Prognostic values of mid-radiotherapy 18F-FDG PET/CT in patients with esophageal cancer View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Nalee Kim, Hojin Cho, Mijin Yun, Kyung Ran Park, Chang Geol Lee

ABSTRACT

BACKGROUND: To identify whether early metabolic responses as determined using 18F-fluorodeoxyglucose positron emission tomography/computed tomography (FDG PET/CT) during radiotherapy (RT) predict outcomes in patients with esophageal cancer. METHODS: Twenty-one patients with esophageal cancer who received pre-treatment 18F-FDG PET/CT (PET1) and inter-fractional 18F-FDG PET/CT (PET2) after 11 fractions of RT (median 23.1 Gy, 2.1 Gy per fraction) were retrospectively reviewed. The region of interest for each calculation was delineated using "PET Edge". We calculated PET parameters including maximum and mean standardized uptake values (SUVmax and SUVmean, respectively), metabolic tumor volume (MTV), and total lesion glycolysis (TLG). The relative changes (%) were calculated using the logarithmically transformed parameter values for the PET1 and PET2 scans. Multivariate analysis of locoregional recurrence and distant failures were performed using Cox regression analysis. After identifying statistically significant PET parameters for discriminating responders from non-responders, receiver operating characteristics curve analyses were used to assess the potentials of the studied PET parameters. RESULTS: After a median follow-up of 13 months, the 1-year overall and progression-free survival rates were 79.0% and 34.4%, respectively. Four patients developed locoregional recurrences (LRRs) and 8 had distant metastases (DMs). The 1-year overall LRR-free rate was 76.9% while the DM-free rate was 60.6%. The relative changes in MTV (ΔMTV) were significantly associated with LRR (p = 0.03). Conversely, the relative changes in SUVmean (ΔSUVmean) were associated with the risk of DM (p = 0.02). An ΔMTV threshold of 1.14 yielded a sensitivity of 60%, specificity of 94%, and an accuracy of 86% for predicting an LRR. Additionally, a ΔSUVmean threshold of a 35% decrease yielded a sensitivity of 67%, specificity of 83%, and accuracy of 76% for the prediction DM. TRIAL REGISTRATION: Retrospectively registered. CONCLUSIONS: Changes in tumor metabolism during RT could be used to predict treatment responses, recurrences, and prognoses in patients with esophageal cancer. More... »

PAGES

27

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13014-019-1232-1

DOI

http://dx.doi.org/10.1186/s13014-019-1232-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111908852

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30717809


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adenocarcinoma", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged, 80 and over", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Carcinoma, Squamous Cell", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Esophageal Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fluorodeoxyglucose F18", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Glycolysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Multimodal Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neoplasm Recurrence, Local", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Positron Emission Tomography Computed Tomography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prognosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiopharmaceuticals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Retrospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Survival Rate", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Yonsei University", 
          "id": "https://www.grid.ac/institutes/grid.15444.30", 
          "name": [
            "Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Nalee", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yonsei University", 
          "id": "https://www.grid.ac/institutes/grid.15444.30", 
          "name": [
            "Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cho", 
        "givenName": "Hojin", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yonsei University", 
          "id": "https://www.grid.ac/institutes/grid.15444.30", 
          "name": [
            "Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yun", 
        "givenName": "Mijin", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kosin University Gospel Hospital", 
          "id": "https://www.grid.ac/institutes/grid.411145.4", 
          "name": [
            "Department of Radiation Oncology, Kosin University Gospel Hospital, Busan, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Park", 
        "givenName": "Kyung Ran", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yonsei University", 
          "id": "https://www.grid.ac/institutes/grid.15444.30", 
          "name": [
            "Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Chang Geol", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.radonc.2008.06.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000285486"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2006.06.7801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000846284"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0003-4975(02)03875-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004180376"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.athoracsur.2004.04.046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007118564"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1470-2045(07)70244-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010299262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1536-1632(02)00011-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011928509"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1536-1632(02)00011-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011928509"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2363041042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014353708"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000251842", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016326525"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2967/jnumed.110.083865", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017716299"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/sla.0b013e3181b0c3a6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020716891"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/sla.0b013e3181b0c3a6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020716891"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/sla.0b013e3181b0c3a6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020716891"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/sla.0b013e3181b0c3a6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020716891"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-014-2839-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020970767", 
          "https://doi.org/10.1007/s00259-014-2839-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-014-2839-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020970767", 
          "https://doi.org/10.1007/s00259-014-2839-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0360-3016(03)00522-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020980679"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0360-3016(03)00522-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020980679"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijrobp.2010.12.055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021442938"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1095-0397(99)00016-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021919420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0720-048x(01)00418-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024515202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/meg.0b013e328323d6fa", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027242774"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/meg.0b013e328323d6fa", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027242774"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/meg.0b013e328323d6fa", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027242774"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/mnm.0000000000000046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042220587"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/mnm.0000000000000046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042220587"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-016-3478-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042433574", 
          "https://doi.org/10.1007/s00259-016-3478-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-016-3478-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042433574", 
          "https://doi.org/10.1007/s00259-016-3478-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10147-011-0278-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044276546", 
          "https://doi.org/10.1007/s10147-011-0278-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10147-011-0278-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044276546", 
          "https://doi.org/10.1007/s10147-011-0278-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2967/jnumed.108.057232", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044873631"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2004.07.122", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048176930"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2005.00.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049157553"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-013-2450-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049343545", 
          "https://doi.org/10.1007/s00259-013-2450-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00384-008-0616-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049521499", 
          "https://doi.org/10.1007/s00384-008-0616-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00384-008-0616-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049521499", 
          "https://doi.org/10.1007/s00384-008-0616-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-011-1755-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051740136", 
          "https://doi.org/10.1007/s00259-011-1755-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2511081300", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051922593"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2003.04.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064203505"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.13.11456", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069303331"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2000.18.18.3202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074698106"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074718580", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2001.19.12.3058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074835658"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082453735", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083145371", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "BACKGROUND: To identify whether early metabolic responses as determined using 18F-fluorodeoxyglucose positron emission tomography/computed tomography (FDG PET/CT) during radiotherapy (RT) predict outcomes in patients with esophageal cancer.\nMETHODS: Twenty-one patients with esophageal cancer who received pre-treatment 18F-FDG PET/CT (PET1) and inter-fractional 18F-FDG PET/CT (PET2) after 11 fractions of RT (median 23.1\u2009Gy, 2.1\u2009Gy per fraction) were retrospectively reviewed. The region of interest for each calculation was delineated using \"PET Edge\". We calculated PET parameters including maximum and mean standardized uptake values (SUVmax and SUVmean, respectively), metabolic tumor volume (MTV), and total lesion glycolysis (TLG). The relative changes (%) were calculated using the logarithmically transformed parameter values for the PET1 and PET2 scans. Multivariate analysis of locoregional recurrence and distant failures were performed using Cox regression analysis. After identifying statistically significant PET parameters for discriminating responders from non-responders, receiver operating characteristics curve analyses were used to assess the potentials of the studied PET parameters.\nRESULTS: After a median follow-up of 13\u2009months, the 1-year overall and progression-free survival rates were 79.0% and 34.4%, respectively. Four patients developed locoregional recurrences (LRRs) and 8 had distant metastases (DMs). The 1-year overall LRR-free rate was 76.9% while the DM-free rate was 60.6%. The relative changes in MTV (\u0394MTV) were significantly associated with LRR (p\u00a0=\u20090.03). Conversely, the relative changes in SUVmean (\u0394SUVmean) were associated with the risk of DM (p\u00a0=\u20090.02). An \u0394MTV threshold of 1.14 yielded a sensitivity of 60%, specificity of 94%, and an accuracy of 86% for predicting an LRR. Additionally, a \u0394SUVmean threshold of a 35% decrease yielded a sensitivity of 67%, specificity of 83%, and accuracy of 76% for the prediction DM.\nTRIAL REGISTRATION: Retrospectively registered.\nCONCLUSIONS: Changes in tumor metabolism during RT could be used to predict treatment responses, recurrences, and prognoses in patients with esophageal cancer.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s13014-019-1232-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1036451", 
        "issn": [
          "1748-717X"
        ], 
        "name": "Radiation Oncology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "14"
      }
    ], 
    "name": "Prognostic values of mid-radiotherapy 18F-FDG PET/CT in patients with esophageal cancer", 
    "pagination": "27", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "324b37118e13c100e8704681e3b175066a501a404409636e4bf912b7870b3fff"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30717809"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101265111"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13014-019-1232-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111908852"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13014-019-1232-1", 
      "https://app.dimensions.ai/details/publication/pub.1111908852"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:43", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000358_0000000358/records_127448_00000011.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs13014-019-1232-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13014-019-1232-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13014-019-1232-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13014-019-1232-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13014-019-1232-1'


 

This table displays all metadata directly associated to this object as RDF triples.

269 TRIPLES      21 PREDICATES      80 URIs      39 LITERALS      27 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13014-019-1232-1 schema:about N260071d40eb64f9f95b14caffe367005
2 N3aef6d7a4ffa43f1826c01323d2d74aa
3 N42739c2028e04df98ece258335f5b195
4 N59cfa4ffd22f4f4795b834a93f19b03c
5 N5f8e439f719c4a40a7268ddb48b469cf
6 N6357a25ac47f4d7c9afac98ab7d061c7
7 N711f0e7df5d448b3b32d83c98553c493
8 N72d23fe99c994fef95b037442849af54
9 N87a3905ae50742e6b7fef30786cbfee3
10 N9e53ecbf34eb4dbc81af0f257414357c
11 Na988c98f09c345cebdbbc1bde2e529f0
12 Nafd675a1cc5b41df9a824c6a7ca50462
13 Nb1ccfd244fc8438c88e40f35702e7133
14 Nb8ee21bde1c1438ea8a67098bbc7f382
15 Nbfeb6f371c5541b3b6acf1620e3c0511
16 Nc6476c4a2dbb4cb29cda44480725b9be
17 Nd987d770b5d74852988e2c4aa071546d
18 Nfc39c57821bc4d58a5abc28fc47160b3
19 anzsrc-for:11
20 anzsrc-for:1103
21 schema:author N66d6990fcb4a440382865ad2f4de329f
22 schema:citation sg:pub.10.1007/s00259-011-1755-7
23 sg:pub.10.1007/s00259-013-2450-7
24 sg:pub.10.1007/s00259-014-2839-y
25 sg:pub.10.1007/s00259-016-3478-2
26 sg:pub.10.1007/s00384-008-0616-8
27 sg:pub.10.1007/s10147-011-0278-3
28 https://app.dimensions.ai/details/publication/pub.1074718580
29 https://app.dimensions.ai/details/publication/pub.1082453735
30 https://app.dimensions.ai/details/publication/pub.1083145371
31 https://doi.org/10.1016/j.athoracsur.2004.04.046
32 https://doi.org/10.1016/j.ijrobp.2010.12.055
33 https://doi.org/10.1016/j.radonc.2008.06.014
34 https://doi.org/10.1016/s0003-4975(02)03875-4
35 https://doi.org/10.1016/s0360-3016(03)00522-4
36 https://doi.org/10.1016/s0720-048x(01)00418-1
37 https://doi.org/10.1016/s1095-0397(99)00016-3
38 https://doi.org/10.1016/s1470-2045(07)70244-9
39 https://doi.org/10.1016/s1536-1632(02)00011-2
40 https://doi.org/10.1097/meg.0b013e328323d6fa
41 https://doi.org/10.1097/mnm.0000000000000046
42 https://doi.org/10.1097/sla.0b013e3181b0c3a6
43 https://doi.org/10.1148/radiol.2363041042
44 https://doi.org/10.1148/radiol.2511081300
45 https://doi.org/10.1159/000251842
46 https://doi.org/10.1200/jco.2000.18.18.3202
47 https://doi.org/10.1200/jco.2001.19.12.3058
48 https://doi.org/10.1200/jco.2003.04.013
49 https://doi.org/10.1200/jco.2004.07.122
50 https://doi.org/10.1200/jco.2005.00.034
51 https://doi.org/10.1200/jco.2006.06.7801
52 https://doi.org/10.2214/ajr.13.11456
53 https://doi.org/10.2967/jnumed.108.057232
54 https://doi.org/10.2967/jnumed.110.083865
55 schema:datePublished 2019-12
56 schema:datePublishedReg 2019-12-01
57 schema:description BACKGROUND: To identify whether early metabolic responses as determined using 18F-fluorodeoxyglucose positron emission tomography/computed tomography (FDG PET/CT) during radiotherapy (RT) predict outcomes in patients with esophageal cancer. METHODS: Twenty-one patients with esophageal cancer who received pre-treatment 18F-FDG PET/CT (PET1) and inter-fractional 18F-FDG PET/CT (PET2) after 11 fractions of RT (median 23.1 Gy, 2.1 Gy per fraction) were retrospectively reviewed. The region of interest for each calculation was delineated using "PET Edge". We calculated PET parameters including maximum and mean standardized uptake values (SUVmax and SUVmean, respectively), metabolic tumor volume (MTV), and total lesion glycolysis (TLG). The relative changes (%) were calculated using the logarithmically transformed parameter values for the PET1 and PET2 scans. Multivariate analysis of locoregional recurrence and distant failures were performed using Cox regression analysis. After identifying statistically significant PET parameters for discriminating responders from non-responders, receiver operating characteristics curve analyses were used to assess the potentials of the studied PET parameters. RESULTS: After a median follow-up of 13 months, the 1-year overall and progression-free survival rates were 79.0% and 34.4%, respectively. Four patients developed locoregional recurrences (LRRs) and 8 had distant metastases (DMs). The 1-year overall LRR-free rate was 76.9% while the DM-free rate was 60.6%. The relative changes in MTV (ΔMTV) were significantly associated with LRR (p = 0.03). Conversely, the relative changes in SUVmean (ΔSUVmean) were associated with the risk of DM (p = 0.02). An ΔMTV threshold of 1.14 yielded a sensitivity of 60%, specificity of 94%, and an accuracy of 86% for predicting an LRR. Additionally, a ΔSUVmean threshold of a 35% decrease yielded a sensitivity of 67%, specificity of 83%, and accuracy of 76% for the prediction DM. TRIAL REGISTRATION: Retrospectively registered. CONCLUSIONS: Changes in tumor metabolism during RT could be used to predict treatment responses, recurrences, and prognoses in patients with esophageal cancer.
58 schema:genre research_article
59 schema:inLanguage en
60 schema:isAccessibleForFree true
61 schema:isPartOf N38557101c30a4440a9b111762dfeadfa
62 N9b6b10070c0740f1a062420a896a79e1
63 sg:journal.1036451
64 schema:name Prognostic values of mid-radiotherapy 18F-FDG PET/CT in patients with esophageal cancer
65 schema:pagination 27
66 schema:productId N36cc2630c98d4123875c20e81bb4f495
67 N5c86f1c68d0a46e491117dd8afbe291e
68 N8de24dfd4b4e403083a1231e25b6a391
69 Nede5873c95e64c79b5cbde2213f6aad6
70 Nf4b7ea80753546a98333295ad4616bcd
71 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111908852
72 https://doi.org/10.1186/s13014-019-1232-1
73 schema:sdDatePublished 2019-04-11T11:43
74 schema:sdLicense https://scigraph.springernature.com/explorer/license/
75 schema:sdPublisher N94dd9b2c8ea74966a54f615a7dc3ed24
76 schema:url https://link.springer.com/10.1186%2Fs13014-019-1232-1
77 sgo:license sg:explorer/license/
78 sgo:sdDataset articles
79 rdf:type schema:ScholarlyArticle
80 N086a6fd44d904db8ae58b536a94c4814 rdf:first N8972a89e26444329b2d07c310a917853
81 rdf:rest rdf:nil
82 N260071d40eb64f9f95b14caffe367005 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Middle Aged
84 rdf:type schema:DefinedTerm
85 N2fc62e6e50fc4c5980c939fc0bc513fd rdf:first N5d5b286f2b3d4e65a7c071e41d3123cf
86 rdf:rest N086a6fd44d904db8ae58b536a94c4814
87 N36cc2630c98d4123875c20e81bb4f495 schema:name pubmed_id
88 schema:value 30717809
89 rdf:type schema:PropertyValue
90 N38557101c30a4440a9b111762dfeadfa schema:issueNumber 1
91 rdf:type schema:PublicationIssue
92 N3aef6d7a4ffa43f1826c01323d2d74aa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Retrospective Studies
94 rdf:type schema:DefinedTerm
95 N42739c2028e04df98ece258335f5b195 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Glycolysis
97 rdf:type schema:DefinedTerm
98 N44beb0630bb949f5971f4b4377d1223f rdf:first Neb38ab4ec00b4b5fa39ea3b6bf2cb651
99 rdf:rest N2fc62e6e50fc4c5980c939fc0bc513fd
100 N59cfa4ffd22f4f4795b834a93f19b03c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Prognosis
102 rdf:type schema:DefinedTerm
103 N5c86f1c68d0a46e491117dd8afbe291e schema:name doi
104 schema:value 10.1186/s13014-019-1232-1
105 rdf:type schema:PropertyValue
106 N5d5b286f2b3d4e65a7c071e41d3123cf schema:affiliation https://www.grid.ac/institutes/grid.411145.4
107 schema:familyName Park
108 schema:givenName Kyung Ran
109 rdf:type schema:Person
110 N5f8e439f719c4a40a7268ddb48b469cf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Aged, 80 and over
112 rdf:type schema:DefinedTerm
113 N60f08e56cab84315b16debff7f2360c8 rdf:first N8d5bb8a097cd4cfe9020fe00eacf644f
114 rdf:rest N44beb0630bb949f5971f4b4377d1223f
115 N6357a25ac47f4d7c9afac98ab7d061c7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Humans
117 rdf:type schema:DefinedTerm
118 N66d6990fcb4a440382865ad2f4de329f rdf:first Ne684c233d7834ab58444e48adfff5d55
119 rdf:rest N60f08e56cab84315b16debff7f2360c8
120 N711f0e7df5d448b3b32d83c98553c493 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Aged
122 rdf:type schema:DefinedTerm
123 N72d23fe99c994fef95b037442849af54 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Esophageal Neoplasms
125 rdf:type schema:DefinedTerm
126 N87a3905ae50742e6b7fef30786cbfee3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Male
128 rdf:type schema:DefinedTerm
129 N8972a89e26444329b2d07c310a917853 schema:affiliation https://www.grid.ac/institutes/grid.15444.30
130 schema:familyName Lee
131 schema:givenName Chang Geol
132 rdf:type schema:Person
133 N8d5bb8a097cd4cfe9020fe00eacf644f schema:affiliation https://www.grid.ac/institutes/grid.15444.30
134 schema:familyName Cho
135 schema:givenName Hojin
136 rdf:type schema:Person
137 N8de24dfd4b4e403083a1231e25b6a391 schema:name nlm_unique_id
138 schema:value 101265111
139 rdf:type schema:PropertyValue
140 N94dd9b2c8ea74966a54f615a7dc3ed24 schema:name Springer Nature - SN SciGraph project
141 rdf:type schema:Organization
142 N9b6b10070c0740f1a062420a896a79e1 schema:volumeNumber 14
143 rdf:type schema:PublicationVolume
144 N9e53ecbf34eb4dbc81af0f257414357c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Carcinoma, Squamous Cell
146 rdf:type schema:DefinedTerm
147 Na988c98f09c345cebdbbc1bde2e529f0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Radiopharmaceuticals
149 rdf:type schema:DefinedTerm
150 Nafd675a1cc5b41df9a824c6a7ca50462 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Multimodal Imaging
152 rdf:type schema:DefinedTerm
153 Nb1ccfd244fc8438c88e40f35702e7133 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name Neoplasm Recurrence, Local
155 rdf:type schema:DefinedTerm
156 Nb8ee21bde1c1438ea8a67098bbc7f382 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
157 schema:name Positron Emission Tomography Computed Tomography
158 rdf:type schema:DefinedTerm
159 Nbfeb6f371c5541b3b6acf1620e3c0511 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
160 schema:name Adenocarcinoma
161 rdf:type schema:DefinedTerm
162 Nc6476c4a2dbb4cb29cda44480725b9be schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
163 schema:name Survival Rate
164 rdf:type schema:DefinedTerm
165 Nd987d770b5d74852988e2c4aa071546d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
166 schema:name Fluorodeoxyglucose F18
167 rdf:type schema:DefinedTerm
168 Ne684c233d7834ab58444e48adfff5d55 schema:affiliation https://www.grid.ac/institutes/grid.15444.30
169 schema:familyName Kim
170 schema:givenName Nalee
171 rdf:type schema:Person
172 Neb38ab4ec00b4b5fa39ea3b6bf2cb651 schema:affiliation https://www.grid.ac/institutes/grid.15444.30
173 schema:familyName Yun
174 schema:givenName Mijin
175 rdf:type schema:Person
176 Nede5873c95e64c79b5cbde2213f6aad6 schema:name readcube_id
177 schema:value 324b37118e13c100e8704681e3b175066a501a404409636e4bf912b7870b3fff
178 rdf:type schema:PropertyValue
179 Nf4b7ea80753546a98333295ad4616bcd schema:name dimensions_id
180 schema:value pub.1111908852
181 rdf:type schema:PropertyValue
182 Nfc39c57821bc4d58a5abc28fc47160b3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
183 schema:name Female
184 rdf:type schema:DefinedTerm
185 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
186 schema:name Medical and Health Sciences
187 rdf:type schema:DefinedTerm
188 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
189 schema:name Clinical Sciences
190 rdf:type schema:DefinedTerm
191 sg:journal.1036451 schema:issn 1748-717X
192 schema:name Radiation Oncology
193 rdf:type schema:Periodical
194 sg:pub.10.1007/s00259-011-1755-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051740136
195 https://doi.org/10.1007/s00259-011-1755-7
196 rdf:type schema:CreativeWork
197 sg:pub.10.1007/s00259-013-2450-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049343545
198 https://doi.org/10.1007/s00259-013-2450-7
199 rdf:type schema:CreativeWork
200 sg:pub.10.1007/s00259-014-2839-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1020970767
201 https://doi.org/10.1007/s00259-014-2839-y
202 rdf:type schema:CreativeWork
203 sg:pub.10.1007/s00259-016-3478-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042433574
204 https://doi.org/10.1007/s00259-016-3478-2
205 rdf:type schema:CreativeWork
206 sg:pub.10.1007/s00384-008-0616-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049521499
207 https://doi.org/10.1007/s00384-008-0616-8
208 rdf:type schema:CreativeWork
209 sg:pub.10.1007/s10147-011-0278-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044276546
210 https://doi.org/10.1007/s10147-011-0278-3
211 rdf:type schema:CreativeWork
212 https://app.dimensions.ai/details/publication/pub.1074718580 schema:CreativeWork
213 https://app.dimensions.ai/details/publication/pub.1082453735 schema:CreativeWork
214 https://app.dimensions.ai/details/publication/pub.1083145371 schema:CreativeWork
215 https://doi.org/10.1016/j.athoracsur.2004.04.046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007118564
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1016/j.ijrobp.2010.12.055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021442938
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1016/j.radonc.2008.06.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000285486
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1016/s0003-4975(02)03875-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004180376
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1016/s0360-3016(03)00522-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020980679
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1016/s0720-048x(01)00418-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024515202
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1016/s1095-0397(99)00016-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021919420
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1016/s1470-2045(07)70244-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010299262
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1016/s1536-1632(02)00011-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011928509
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1097/meg.0b013e328323d6fa schema:sameAs https://app.dimensions.ai/details/publication/pub.1027242774
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1097/mnm.0000000000000046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042220587
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1097/sla.0b013e3181b0c3a6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020716891
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1148/radiol.2363041042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014353708
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1148/radiol.2511081300 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051922593
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1159/000251842 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016326525
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1200/jco.2000.18.18.3202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074698106
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1200/jco.2001.19.12.3058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074835658
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1200/jco.2003.04.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064203505
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1200/jco.2004.07.122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048176930
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1200/jco.2005.00.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049157553
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1200/jco.2006.06.7801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000846284
256 rdf:type schema:CreativeWork
257 https://doi.org/10.2214/ajr.13.11456 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069303331
258 rdf:type schema:CreativeWork
259 https://doi.org/10.2967/jnumed.108.057232 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044873631
260 rdf:type schema:CreativeWork
261 https://doi.org/10.2967/jnumed.110.083865 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017716299
262 rdf:type schema:CreativeWork
263 https://www.grid.ac/institutes/grid.15444.30 schema:alternateName Yonsei University
264 schema:name Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
265 Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
266 rdf:type schema:Organization
267 https://www.grid.ac/institutes/grid.411145.4 schema:alternateName Kosin University Gospel Hospital
268 schema:name Department of Radiation Oncology, Kosin University Gospel Hospital, Busan, Republic of Korea
269 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...