Metabolic parameters of sequential 18F-FDG PET/CT predict overall survival of esophageal cancer patients treated with (chemo-) radiation View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Yimin Li, Sebastian Zschaeck, Qin Lin, Sijia Chen, Lili Chen, Hua Wu

ABSTRACT

BACKGROUND: To evaluate the prognostic value of metabolic parameters of pre-treatment and interim 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) for overall survival (OS) of esophageal cancer(EC) patients undergoing (chemo-) radiotherapy. METHODS: A retrospective analysis of 134 patients with pathology confirmed squamous cell EC treated between July 2009 and October 2013 in our hospital was performed. Inclusion criteria for this study were curative intended radiotherapy and availability of pre-treatment and interim 18F-FDG PET. 18F-FDG PET/CT scans were acquired before treatment and after 40 Gray (Gy) of radiotherapy. Maximum standard uptake value (SUVmax), metabolic tumor volume(MTV), total lesion glycolysis (TLG), and the percentual changes during both PET scans were recorded. The parameters were named as SUVmax1,MTV1,TLG1,SUVmax2,MTV2,TLG2,△SUVmax,△MTV and △TLG. The receiver operating characteristic curve (ROC) was used to analyze the relationship between metabolic parameters and OS, survival analysis was carried out by Kaplan-Meier and Cox regression analysis. RESULTS: Univariate survival analysis showed that SUVmax2、MTV1、△MTV、TLG1、TLG2 and △TLG were associated with OS. Based on the largest Youden index of ROC curves, patients with SUVmax2 < 7.8, MTV1 < 10.5, △MTV < 0.075, TLG1 < 59.8, TLG2 < 44.3 and △TLG < 0.27 tended to live longer. Stratified for these parameters, the estimated median survival time were 27.9 months (m) vs 9.8 m, 36.9 m vs 11.3 m, 41.6 m vs 12 m, 48.9 m vs 14.3 m, 32.6 m vs 13.2 m, and 41.6 m vs 14.5 m. Cox multi-factor regression analyses revealed SUVmax2 as an independent prognostic factor for OS complementary to TNM staging and the length of primary tumor. CONCLUSIONS: Sequential 18F-FDG PET/CT metabolic parameters bear important prognostic value for OS of EC patients. 18F-FDG PET/CT scan before treatment and during chemoradiotherapy seems helpful to evaluate the effect of chemoradiotherapy, guide clinical decisions and provide patients with personalized treatment. More... »

PAGES

35

References to SciGraph publications

  • 2011-11. FDG-PET Parameters as Prognostic Factor in Esophageal Cancer Patients: A Review in ANNALS OF SURGICAL ONCOLOGY
  • 2013-01. Predictive and prognostic value of metabolic tumour volume and total lesion glycolysis in solid tumours in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2007-12. Prediction of tumor response by FDG-PET: comparison of the accuracy of single and sequential studies in patients with adenocarcinomas of the esophagogastric junction in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2011-07. Prognostic value of 18F-FDG PET image-based parameters in oesophageal cancer and impact of tumour delineation methodology in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2014-12. Timing and intensity of changes in FDG uptake with symptomatic esophagitis during radiotherapy or chemo-radiotherapy in RADIATION ONCOLOGY
  • 2015-05. High FDG uptake areas on pre-radiotherapy PET/CT identify preferential sites of local relapse after chemoradiotherapy for locally advanced oesophageal cancer in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2015-02. 3’-Deoxy-3’-[18F]-fluorothymidine PET/CT in early determination of prognosis in patients with esophageal squamous cell cancer in STRAHLENTHERAPIE UND ONKOLOGIE
  • 2018-09. Increased evidence for the prognostic value of FDG uptake on late-treatment PET in non-tumour-affected oesophagus in irradiated patients with oesophageal carcinoma in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2015-05. Current Status of Management of Malignant Disease: Current Management of Esophageal Cancer in JOURNAL OF GASTROINTESTINAL SURGERY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s13014-019-1236-x

    DOI

    http://dx.doi.org/10.1186/s13014-019-1236-x

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1112227777

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30782182


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Clinical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Adult", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Aged", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Aged, 80 and over", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Chemoradiotherapy", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Esophageal Neoplasms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Esophageal Squamous Cell Carcinoma", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Female", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Fluorodeoxyglucose F18", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Kaplan-Meier Estimate", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Male", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Middle Aged", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Positron Emission Tomography Computed Tomography", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Prognosis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Proportional Hazards Models", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Retrospective Studies", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "First Affiliated Hospital of Xiamen University", 
              "id": "https://www.grid.ac/institutes/grid.412625.6", 
              "name": [
                "Department of Radiation Oncology, Xiamen Cancer Hospital, the First Affiliated Hospital of Xiamen University, Xiamen, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Li", 
            "givenName": "Yimin", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Charit\u00e9", 
              "id": "https://www.grid.ac/institutes/grid.6363.0", 
              "name": [
                "Department of Radiation Oncology, Charit\u00e9 Universit\u00e4tsmedizin Berlin, Berlin, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zschaeck", 
            "givenName": "Sebastian", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "First Affiliated Hospital of Xiamen University", 
              "id": "https://www.grid.ac/institutes/grid.412625.6", 
              "name": [
                "Department of Radiation Oncology, Xiamen Cancer Hospital, the First Affiliated Hospital of Xiamen University, Xiamen, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lin", 
            "givenName": "Qin", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "First Affiliated Hospital of Xiamen University", 
              "id": "https://www.grid.ac/institutes/grid.412625.6", 
              "name": [
                "Department of Radiation Oncology, Xiamen Cancer Hospital, the First Affiliated Hospital of Xiamen University, Xiamen, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chen", 
            "givenName": "Sijia", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "First Affiliated Hospital of Xiamen University", 
              "id": "https://www.grid.ac/institutes/grid.412625.6", 
              "name": [
                "Department of Radiation Oncology, Xiamen Cancer Hospital, the First Affiliated Hospital of Xiamen University, Xiamen, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chen", 
            "givenName": "Lili", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Department of Nuclear Medicine, Xiamen Cancer Hospital, the First Affiliated Hospital of Xiamen University/Southern Fujian PET Center, Xiamen, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wu", 
            "givenName": "Hua", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.4274/mirt.07379", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001920998"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijrobp.2011.12.029", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002171383"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-007-0521-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002856298", 
              "https://doi.org/10.1007/s00259-007-0521-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-007-0521-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002856298", 
              "https://doi.org/10.1007/s00259-007-0521-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3322/caac.20107", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009055747"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2967/jnumed.113.131847", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009456536"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11605-014-2701-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009836457", 
              "https://doi.org/10.1007/s11605-014-2701-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jtcvs.2008.02.016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012836237"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1159/000443018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014717385"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/coc.0b013e31827de7a2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016732204"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/coc.0b013e31827de7a2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016732204"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/mnm.0000000000000527", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017565531"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/mnm.0000000000000527", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017565531"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/mnm.0000000000000527", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017565531"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/mnm.0000000000000527", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017565531"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.7314/apjcp.2014.15.3.1369", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019300762"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.7314/apjcp.2014.15.3.1369", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019300762"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1056/nejmoa1112088", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024545289"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1245/s10434-011-1732-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027412347", 
              "https://doi.org/10.1245/s10434-011-1732-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/jgh.12148", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027930127"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/mnm.0000000000000145", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029361556"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/mnm.0000000000000145", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029361556"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00066-014-0744-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032624814", 
              "https://doi.org/10.1007/s00066-014-0744-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.crad.2011.08.012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036334226"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-012-2280-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042189086", 
              "https://doi.org/10.1007/s00259-012-2280-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2967/jnumed.111.099531", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044694185"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-015-3004-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045886752", 
              "https://doi.org/10.1007/s00259-015-3004-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1748-717x-9-37", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045891069", 
              "https://doi.org/10.1186/1748-717x-9-37"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/bjs.7455", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050956449"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/mnm.0b013e32835ae50c", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050996051"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/mnm.0b013e32835ae50c", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050996051"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3346/jkms.2016.31.1.39", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051736338"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-011-1755-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051740136", 
              "https://doi.org/10.1007/s00259-011-1755-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijsu.2010.06.011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053047425"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/01243894-200606000-00016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060334504"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1077452182", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1078623553", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1079150881", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/cncr.30763", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085119232"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-018-3996-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103496632", 
              "https://doi.org/10.1007/s00259-018-3996-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-018-3996-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103496632", 
              "https://doi.org/10.1007/s00259-018-3996-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-018-3996-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103496632", 
              "https://doi.org/10.1007/s00259-018-3996-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1200/jco.2018.79.1483", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106058733"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-12", 
        "datePublishedReg": "2019-12-01", 
        "description": "BACKGROUND: To evaluate the prognostic value of metabolic parameters of pre-treatment and interim 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) for overall survival (OS) of esophageal cancer(EC) patients undergoing (chemo-) radiotherapy.\nMETHODS: A retrospective analysis of 134 patients with pathology confirmed squamous cell EC treated between July 2009 and October 2013 in our hospital was performed. Inclusion criteria for this study were curative intended radiotherapy and availability of pre-treatment and interim 18F-FDG PET. 18F-FDG PET/CT scans were acquired before treatment and after 40 Gray (Gy) of radiotherapy. Maximum standard uptake value (SUVmax), metabolic tumor volume(MTV), total lesion glycolysis (TLG), and the percentual changes during both PET scans were recorded. The parameters were named as SUVmax1,MTV1,TLG1,SUVmax2,MTV2,TLG2,\u25b3SUVmax,\u25b3MTV and \u25b3TLG. The receiver operating characteristic curve (ROC) was used to analyze the relationship between metabolic parameters and OS, survival analysis was carried out by Kaplan-Meier and Cox regression analysis.\nRESULTS: Univariate survival analysis showed that SUVmax2\u3001MTV1\u3001\u25b3MTV\u3001TLG1\u3001TLG2 and \u25b3TLG were associated with OS. Based on the largest Youden index of ROC curves, patients with SUVmax2\u2009<\u20097.8, MTV1\u2009<\u200910.5, \u25b3MTV\u2009<\u20090.075, TLG1\u2009<\u200959.8, TLG2\u2009<\u200944.3 and \u25b3TLG\u2009<\u20090.27 tended to live longer. Stratified for these parameters, the estimated median survival time were 27.9\u2009months (m) vs 9.8\u2009m, 36.9\u2009m vs 11.3\u2009m, 41.6\u2009m vs 12\u2009m, 48.9\u2009m vs 14.3\u2009m, 32.6\u2009m vs 13.2\u2009m, and 41.6\u2009m vs 14.5\u2009m. Cox multi-factor regression analyses revealed SUVmax2 as an independent prognostic factor for OS complementary to TNM staging and the length of primary tumor.\nCONCLUSIONS: Sequential 18F-FDG PET/CT metabolic parameters bear important prognostic value for OS of EC patients. 18F-FDG PET/CT scan before treatment and during chemoradiotherapy seems helpful to evaluate the effect of chemoradiotherapy, guide clinical decisions and provide patients with personalized treatment.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1186/s13014-019-1236-x", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1036451", 
            "issn": [
              "1748-717X"
            ], 
            "name": "Radiation Oncology", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "14"
          }
        ], 
        "name": "Metabolic parameters of sequential 18F-FDG PET/CT predict overall survival of esophageal cancer patients treated with (chemo-) radiation", 
        "pagination": "35", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "a7b123ccfe0c570d7ff592e6f6ed1f16e39a4ec8a7ca73cd1cce4d90e7627927"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30782182"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101265111"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s13014-019-1236-x"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1112227777"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s13014-019-1236-x", 
          "https://app.dimensions.ai/details/publication/pub.1112227777"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:48", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130792_00000006.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1186%2Fs13014-019-1236-x"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13014-019-1236-x'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13014-019-1236-x'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13014-019-1236-x'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13014-019-1236-x'


     

    This table displays all metadata directly associated to this object as RDF triples.

    271 TRIPLES      21 PREDICATES      78 URIs      37 LITERALS      25 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s13014-019-1236-x schema:about N004c704fdab5433db7a507b1633cab2b
    2 N4bd0ef6434e440ecabf5cb42912cf807
    3 N4f6c60fca8ad449cbcad09f4e34257c3
    4 N5b79a8bdb83a4c80b34f7603888f7127
    5 N69bda21b9f6b4ef99bc57eb1e1a7e850
    6 N6eeb3bbceabb4c78aec715aa49257e1c
    7 N76cbb18e70e249129321395d2141c127
    8 N78b8e4ce676c438098be5eebba026906
    9 N98305c7e8f954a6187828582ea56206a
    10 Na7ab496e24414497b1def177897a373e
    11 Naa7ea39e445746e4932ef5b688d8474f
    12 Nbb8b128d106343e0899e09f3a64d0105
    13 Nc067505fff244d50a635506b97ab1050
    14 Nc4a73c11944641179481ee8b1466ad90
    15 Nd5474ecadf024e629fdcf10348939586
    16 Ne94958cded744fd1939785ea255fbcab
    17 anzsrc-for:11
    18 anzsrc-for:1103
    19 schema:author Ncb4dfa51497f45aeb99abd42c3284774
    20 schema:citation sg:pub.10.1007/s00066-014-0744-8
    21 sg:pub.10.1007/s00259-007-0521-3
    22 sg:pub.10.1007/s00259-011-1755-7
    23 sg:pub.10.1007/s00259-012-2280-z
    24 sg:pub.10.1007/s00259-015-3004-y
    25 sg:pub.10.1007/s00259-018-3996-1
    26 sg:pub.10.1007/s11605-014-2701-3
    27 sg:pub.10.1186/1748-717x-9-37
    28 sg:pub.10.1245/s10434-011-1732-1
    29 https://app.dimensions.ai/details/publication/pub.1077452182
    30 https://app.dimensions.ai/details/publication/pub.1078623553
    31 https://app.dimensions.ai/details/publication/pub.1079150881
    32 https://doi.org/10.1002/bjs.7455
    33 https://doi.org/10.1002/cncr.30763
    34 https://doi.org/10.1016/j.crad.2011.08.012
    35 https://doi.org/10.1016/j.ijrobp.2011.12.029
    36 https://doi.org/10.1016/j.ijsu.2010.06.011
    37 https://doi.org/10.1016/j.jtcvs.2008.02.016
    38 https://doi.org/10.1056/nejmoa1112088
    39 https://doi.org/10.1097/01243894-200606000-00016
    40 https://doi.org/10.1097/coc.0b013e31827de7a2
    41 https://doi.org/10.1097/mnm.0000000000000145
    42 https://doi.org/10.1097/mnm.0000000000000527
    43 https://doi.org/10.1097/mnm.0b013e32835ae50c
    44 https://doi.org/10.1111/jgh.12148
    45 https://doi.org/10.1159/000443018
    46 https://doi.org/10.1200/jco.2018.79.1483
    47 https://doi.org/10.2967/jnumed.111.099531
    48 https://doi.org/10.2967/jnumed.113.131847
    49 https://doi.org/10.3322/caac.20107
    50 https://doi.org/10.3346/jkms.2016.31.1.39
    51 https://doi.org/10.4274/mirt.07379
    52 https://doi.org/10.7314/apjcp.2014.15.3.1369
    53 schema:datePublished 2019-12
    54 schema:datePublishedReg 2019-12-01
    55 schema:description BACKGROUND: To evaluate the prognostic value of metabolic parameters of pre-treatment and interim 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) for overall survival (OS) of esophageal cancer(EC) patients undergoing (chemo-) radiotherapy. METHODS: A retrospective analysis of 134 patients with pathology confirmed squamous cell EC treated between July 2009 and October 2013 in our hospital was performed. Inclusion criteria for this study were curative intended radiotherapy and availability of pre-treatment and interim 18F-FDG PET. 18F-FDG PET/CT scans were acquired before treatment and after 40 Gray (Gy) of radiotherapy. Maximum standard uptake value (SUVmax), metabolic tumor volume(MTV), total lesion glycolysis (TLG), and the percentual changes during both PET scans were recorded. The parameters were named as SUVmax1,MTV1,TLG1,SUVmax2,MTV2,TLG2,△SUVmax,△MTV and △TLG. The receiver operating characteristic curve (ROC) was used to analyze the relationship between metabolic parameters and OS, survival analysis was carried out by Kaplan-Meier and Cox regression analysis. RESULTS: Univariate survival analysis showed that SUVmax2、MTV1、△MTV、TLG1、TLG2 and △TLG were associated with OS. Based on the largest Youden index of ROC curves, patients with SUVmax2 < 7.8, MTV1 < 10.5, △MTV < 0.075, TLG1 < 59.8, TLG2 < 44.3 and △TLG < 0.27 tended to live longer. Stratified for these parameters, the estimated median survival time were 27.9 months (m) vs 9.8 m, 36.9 m vs 11.3 m, 41.6 m vs 12 m, 48.9 m vs 14.3 m, 32.6 m vs 13.2 m, and 41.6 m vs 14.5 m. Cox multi-factor regression analyses revealed SUVmax2 as an independent prognostic factor for OS complementary to TNM staging and the length of primary tumor. CONCLUSIONS: Sequential 18F-FDG PET/CT metabolic parameters bear important prognostic value for OS of EC patients. 18F-FDG PET/CT scan before treatment and during chemoradiotherapy seems helpful to evaluate the effect of chemoradiotherapy, guide clinical decisions and provide patients with personalized treatment.
    56 schema:genre research_article
    57 schema:inLanguage en
    58 schema:isAccessibleForFree true
    59 schema:isPartOf N4efcf62fecf64d60ad64567d333dd215
    60 Na9fe98de19a54c59ad3ce7615bb4d641
    61 sg:journal.1036451
    62 schema:name Metabolic parameters of sequential 18F-FDG PET/CT predict overall survival of esophageal cancer patients treated with (chemo-) radiation
    63 schema:pagination 35
    64 schema:productId N1b931d9395074b5f85824c58470dfe0e
    65 N5264eca09ecd471e9b8b2d2cb351b59a
    66 Nac8ac613ffb146bcb239abbf517d253d
    67 Nd0420a67580d423cb41071feefa24048
    68 Nea9604da5126422d9c7380c75ea2c734
    69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112227777
    70 https://doi.org/10.1186/s13014-019-1236-x
    71 schema:sdDatePublished 2019-04-11T13:48
    72 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    73 schema:sdPublisher N10d7ac52b0ce41ac8c044b4b3ae32f48
    74 schema:url https://link.springer.com/10.1186%2Fs13014-019-1236-x
    75 sgo:license sg:explorer/license/
    76 sgo:sdDataset articles
    77 rdf:type schema:ScholarlyArticle
    78 N004c704fdab5433db7a507b1633cab2b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    79 schema:name Esophageal Squamous Cell Carcinoma
    80 rdf:type schema:DefinedTerm
    81 N10d7ac52b0ce41ac8c044b4b3ae32f48 schema:name Springer Nature - SN SciGraph project
    82 rdf:type schema:Organization
    83 N1b931d9395074b5f85824c58470dfe0e schema:name nlm_unique_id
    84 schema:value 101265111
    85 rdf:type schema:PropertyValue
    86 N1fad497b08e6487ab3bbf863fdecbec2 rdf:first N4183071e72924b32bd81af950c1f3c7f
    87 rdf:rest N83ddc047bd024f17a9d33288376a1a5a
    88 N4183071e72924b32bd81af950c1f3c7f schema:affiliation https://www.grid.ac/institutes/grid.412625.6
    89 schema:familyName Lin
    90 schema:givenName Qin
    91 rdf:type schema:Person
    92 N4bd0ef6434e440ecabf5cb42912cf807 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    93 schema:name Prognosis
    94 rdf:type schema:DefinedTerm
    95 N4efcf62fecf64d60ad64567d333dd215 schema:issueNumber 1
    96 rdf:type schema:PublicationIssue
    97 N4f6c60fca8ad449cbcad09f4e34257c3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    98 schema:name Humans
    99 rdf:type schema:DefinedTerm
    100 N5264eca09ecd471e9b8b2d2cb351b59a schema:name readcube_id
    101 schema:value a7b123ccfe0c570d7ff592e6f6ed1f16e39a4ec8a7ca73cd1cce4d90e7627927
    102 rdf:type schema:PropertyValue
    103 N547e8450096a4c8a819535ef2295bc64 schema:affiliation https://www.grid.ac/institutes/grid.412625.6
    104 schema:familyName Chen
    105 schema:givenName Lili
    106 rdf:type schema:Person
    107 N5b79a8bdb83a4c80b34f7603888f7127 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    108 schema:name Aged, 80 and over
    109 rdf:type schema:DefinedTerm
    110 N69bda21b9f6b4ef99bc57eb1e1a7e850 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    111 schema:name Middle Aged
    112 rdf:type schema:DefinedTerm
    113 N6eeb3bbceabb4c78aec715aa49257e1c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    114 schema:name Positron Emission Tomography Computed Tomography
    115 rdf:type schema:DefinedTerm
    116 N76cbb18e70e249129321395d2141c127 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    117 schema:name Retrospective Studies
    118 rdf:type schema:DefinedTerm
    119 N78b8e4ce676c438098be5eebba026906 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    120 schema:name Esophageal Neoplasms
    121 rdf:type schema:DefinedTerm
    122 N7a2c4e27947a485fad2141540dde3bba schema:affiliation https://www.grid.ac/institutes/grid.6363.0
    123 schema:familyName Zschaeck
    124 schema:givenName Sebastian
    125 rdf:type schema:Person
    126 N83ddc047bd024f17a9d33288376a1a5a rdf:first Nb670cbcff52b4fd6a7b1b8d30a784e64
    127 rdf:rest N9800a57ac2da4a50b0a5a7cee31150d4
    128 N87f23cb1ad5c438792874f7da286e8c3 rdf:first Nfad868f023734261893f91a250782cf9
    129 rdf:rest rdf:nil
    130 N9800a57ac2da4a50b0a5a7cee31150d4 rdf:first N547e8450096a4c8a819535ef2295bc64
    131 rdf:rest N87f23cb1ad5c438792874f7da286e8c3
    132 N98305c7e8f954a6187828582ea56206a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    133 schema:name Proportional Hazards Models
    134 rdf:type schema:DefinedTerm
    135 Na049bf19579248779296a4b2e6e80810 schema:name Department of Nuclear Medicine, Xiamen Cancer Hospital, the First Affiliated Hospital of Xiamen University/Southern Fujian PET Center, Xiamen, China
    136 rdf:type schema:Organization
    137 Na7ab496e24414497b1def177897a373e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    138 schema:name Female
    139 rdf:type schema:DefinedTerm
    140 Na9fe98de19a54c59ad3ce7615bb4d641 schema:volumeNumber 14
    141 rdf:type schema:PublicationVolume
    142 Naa7ea39e445746e4932ef5b688d8474f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    143 schema:name Aged
    144 rdf:type schema:DefinedTerm
    145 Nac8ac613ffb146bcb239abbf517d253d schema:name pubmed_id
    146 schema:value 30782182
    147 rdf:type schema:PropertyValue
    148 Nae7ebec97497406d854cd3201d433002 schema:affiliation https://www.grid.ac/institutes/grid.412625.6
    149 schema:familyName Li
    150 schema:givenName Yimin
    151 rdf:type schema:Person
    152 Nb670cbcff52b4fd6a7b1b8d30a784e64 schema:affiliation https://www.grid.ac/institutes/grid.412625.6
    153 schema:familyName Chen
    154 schema:givenName Sijia
    155 rdf:type schema:Person
    156 Nbb8b128d106343e0899e09f3a64d0105 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    157 schema:name Kaplan-Meier Estimate
    158 rdf:type schema:DefinedTerm
    159 Nc067505fff244d50a635506b97ab1050 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    160 schema:name Chemoradiotherapy
    161 rdf:type schema:DefinedTerm
    162 Nc4a73c11944641179481ee8b1466ad90 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    163 schema:name Male
    164 rdf:type schema:DefinedTerm
    165 Ncb4dfa51497f45aeb99abd42c3284774 rdf:first Nae7ebec97497406d854cd3201d433002
    166 rdf:rest Nea61eec424ee4b0481d79bc51e273bf3
    167 Nd0420a67580d423cb41071feefa24048 schema:name dimensions_id
    168 schema:value pub.1112227777
    169 rdf:type schema:PropertyValue
    170 Nd5474ecadf024e629fdcf10348939586 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    171 schema:name Adult
    172 rdf:type schema:DefinedTerm
    173 Ne94958cded744fd1939785ea255fbcab schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    174 schema:name Fluorodeoxyglucose F18
    175 rdf:type schema:DefinedTerm
    176 Nea61eec424ee4b0481d79bc51e273bf3 rdf:first N7a2c4e27947a485fad2141540dde3bba
    177 rdf:rest N1fad497b08e6487ab3bbf863fdecbec2
    178 Nea9604da5126422d9c7380c75ea2c734 schema:name doi
    179 schema:value 10.1186/s13014-019-1236-x
    180 rdf:type schema:PropertyValue
    181 Nfad868f023734261893f91a250782cf9 schema:affiliation Na049bf19579248779296a4b2e6e80810
    182 schema:familyName Wu
    183 schema:givenName Hua
    184 rdf:type schema:Person
    185 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    186 schema:name Medical and Health Sciences
    187 rdf:type schema:DefinedTerm
    188 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
    189 schema:name Clinical Sciences
    190 rdf:type schema:DefinedTerm
    191 sg:journal.1036451 schema:issn 1748-717X
    192 schema:name Radiation Oncology
    193 rdf:type schema:Periodical
    194 sg:pub.10.1007/s00066-014-0744-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032624814
    195 https://doi.org/10.1007/s00066-014-0744-8
    196 rdf:type schema:CreativeWork
    197 sg:pub.10.1007/s00259-007-0521-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002856298
    198 https://doi.org/10.1007/s00259-007-0521-3
    199 rdf:type schema:CreativeWork
    200 sg:pub.10.1007/s00259-011-1755-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051740136
    201 https://doi.org/10.1007/s00259-011-1755-7
    202 rdf:type schema:CreativeWork
    203 sg:pub.10.1007/s00259-012-2280-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1042189086
    204 https://doi.org/10.1007/s00259-012-2280-z
    205 rdf:type schema:CreativeWork
    206 sg:pub.10.1007/s00259-015-3004-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1045886752
    207 https://doi.org/10.1007/s00259-015-3004-y
    208 rdf:type schema:CreativeWork
    209 sg:pub.10.1007/s00259-018-3996-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103496632
    210 https://doi.org/10.1007/s00259-018-3996-1
    211 rdf:type schema:CreativeWork
    212 sg:pub.10.1007/s11605-014-2701-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009836457
    213 https://doi.org/10.1007/s11605-014-2701-3
    214 rdf:type schema:CreativeWork
    215 sg:pub.10.1186/1748-717x-9-37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045891069
    216 https://doi.org/10.1186/1748-717x-9-37
    217 rdf:type schema:CreativeWork
    218 sg:pub.10.1245/s10434-011-1732-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027412347
    219 https://doi.org/10.1245/s10434-011-1732-1
    220 rdf:type schema:CreativeWork
    221 https://app.dimensions.ai/details/publication/pub.1077452182 schema:CreativeWork
    222 https://app.dimensions.ai/details/publication/pub.1078623553 schema:CreativeWork
    223 https://app.dimensions.ai/details/publication/pub.1079150881 schema:CreativeWork
    224 https://doi.org/10.1002/bjs.7455 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050956449
    225 rdf:type schema:CreativeWork
    226 https://doi.org/10.1002/cncr.30763 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085119232
    227 rdf:type schema:CreativeWork
    228 https://doi.org/10.1016/j.crad.2011.08.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036334226
    229 rdf:type schema:CreativeWork
    230 https://doi.org/10.1016/j.ijrobp.2011.12.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002171383
    231 rdf:type schema:CreativeWork
    232 https://doi.org/10.1016/j.ijsu.2010.06.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053047425
    233 rdf:type schema:CreativeWork
    234 https://doi.org/10.1016/j.jtcvs.2008.02.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012836237
    235 rdf:type schema:CreativeWork
    236 https://doi.org/10.1056/nejmoa1112088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024545289
    237 rdf:type schema:CreativeWork
    238 https://doi.org/10.1097/01243894-200606000-00016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060334504
    239 rdf:type schema:CreativeWork
    240 https://doi.org/10.1097/coc.0b013e31827de7a2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016732204
    241 rdf:type schema:CreativeWork
    242 https://doi.org/10.1097/mnm.0000000000000145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029361556
    243 rdf:type schema:CreativeWork
    244 https://doi.org/10.1097/mnm.0000000000000527 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017565531
    245 rdf:type schema:CreativeWork
    246 https://doi.org/10.1097/mnm.0b013e32835ae50c schema:sameAs https://app.dimensions.ai/details/publication/pub.1050996051
    247 rdf:type schema:CreativeWork
    248 https://doi.org/10.1111/jgh.12148 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027930127
    249 rdf:type schema:CreativeWork
    250 https://doi.org/10.1159/000443018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014717385
    251 rdf:type schema:CreativeWork
    252 https://doi.org/10.1200/jco.2018.79.1483 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106058733
    253 rdf:type schema:CreativeWork
    254 https://doi.org/10.2967/jnumed.111.099531 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044694185
    255 rdf:type schema:CreativeWork
    256 https://doi.org/10.2967/jnumed.113.131847 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009456536
    257 rdf:type schema:CreativeWork
    258 https://doi.org/10.3322/caac.20107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009055747
    259 rdf:type schema:CreativeWork
    260 https://doi.org/10.3346/jkms.2016.31.1.39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051736338
    261 rdf:type schema:CreativeWork
    262 https://doi.org/10.4274/mirt.07379 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001920998
    263 rdf:type schema:CreativeWork
    264 https://doi.org/10.7314/apjcp.2014.15.3.1369 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019300762
    265 rdf:type schema:CreativeWork
    266 https://www.grid.ac/institutes/grid.412625.6 schema:alternateName First Affiliated Hospital of Xiamen University
    267 schema:name Department of Radiation Oncology, Xiamen Cancer Hospital, the First Affiliated Hospital of Xiamen University, Xiamen, China
    268 rdf:type schema:Organization
    269 https://www.grid.ac/institutes/grid.6363.0 schema:alternateName Charité
    270 schema:name Department of Radiation Oncology, Charité Universitätsmedizin Berlin, Berlin, Germany
    271 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...