Quality assurance of non-coplanar, volumetric-modulated arc therapy employing a C-arm linear accelerator, featuring continuous patient couch rotation. View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Hideaki Hirashima, Mitsuhiro Nakamura, Yuki Miyabe, Nobutaka Mukumoto, Tomohiro Ono, Hiraku Iramina, Takashi Mizowaki

ABSTRACT

PURPOSE: To perform quality assurance of non-coplanar, volumetric-modulated arc therapy featuring continuous couch rotation (CCR-VMAT) using a C-arm linear accelerator. METHODS: We planned and delivered CCR-VMAT using the TrueBeam Developer Mode. Treatment plans were created for both a C-shaped phantom and five prostate cancer patients using seven CCR trajectories that lacked collisions; we used RayStation software (ver. 4.7) to this end. Subsequently, verification plans were generated. The mean absolute error (MAE) between the center of an MV-imaged steel ball and the radiation field was calculated using the Winston-Lutz test. The MAEs between planned and actual irradiation values were also calculated from trajectory logs. In addition, correlation coefficients (r values) among the MAEs of gantry angle, couch angle, and multi-leaf collimator (MLC) position, and mechanical parameters including gantry speed, couch speed, MLC speed, and beam output, were estimated. The dosimetric accuracies of planned and measured values were also assessed using ArcCHECK. RESULTS: The MAEs ±2 standard deviations as revealed by the Winston-Lutz test for all trajectories were 0.3 ± 0.3 mm in two dimensions. The MAEs of the gantry, couch, and MLC positions calculated from all trajectory logs were within 0.04°, 0.08°, and 0.02 mm, respectively. Deviations in the couch angle (r = 0.98, p < 0.05) and MLC position (r = 0.86, p < 0.05) increased significantly with speed. The MAE of the beam output error was less than 0.01 MU. The mean gamma passing rate ± 2 SD (range) of the 3%/3 mm, 3%/1 mm, and 5%/1 mm was 98.1 ± 1.9% (95.7-99.6%), 87.2 ± 2.8% (80.2-96.7%), and 96.3 ± 2.8% (93.9-99.6%), respectively. CONCLUSIONS: CCR-VMAT delivered via the TrueBeam Developer Mode was associated with high-level geometric and mechanical accuracy, thus affording to high dosimetric accuracy. The CCR-VMAT performance was stable regardless of the trajectory chosen. More... »

PAGES

62

Journal

TITLE

Radiation Oncology

ISSUE

1

VOLUME

14

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13014-019-1264-6

DOI

http://dx.doi.org/10.1186/s13014-019-1264-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113355627

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30971273


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Kyoto University", 
          "id": "https://www.grid.ac/institutes/grid.258799.8", 
          "name": [
            "Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hirashima", 
        "givenName": "Hideaki", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kyoto University", 
          "id": "https://www.grid.ac/institutes/grid.258799.8", 
          "name": [
            "Division of Medical Physics, Department of Information Technology and Medical Engineering, Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan. m_nkmr@kuhp.kyoto-u.ac.jp."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nakamura", 
        "givenName": "Mitsuhiro", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kyoto University", 
          "id": "https://www.grid.ac/institutes/grid.258799.8", 
          "name": [
            "Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Miyabe", 
        "givenName": "Yuki", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kyoto University", 
          "id": "https://www.grid.ac/institutes/grid.258799.8", 
          "name": [
            "Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mukumoto", 
        "givenName": "Nobutaka", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kyoto University", 
          "id": "https://www.grid.ac/institutes/grid.258799.8", 
          "name": [
            "Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ono", 
        "givenName": "Tomohiro", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kyoto University", 
          "id": "https://www.grid.ac/institutes/grid.258799.8", 
          "name": [
            "Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Iramina", 
        "givenName": "Hiraku", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kyoto University", 
          "id": "https://www.grid.ac/institutes/grid.258799.8", 
          "name": [
            "Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mizowaki", 
        "givenName": "Takashi", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.ijrobp.2014.09.043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001849390"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijrobp.2014.09.043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001849390"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1120/jacmp.v14i1.4035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002815478"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijrobp.2012.09.028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003512492"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijrobp.2012.09.028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003512492"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13014-016-0633-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014430284", 
          "https://doi.org/10.1186/s13014-016-0633-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.4949002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023083879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijrobp.2010.10.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023739476"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.3238104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031814055"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.radonc.2013.10.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033818334"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.radonc.2013.10.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033818334"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1748-717x-9-176", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041608355", 
          "https://doi.org/10.1186/1748-717x-9-176"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijrobp.2013.02.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042280731"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13014-014-0239-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043323028", 
          "https://doi.org/10.1186/s13014-014-0239-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13014-014-0239-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043323028", 
          "https://doi.org/10.1186/s13014-014-0239-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13014-016-0740-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044033747", 
          "https://doi.org/10.1186/s13014-016-0740-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13014-016-0740-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044033747", 
          "https://doi.org/10.1186/s13014-016-0740-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.4917165", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046393091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.4773309", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047353364"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mp.12036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049010112"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejmp.2016.07.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053186036"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.radonc.2017.01.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053907691"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.prro.2017.04.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084817951"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mp.12589", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091830042"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejmp.2017.10.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092533631"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijrobp.2018.01.048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100752205"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijrobp.2018.01.048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100752205"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijrobp.2018.01.048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100752205"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijrobp.2018.01.048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100752205"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13014-018-0972-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101037207", 
          "https://doi.org/10.1186/s13014-018-0972-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.zemedi.2018.03.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103165220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mp.13086", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105460683"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "PURPOSE: To perform quality assurance of non-coplanar, volumetric-modulated arc therapy featuring continuous couch rotation (CCR-VMAT) using a C-arm linear accelerator.\nMETHODS: We planned and delivered CCR-VMAT using the TrueBeam Developer Mode. Treatment plans were created for both a C-shaped phantom and five prostate cancer patients using seven CCR trajectories that lacked collisions; we used RayStation software (ver. 4.7) to this end. Subsequently, verification plans were generated. The mean absolute error (MAE) between the center of an MV-imaged steel ball and the radiation field was calculated using the Winston-Lutz test. The MAEs between planned and actual irradiation values were also calculated from trajectory logs. In addition, correlation coefficients (r values) among the MAEs of gantry angle, couch angle, and multi-leaf collimator (MLC) position, and mechanical parameters including gantry speed, couch speed, MLC speed, and beam output, were estimated. The dosimetric accuracies of planned and measured values were also assessed using ArcCHECK.\nRESULTS: The MAEs \u00b12 standard deviations as revealed by the Winston-Lutz test for all trajectories were 0.3\u2009\u00b1\u20090.3\u2009mm in two dimensions. The MAEs of the gantry, couch, and MLC positions calculated from all trajectory logs were within 0.04\u00b0, 0.08\u00b0, and 0.02\u2009mm, respectively. Deviations in the couch angle (r\u2009=\u20090.98, p\u2009<\u20090.05) and MLC position (r\u2009=\u20090.86, p\u2009<\u20090.05) increased significantly with speed. The MAE of the beam output error was less than 0.01 MU. The mean gamma passing rate\u2009\u00b1\u20092 SD (range) of the 3%/3\u2009mm, 3%/1\u2009mm, and 5%/1\u2009mm was 98.1\u2009\u00b1\u20091.9% (95.7-99.6%), 87.2\u2009\u00b1\u20092.8% (80.2-96.7%), and 96.3\u2009\u00b1\u20092.8% (93.9-99.6%), respectively.\nCONCLUSIONS: CCR-VMAT delivered via the TrueBeam Developer Mode was associated with high-level geometric and mechanical accuracy, thus affording to high dosimetric accuracy. The CCR-VMAT performance was stable regardless of the trajectory chosen.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s13014-019-1264-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1036451", 
        "issn": [
          "1748-717X"
        ], 
        "name": "Radiation Oncology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "14"
      }
    ], 
    "name": "Quality assurance of non-coplanar, volumetric-modulated arc therapy employing a C-arm linear accelerator, featuring continuous patient couch rotation.", 
    "pagination": "62", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13014-019-1264-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113355627"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101265111"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30971273"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13014-019-1264-6", 
      "https://app.dimensions.ai/details/publication/pub.1113355627"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-15T09:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000376_0000000376/records_56179_00000006.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://ro-journal.biomedcentral.com/articles/10.1186/s13014-019-1264-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13014-019-1264-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13014-019-1264-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13014-019-1264-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13014-019-1264-6'


 

This table displays all metadata directly associated to this object as RDF triples.

177 TRIPLES      21 PREDICATES      52 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13014-019-1264-6 schema:about anzsrc-for:11
2 anzsrc-for:1112
3 schema:author Neb3d48e55d91442296e2ef621de78059
4 schema:citation sg:pub.10.1186/1748-717x-9-176
5 sg:pub.10.1186/s13014-014-0239-x
6 sg:pub.10.1186/s13014-016-0633-7
7 sg:pub.10.1186/s13014-016-0740-5
8 sg:pub.10.1186/s13014-018-0972-7
9 https://doi.org/10.1002/mp.12036
10 https://doi.org/10.1002/mp.12589
11 https://doi.org/10.1002/mp.13086
12 https://doi.org/10.1016/j.ejmp.2016.07.002
13 https://doi.org/10.1016/j.ejmp.2017.10.023
14 https://doi.org/10.1016/j.ijrobp.2010.10.016
15 https://doi.org/10.1016/j.ijrobp.2012.09.028
16 https://doi.org/10.1016/j.ijrobp.2013.02.002
17 https://doi.org/10.1016/j.ijrobp.2014.09.043
18 https://doi.org/10.1016/j.ijrobp.2018.01.048
19 https://doi.org/10.1016/j.prro.2017.04.004
20 https://doi.org/10.1016/j.radonc.2013.10.031
21 https://doi.org/10.1016/j.radonc.2017.01.006
22 https://doi.org/10.1016/j.zemedi.2018.03.002
23 https://doi.org/10.1118/1.3238104
24 https://doi.org/10.1118/1.4773309
25 https://doi.org/10.1118/1.4917165
26 https://doi.org/10.1118/1.4949002
27 https://doi.org/10.1120/jacmp.v14i1.4035
28 schema:datePublished 2019-12
29 schema:datePublishedReg 2019-12-01
30 schema:description PURPOSE: To perform quality assurance of non-coplanar, volumetric-modulated arc therapy featuring continuous couch rotation (CCR-VMAT) using a C-arm linear accelerator. METHODS: We planned and delivered CCR-VMAT using the TrueBeam Developer Mode. Treatment plans were created for both a C-shaped phantom and five prostate cancer patients using seven CCR trajectories that lacked collisions; we used RayStation software (ver. 4.7) to this end. Subsequently, verification plans were generated. The mean absolute error (MAE) between the center of an MV-imaged steel ball and the radiation field was calculated using the Winston-Lutz test. The MAEs between planned and actual irradiation values were also calculated from trajectory logs. In addition, correlation coefficients (r values) among the MAEs of gantry angle, couch angle, and multi-leaf collimator (MLC) position, and mechanical parameters including gantry speed, couch speed, MLC speed, and beam output, were estimated. The dosimetric accuracies of planned and measured values were also assessed using ArcCHECK. RESULTS: The MAEs ±2 standard deviations as revealed by the Winston-Lutz test for all trajectories were 0.3 ± 0.3 mm in two dimensions. The MAEs of the gantry, couch, and MLC positions calculated from all trajectory logs were within 0.04°, 0.08°, and 0.02 mm, respectively. Deviations in the couch angle (r = 0.98, p < 0.05) and MLC position (r = 0.86, p < 0.05) increased significantly with speed. The MAE of the beam output error was less than 0.01 MU. The mean gamma passing rate ± 2 SD (range) of the 3%/3 mm, 3%/1 mm, and 5%/1 mm was 98.1 ± 1.9% (95.7-99.6%), 87.2 ± 2.8% (80.2-96.7%), and 96.3 ± 2.8% (93.9-99.6%), respectively. CONCLUSIONS: CCR-VMAT delivered via the TrueBeam Developer Mode was associated with high-level geometric and mechanical accuracy, thus affording to high dosimetric accuracy. The CCR-VMAT performance was stable regardless of the trajectory chosen.
31 schema:genre research_article
32 schema:inLanguage en
33 schema:isAccessibleForFree true
34 schema:isPartOf N605365b6f0354a079ce351f27b47e0a7
35 N8ecd9db8c07741a586b8f412935a592d
36 sg:journal.1036451
37 schema:name Quality assurance of non-coplanar, volumetric-modulated arc therapy employing a C-arm linear accelerator, featuring continuous patient couch rotation.
38 schema:pagination 62
39 schema:productId N02186d6eaf1b44ec8da541a3019172f6
40 N27aaeb8c8ef34935a7e2edbc59674721
41 Nac032955df9d41a8a6fd7bc3f3405435
42 Ndc5f92ab86374a88981dd05bd6c86d5f
43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113355627
44 https://doi.org/10.1186/s13014-019-1264-6
45 schema:sdDatePublished 2019-04-15T09:20
46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
47 schema:sdPublisher Ne8c6462c02214a3ca4f71a92bf5b2ec0
48 schema:url https://ro-journal.biomedcentral.com/articles/10.1186/s13014-019-1264-6
49 sgo:license sg:explorer/license/
50 sgo:sdDataset articles
51 rdf:type schema:ScholarlyArticle
52 N02186d6eaf1b44ec8da541a3019172f6 schema:name nlm_unique_id
53 schema:value 101265111
54 rdf:type schema:PropertyValue
55 N2129092231084718904becd675f5ef35 rdf:first Ne1f065e531064a9ea095c72f689a3efa
56 rdf:rest Nce19d19417254e1aac5be3b9adcd7ecd
57 N221e4a08e5ba4502814d1b4856a5cde9 schema:affiliation https://www.grid.ac/institutes/grid.258799.8
58 schema:familyName Ono
59 schema:givenName Tomohiro
60 rdf:type schema:Person
61 N27aaeb8c8ef34935a7e2edbc59674721 schema:name dimensions_id
62 schema:value pub.1113355627
63 rdf:type schema:PropertyValue
64 N40ff10eb2f0346f78f230f92957551cd rdf:first Nfeab187399d841128307f87a850ee99d
65 rdf:rest rdf:nil
66 N5912a596baaf41fe96c886accff1c6ab schema:affiliation https://www.grid.ac/institutes/grid.258799.8
67 schema:familyName Hirashima
68 schema:givenName Hideaki
69 rdf:type schema:Person
70 N605365b6f0354a079ce351f27b47e0a7 schema:issueNumber 1
71 rdf:type schema:PublicationIssue
72 N67a01ae78e234eea95832a61cfadb9a3 schema:affiliation https://www.grid.ac/institutes/grid.258799.8
73 schema:familyName Mukumoto
74 schema:givenName Nobutaka
75 rdf:type schema:Person
76 N8ecd9db8c07741a586b8f412935a592d schema:volumeNumber 14
77 rdf:type schema:PublicationVolume
78 Nac032955df9d41a8a6fd7bc3f3405435 schema:name pubmed_id
79 schema:value 30971273
80 rdf:type schema:PropertyValue
81 Nc89918aecc934907af656797d370df13 schema:affiliation https://www.grid.ac/institutes/grid.258799.8
82 schema:familyName Iramina
83 schema:givenName Hiraku
84 rdf:type schema:Person
85 Nce19d19417254e1aac5be3b9adcd7ecd rdf:first N67a01ae78e234eea95832a61cfadb9a3
86 rdf:rest Nda1f3b5d66eb45d78bd3b54fc57821d0
87 Nd22b4e2aa6de49a098b1e61c3b666cf9 rdf:first Nc89918aecc934907af656797d370df13
88 rdf:rest N40ff10eb2f0346f78f230f92957551cd
89 Nda1f3b5d66eb45d78bd3b54fc57821d0 rdf:first N221e4a08e5ba4502814d1b4856a5cde9
90 rdf:rest Nd22b4e2aa6de49a098b1e61c3b666cf9
91 Ndc5f92ab86374a88981dd05bd6c86d5f schema:name doi
92 schema:value 10.1186/s13014-019-1264-6
93 rdf:type schema:PropertyValue
94 Ne1f065e531064a9ea095c72f689a3efa schema:affiliation https://www.grid.ac/institutes/grid.258799.8
95 schema:familyName Miyabe
96 schema:givenName Yuki
97 rdf:type schema:Person
98 Ne729297e60bb481bb59d97d4e8deacc1 rdf:first Nfcffb61a21b745f0ad452fb0ef5c8d3f
99 rdf:rest N2129092231084718904becd675f5ef35
100 Ne8c6462c02214a3ca4f71a92bf5b2ec0 schema:name Springer Nature - SN SciGraph project
101 rdf:type schema:Organization
102 Neb3d48e55d91442296e2ef621de78059 rdf:first N5912a596baaf41fe96c886accff1c6ab
103 rdf:rest Ne729297e60bb481bb59d97d4e8deacc1
104 Nfcffb61a21b745f0ad452fb0ef5c8d3f schema:affiliation https://www.grid.ac/institutes/grid.258799.8
105 schema:familyName Nakamura
106 schema:givenName Mitsuhiro
107 rdf:type schema:Person
108 Nfeab187399d841128307f87a850ee99d schema:affiliation https://www.grid.ac/institutes/grid.258799.8
109 schema:familyName Mizowaki
110 schema:givenName Takashi
111 rdf:type schema:Person
112 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
113 schema:name Medical and Health Sciences
114 rdf:type schema:DefinedTerm
115 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
116 schema:name Oncology and Carcinogenesis
117 rdf:type schema:DefinedTerm
118 sg:journal.1036451 schema:issn 1748-717X
119 schema:name Radiation Oncology
120 rdf:type schema:Periodical
121 sg:pub.10.1186/1748-717x-9-176 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041608355
122 https://doi.org/10.1186/1748-717x-9-176
123 rdf:type schema:CreativeWork
124 sg:pub.10.1186/s13014-014-0239-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1043323028
125 https://doi.org/10.1186/s13014-014-0239-x
126 rdf:type schema:CreativeWork
127 sg:pub.10.1186/s13014-016-0633-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014430284
128 https://doi.org/10.1186/s13014-016-0633-7
129 rdf:type schema:CreativeWork
130 sg:pub.10.1186/s13014-016-0740-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044033747
131 https://doi.org/10.1186/s13014-016-0740-5
132 rdf:type schema:CreativeWork
133 sg:pub.10.1186/s13014-018-0972-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101037207
134 https://doi.org/10.1186/s13014-018-0972-7
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1002/mp.12036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049010112
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1002/mp.12589 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091830042
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1002/mp.13086 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105460683
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.ejmp.2016.07.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053186036
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.ejmp.2017.10.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092533631
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.ijrobp.2010.10.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023739476
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/j.ijrobp.2012.09.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003512492
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/j.ijrobp.2013.02.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042280731
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/j.ijrobp.2014.09.043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001849390
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/j.ijrobp.2018.01.048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100752205
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/j.prro.2017.04.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084817951
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/j.radonc.2013.10.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033818334
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/j.radonc.2017.01.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053907691
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/j.zemedi.2018.03.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103165220
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1118/1.3238104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031814055
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1118/1.4773309 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047353364
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1118/1.4917165 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046393091
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1118/1.4949002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023083879
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1120/jacmp.v14i1.4035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002815478
173 rdf:type schema:CreativeWork
174 https://www.grid.ac/institutes/grid.258799.8 schema:alternateName Kyoto University
175 schema:name Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.
176 Division of Medical Physics, Department of Information Technology and Medical Engineering, Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan. m_nkmr@kuhp.kyoto-u.ac.jp.
177 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...