment course
115 treatment delivery
116 treatment planning
117 treatment target coverage
118 tumor volume
119 volume
120 volume approach
121 work
122 schema:name ITV versus mid-ventilation for treatment planning in lung SBRT: a comparison of target coverage and PTV adequacy by using in-treatment 4D cone beam CT
123 schema:pagination 54
124 schema:productId N115ccce570ac4dc38c322c30ca10fe80
125 N3f115133ee6844a8936170244d9c3e90
126 Nc601997b67b74e14b256e431adf0d265
127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1125339297
128 https://doi.org/10.1186/s13014-020-01496-5
129 schema:sdDatePublished 2022-01-01T18:56
130 schema:sdLicense https://scigraph.springernature.com/explorer/license/
131 schema:sdPublisher Nfd70e62790d944b0a1eca391aa8ec24a
132 schema:url https://doi.org/10.1186/s13014-020-01496-5
133 sgo:license sg:explorer/license/
134 sgo:sdDataset articles
135 rdf:type schema:ScholarlyArticle
136 N115ccce570ac4dc38c322c30ca10fe80 schema:name doi
137 schema:value 10.1186/s13014-020-01496-5
138 rdf:type schema:PropertyValue
139 N1fcc6250ddeb40fdba6bfb8f2319e9f8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Lung Neoplasms
141 rdf:type schema:DefinedTerm
142 N3f115133ee6844a8936170244d9c3e90 schema:name pubmed_id
143 schema:value 32127010
144 rdf:type schema:PropertyValue
145 N49b4c074052e4c49af7a4a59daf13238 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Cone-Beam Computed Tomography
147 rdf:type schema:DefinedTerm
148 N4cfdadf4bfef4c0e87509463ee579096 rdf:first sg:person.01206560744.19
149 rdf:rest rdf:nil
150 N4d9a8bb14a91469abe96cb844d8d6023 rdf:first sg:person.01204044273.27
151 rdf:rest Nc0d5dd13df694c859b24b45f1f5791fa
152 N5c7757cc70014c0488829b10d60049a9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
153 schema:name Radiotherapy Planning, Computer-Assisted
154 rdf:type schema:DefinedTerm
155 N77a8f29f399043068a09885c999afb3a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
156 schema:name Four-Dimensional Computed Tomography
157 rdf:type schema:DefinedTerm
158 N80f02989ce3b42529425c699383e7a41 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
159 schema:name Radiosurgery
160 rdf:type schema:DefinedTerm
161 N825a63a53fcf44f3954d9db06d923d92 rdf:first sg:person.01366122564.13
162 rdf:rest N4cfdadf4bfef4c0e87509463ee579096
163 N959739ab37d04919962ffebf9ae518e0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
164 schema:name Radiotherapy, Intensity-Modulated
165 rdf:type schema:DefinedTerm
166 Nc0d5dd13df694c859b24b45f1f5791fa rdf:first sg:person.013443063573.02
167 rdf:rest Nd372450ffbb14a9f91b4d265623eea22
168 Nc2b21fcd37d24f739e1df8ea1db35247 schema:issueNumber 1
169 rdf:type schema:PublicationIssue
170 Nc601997b67b74e14b256e431adf0d265 schema:name dimensions_id
171 schema:value pub.1125339297
172 rdf:type schema:PropertyValue
173 Nd372450ffbb14a9f91b4d265623eea22 rdf:first sg:person.0576143704.48
174 rdf:rest N825a63a53fcf44f3954d9db06d923d92
175 Ned870803763d47d48a1fb3d5c06522f7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
176 schema:name Humans
177 rdf:type schema:DefinedTerm
178 Nfa32ee29683c4bc982435b89245311d6 schema:volumeNumber 15
179 rdf:type schema:PublicationVolume
180 Nfd70e62790d944b0a1eca391aa8ec24a schema:name Springer Nature - SN SciGraph project
181 rdf:type schema:Organization
182 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
183 schema:name Medical and Health Sciences
184 rdf:type schema:DefinedTerm
185 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
186 schema:name Oncology and Carcinogenesis
187 rdf:type schema:DefinedTerm
188 sg:journal.1036451 schema:issn 1748-717X
189 schema:name Radiation Oncology
190 schema:publisher Springer Nature
191 rdf:type schema:Periodical
192 sg:person.01204044273.27 schema:affiliation grid-institutes:grid.417988.b
193 schema:familyName Bellec
194 schema:givenName J.
195 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01204044273.27
196 rdf:type schema:Person
197 sg:person.01206560744.19 schema:affiliation grid-institutes:grid.417988.b
198 schema:familyName Chajon
199 schema:givenName E.
200 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206560744.19
201 rdf:type schema:Person
202 sg:person.013443063573.02 schema:affiliation grid-institutes:grid.417988.b
203 schema:familyName Arab-Ceschia
204 schema:givenName F.
205 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013443063573.02
206 rdf:type schema:Person
207 sg:person.01366122564.13 schema:affiliation grid-institutes:grid.463996.7
208 schema:familyName Lafond
209 schema:givenName C.
210 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01366122564.13
211 rdf:type schema:Person
212 sg:person.0576143704.48 schema:affiliation grid-institutes:grid.463996.7
213 schema:familyName Castelli
214 schema:givenName J.
215 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0576143704.48
216 rdf:type schema:Person
217 sg:pub.10.1186/1748-717x-7-81 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052394621
218 https://doi.org/10.1186/1748-717x-7-81
219 rdf:type schema:CreativeWork
220 grid-institutes:grid.417988.b schema:alternateName Medical Physics Department, Centre Eugène Marquis, avenue de La Bataille Flandres Dunkerque – CS 44229, F-35042 Rennes, France
221 Radiotherapy Department, Centre Eugène Marquis, avenue de La Bataille Flandres Dunkerque – CS 44229, F-35042 Rennes, France
222 schema:name Medical Physics Department, Centre Eugène Marquis, avenue de La Bataille Flandres Dunkerque – CS 44229, F-35042 Rennes, France
223 Radiotherapy Department, Centre Eugène Marquis, avenue de La Bataille Flandres Dunkerque – CS 44229, F-35042 Rennes, France
224 rdf:type schema:Organization
225 grid-institutes:grid.463996.7 schema:alternateName Université de Rennes-1, LTSI, F-35000 Rennes, France
226 schema:name Inserm, U1099, F-35000 Rennes, France
227 Medical Physics Department, Centre Eugène Marquis, avenue de La Bataille Flandres Dunkerque – CS 44229, F-35042 Rennes, France
228 Radiotherapy Department, Centre Eugène Marquis, avenue de La Bataille Flandres Dunkerque – CS 44229, F-35042 Rennes, France
229 Université de Rennes-1, LTSI, F-35000 Rennes, France
230 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...