Surface scanning for 3D dose calculation in intraoperative electron radiation therapy View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Verónica García-Vázquez, Begoña Sesé-Lucio, Felipe A. Calvo, Juan J. Vaquero, Manuel Desco, Javier Pascau

ABSTRACT

BACKGROUND: Dose calculations in intraoperative electron radiation therapy (IOERT) rely on the conventional assumption of water-equivalent tissues at the applicator end, which defines a flat irradiation surface. However, the shape of the irradiation surface modifies the dose distribution. Our study explores, for the first time, the use of surface scanning methods for three-dimensional dose calculation of IOERT. METHODS: Two different three-dimensional scanning technologies were evaluated in a simulated IOERT scenario: a tracked conoscopic holography sensor (ConoProbe) and a structured-light three-dimensional scanner (Artec). Dose distributions obtained from computed tomography studies of the surgical field (gold standard) were compared with those calculated under the conventional assumption or from pseudo-computed tomography studies based on surfaces. RESULTS: In the simulated IOERT scenario, the conventional assumption led to an average gamma pass rate of 39.9% for dose values greater than 10% (two configurations, with and without blood in the surgical field). Results improved when considering surfaces in the dose calculation (88.5% for ConoProbe and 92.9% for Artec). CONCLUSIONS: More accurate three-dimensional dose distributions were obtained when considering surfaces in the dose calculation of the simulated surgical field. The structured-light three-dimensional scanner provided the best results in terms of dose distributions. The findings obtained in this specific experimental setup warrant further research on surface scanning in the IOERT context owing to the clinical interest of improving the documentation of the actual IOERT scenario. More... »

PAGES

243

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13014-018-1181-0

DOI

http://dx.doi.org/10.1186/s13014-018-1181-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1110465212

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30526626


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Electrons", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Interpretation, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Imaging, Three-Dimensional", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiosurgery", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiotherapy Dosage", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiotherapy Planning, Computer-Assisted", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Hospital General Universitario Gregorio Mara\u00f1\u00f3n", 
          "id": "https://www.grid.ac/institutes/grid.410526.4", 
          "name": [
            "Instituto de Investigaci\u00f3n Sanitaria Gregorio Mara\u00f1\u00f3n. Calle Doctor Esquerdo, 46, 28007, Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Garc\u00eda-V\u00e1zquez", 
        "givenName": "Ver\u00f3nica", 
        "id": "sg:person.0706127602.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0706127602.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hospital General Universitario Gregorio Mara\u00f1\u00f3n", 
          "id": "https://www.grid.ac/institutes/grid.410526.4", 
          "name": [
            "Instituto de Investigaci\u00f3n Sanitaria Gregorio Mara\u00f1\u00f3n. Calle Doctor Esquerdo, 46, 28007, Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ses\u00e9-Lucio", 
        "givenName": "Bego\u00f1a", 
        "id": "sg:person.015574702021.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015574702021.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Clinica Universidad de Navarra", 
          "id": "https://www.grid.ac/institutes/grid.411730.0", 
          "name": [
            "Instituto de Investigaci\u00f3n Sanitaria Gregorio Mara\u00f1\u00f3n. Calle Doctor Esquerdo, 46, 28007, Madrid, Spain", 
            "Departamento de Oncolog\u00eda, Hospital General Universitario Gregorio Mara\u00f1\u00f3n, Madrid, Spain", 
            "Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain", 
            "Cl\u00ednica Universidad de Navarra, Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Calvo", 
        "givenName": "Felipe A.", 
        "id": "sg:person.013514362552.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013514362552.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hospital General Universitario Gregorio Mara\u00f1\u00f3n", 
          "id": "https://www.grid.ac/institutes/grid.410526.4", 
          "name": [
            "Departamento de Bioingenier\u00eda e Ingenier\u00eda Aeroespacial, Universidad Carlos III de Madrid, Madrid, Spain", 
            "Instituto de Investigaci\u00f3n Sanitaria Gregorio Mara\u00f1\u00f3n. Calle Doctor Esquerdo, 46, 28007, Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vaquero", 
        "givenName": "Juan J.", 
        "id": "sg:person.016417126340.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016417126340.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Spanish National Centre for Cardiovascular Research", 
          "id": "https://www.grid.ac/institutes/grid.467824.b", 
          "name": [
            "Departamento de Bioingenier\u00eda e Ingenier\u00eda Aeroespacial, Universidad Carlos III de Madrid, Madrid, Spain", 
            "Instituto de Investigaci\u00f3n Sanitaria Gregorio Mara\u00f1\u00f3n. Calle Doctor Esquerdo, 46, 28007, Madrid, Spain", 
            "Centro de Investigaci\u00f3n Biom\u00e9dica en Red de Salud Mental (CIBERSAM), Madrid, Spain", 
            "Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Desco", 
        "givenName": "Manuel", 
        "id": "sg:person.07426371137.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07426371137.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Centro de Investigaci\u00f3n Biom\u00e9dica en Red de Salud Mental", 
          "id": "https://www.grid.ac/institutes/grid.469673.9", 
          "name": [
            "Departamento de Bioingenier\u00eda e Ingenier\u00eda Aeroespacial, Universidad Carlos III de Madrid, Madrid, Spain", 
            "Instituto de Investigaci\u00f3n Sanitaria Gregorio Mara\u00f1\u00f3n. Calle Doctor Esquerdo, 46, 28007, Madrid, Spain", 
            "Centro de Investigaci\u00f3n Biom\u00e9dica en Red de Salud Mental (CIBERSAM), Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pascau", 
        "givenName": "Javier", 
        "id": "sg:person.01122377024.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01122377024.56"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-1-61779-015-7_6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000576606", 
          "https://doi.org/10.1007/978-1-61779-015-7_6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/s90907021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002558350"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mri.2012.05.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003426949"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-61779-015-7_3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005662109", 
          "https://doi.org/10.1007/978-1-61779-015-7_3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-61779-015-7_3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005662109", 
          "https://doi.org/10.1007/978-1-61779-015-7_3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.zemedi.2016.07.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006585099"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.radonc.2003.09.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008752342"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.critrevonc.2005.11.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013628403"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/rcs.1788", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016221286"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00066-014-0689-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019275368", 
          "https://doi.org/10.1007/s00066-014-0689-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1245/s10434-008-0172-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019846518", 
          "https://doi.org/10.1245/s10434-008-0172-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.4829515", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032389950"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1053/ejso.2001.1161", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036418080"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.4749968", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037314784"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijrobp.2011.12.063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038618171"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.media.2016.06.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040307430"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejmp.2015.05.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047860338"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/jimaging1010180", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049269659"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/rcs.1446", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049332591"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-9155/58/24/8769", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059030084"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-9155/59/23/7159", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059030564"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-9155/60/1/375", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059030775"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tbme.2012.2215033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061528956"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tbme.2014.2308299", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061529518"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.1987.4767965", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061742339"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1259/bjr.20160193", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064566038"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13014-017-0764-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083403214", 
          "https://doi.org/10.1186/s13014-017-0764-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13014-017-0764-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083403214", 
          "https://doi.org/10.1186/s13014-017-0764-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13014-016-0754-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083812363", 
          "https://doi.org/10.1186/s13014-016-0754-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13014-016-0754-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083812363", 
          "https://doi.org/10.1186/s13014-016-0754-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10549-017-4321-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085861213", 
          "https://doi.org/10.1007/s10549-017-4321-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10549-017-4321-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085861213", 
          "https://doi.org/10.1007/s10549-017-4321-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejmp.2017.11.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092868313"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cad-cg.2005.86", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094988889"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "BACKGROUND: Dose calculations in intraoperative electron radiation therapy (IOERT) rely on the conventional assumption of water-equivalent tissues at the applicator end, which defines a flat irradiation surface. However, the shape of the irradiation surface modifies the dose distribution. Our study explores, for the first time, the use of surface scanning methods for three-dimensional dose calculation of IOERT.\nMETHODS: Two different three-dimensional scanning technologies were evaluated in a simulated IOERT scenario: a tracked conoscopic holography sensor (ConoProbe) and a structured-light three-dimensional scanner (Artec). Dose distributions obtained from computed tomography studies of the surgical field (gold standard) were compared with those calculated under the conventional assumption or from pseudo-computed tomography studies based on surfaces.\nRESULTS: In the simulated IOERT scenario, the conventional assumption led to an average gamma pass rate of 39.9% for dose values greater than 10% (two configurations, with and without blood in the surgical field). Results improved when considering surfaces in the dose calculation (88.5% for ConoProbe and 92.9% for Artec).\nCONCLUSIONS: More accurate three-dimensional dose distributions were obtained when considering surfaces in the dose calculation of the simulated surgical field. The structured-light three-dimensional scanner provided the best results in terms of dose distributions. The findings obtained in this specific experimental setup warrant further research on surface scanning in the IOERT context owing to the clinical interest of improving the documentation of the actual IOERT scenario.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s13014-018-1181-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1036451", 
        "issn": [
          "1748-717X"
        ], 
        "name": "Radiation Oncology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "13"
      }
    ], 
    "name": "Surface scanning for 3D dose calculation in intraoperative electron radiation therapy", 
    "pagination": "243", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1f90b9e5bf03c9f9a877db25904f9c1ebb149f2f7dff3bf139fefdda3dbc73f7"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30526626"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101265111"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13014-018-1181-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1110465212"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13014-018-1181-0", 
      "https://app.dimensions.ai/details/publication/pub.1110465212"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:30", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000309_0000000309/records_106262_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs13014-018-1181-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13014-018-1181-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13014-018-1181-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13014-018-1181-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13014-018-1181-0'


 

This table displays all metadata directly associated to this object as RDF triples.

246 TRIPLES      21 PREDICATES      66 URIs      28 LITERALS      16 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13014-018-1181-0 schema:about N31b88ada7548412caaba4598f969de57
2 N41b3d623bb8e478690396acdecfa54c2
3 N5b041a48df294920be0f3003076eec5b
4 N6f33fd561e0d4d38a20e93c1bf4f37a8
5 N8a189f5f6a4342a4869e1f09d5e2c41f
6 Nda314701cab549e4b00f2cb38e16f20a
7 Nf18a906ae56d4c1db270413dc092d48c
8 anzsrc-for:02
9 anzsrc-for:0299
10 schema:author Ncb8855dbab8945e2b10eaca7a93541bc
11 schema:citation sg:pub.10.1007/978-1-61779-015-7_3
12 sg:pub.10.1007/978-1-61779-015-7_6
13 sg:pub.10.1007/s00066-014-0689-y
14 sg:pub.10.1007/s10549-017-4321-6
15 sg:pub.10.1186/s13014-016-0754-z
16 sg:pub.10.1186/s13014-017-0764-5
17 sg:pub.10.1245/s10434-008-0172-z
18 https://doi.org/10.1002/rcs.1446
19 https://doi.org/10.1002/rcs.1788
20 https://doi.org/10.1016/j.critrevonc.2005.11.004
21 https://doi.org/10.1016/j.ejmp.2015.05.013
22 https://doi.org/10.1016/j.ejmp.2017.11.004
23 https://doi.org/10.1016/j.ijrobp.2011.12.063
24 https://doi.org/10.1016/j.media.2016.06.011
25 https://doi.org/10.1016/j.mri.2012.05.001
26 https://doi.org/10.1016/j.radonc.2003.09.001
27 https://doi.org/10.1016/j.zemedi.2016.07.002
28 https://doi.org/10.1053/ejso.2001.1161
29 https://doi.org/10.1088/0031-9155/58/24/8769
30 https://doi.org/10.1088/0031-9155/59/23/7159
31 https://doi.org/10.1088/0031-9155/60/1/375
32 https://doi.org/10.1109/cad-cg.2005.86
33 https://doi.org/10.1109/tbme.2012.2215033
34 https://doi.org/10.1109/tbme.2014.2308299
35 https://doi.org/10.1109/tpami.1987.4767965
36 https://doi.org/10.1118/1.4749968
37 https://doi.org/10.1118/1.4829515
38 https://doi.org/10.1259/bjr.20160193
39 https://doi.org/10.3390/jimaging1010180
40 https://doi.org/10.3390/s90907021
41 schema:datePublished 2018-12
42 schema:datePublishedReg 2018-12-01
43 schema:description BACKGROUND: Dose calculations in intraoperative electron radiation therapy (IOERT) rely on the conventional assumption of water-equivalent tissues at the applicator end, which defines a flat irradiation surface. However, the shape of the irradiation surface modifies the dose distribution. Our study explores, for the first time, the use of surface scanning methods for three-dimensional dose calculation of IOERT. METHODS: Two different three-dimensional scanning technologies were evaluated in a simulated IOERT scenario: a tracked conoscopic holography sensor (ConoProbe) and a structured-light three-dimensional scanner (Artec). Dose distributions obtained from computed tomography studies of the surgical field (gold standard) were compared with those calculated under the conventional assumption or from pseudo-computed tomography studies based on surfaces. RESULTS: In the simulated IOERT scenario, the conventional assumption led to an average gamma pass rate of 39.9% for dose values greater than 10% (two configurations, with and without blood in the surgical field). Results improved when considering surfaces in the dose calculation (88.5% for ConoProbe and 92.9% for Artec). CONCLUSIONS: More accurate three-dimensional dose distributions were obtained when considering surfaces in the dose calculation of the simulated surgical field. The structured-light three-dimensional scanner provided the best results in terms of dose distributions. The findings obtained in this specific experimental setup warrant further research on surface scanning in the IOERT context owing to the clinical interest of improving the documentation of the actual IOERT scenario.
44 schema:genre research_article
45 schema:inLanguage en
46 schema:isAccessibleForFree true
47 schema:isPartOf N7d4e73a37ee14b0a91a89b66a735f59f
48 Nee8eee85f9c644a88181e194427c8c7d
49 sg:journal.1036451
50 schema:name Surface scanning for 3D dose calculation in intraoperative electron radiation therapy
51 schema:pagination 243
52 schema:productId N20a45788e0124e68a66bad78d311cf97
53 N8f6b78c3a1354f0a86441d0a3c24ff5b
54 N995f531dc6484fe4ade6221878356210
55 Nd93b1b9bad494821bce77515a7fd6424
56 Ne761c4453a154f768820ecb71c7b0393
57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110465212
58 https://doi.org/10.1186/s13014-018-1181-0
59 schema:sdDatePublished 2019-04-11T08:30
60 schema:sdLicense https://scigraph.springernature.com/explorer/license/
61 schema:sdPublisher N4461e9aa4b104a87992a234a82008c88
62 schema:url https://link.springer.com/10.1186%2Fs13014-018-1181-0
63 sgo:license sg:explorer/license/
64 sgo:sdDataset articles
65 rdf:type schema:ScholarlyArticle
66 N0f929a01bb124f07a4770ad78500111b rdf:first sg:person.01122377024.56
67 rdf:rest rdf:nil
68 N20a45788e0124e68a66bad78d311cf97 schema:name nlm_unique_id
69 schema:value 101265111
70 rdf:type schema:PropertyValue
71 N280f5e1fc0d94b98882933b573fec3ae rdf:first sg:person.07426371137.85
72 rdf:rest N0f929a01bb124f07a4770ad78500111b
73 N31b88ada7548412caaba4598f969de57 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
74 schema:name Humans
75 rdf:type schema:DefinedTerm
76 N375cbd17cabd4a8bb238d355add79ec2 rdf:first sg:person.013514362552.15
77 rdf:rest N3b0ba0415bef4227b0bc5fe0232b16ec
78 N3b0ba0415bef4227b0bc5fe0232b16ec rdf:first sg:person.016417126340.98
79 rdf:rest N280f5e1fc0d94b98882933b573fec3ae
80 N41b3d623bb8e478690396acdecfa54c2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
81 schema:name Image Interpretation, Computer-Assisted
82 rdf:type schema:DefinedTerm
83 N4461e9aa4b104a87992a234a82008c88 schema:name Springer Nature - SN SciGraph project
84 rdf:type schema:Organization
85 N5b041a48df294920be0f3003076eec5b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Radiosurgery
87 rdf:type schema:DefinedTerm
88 N6d03b71054c04119a8dc09d27f11bda2 rdf:first sg:person.015574702021.09
89 rdf:rest N375cbd17cabd4a8bb238d355add79ec2
90 N6f33fd561e0d4d38a20e93c1bf4f37a8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Radiotherapy Dosage
92 rdf:type schema:DefinedTerm
93 N7d4e73a37ee14b0a91a89b66a735f59f schema:issueNumber 1
94 rdf:type schema:PublicationIssue
95 N8a189f5f6a4342a4869e1f09d5e2c41f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Imaging, Three-Dimensional
97 rdf:type schema:DefinedTerm
98 N8f6b78c3a1354f0a86441d0a3c24ff5b schema:name doi
99 schema:value 10.1186/s13014-018-1181-0
100 rdf:type schema:PropertyValue
101 N995f531dc6484fe4ade6221878356210 schema:name readcube_id
102 schema:value 1f90b9e5bf03c9f9a877db25904f9c1ebb149f2f7dff3bf139fefdda3dbc73f7
103 rdf:type schema:PropertyValue
104 Ncb8855dbab8945e2b10eaca7a93541bc rdf:first sg:person.0706127602.78
105 rdf:rest N6d03b71054c04119a8dc09d27f11bda2
106 Nd93b1b9bad494821bce77515a7fd6424 schema:name pubmed_id
107 schema:value 30526626
108 rdf:type schema:PropertyValue
109 Nda314701cab549e4b00f2cb38e16f20a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Radiotherapy Planning, Computer-Assisted
111 rdf:type schema:DefinedTerm
112 Ne761c4453a154f768820ecb71c7b0393 schema:name dimensions_id
113 schema:value pub.1110465212
114 rdf:type schema:PropertyValue
115 Nee8eee85f9c644a88181e194427c8c7d schema:volumeNumber 13
116 rdf:type schema:PublicationVolume
117 Nf18a906ae56d4c1db270413dc092d48c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Electrons
119 rdf:type schema:DefinedTerm
120 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
121 schema:name Physical Sciences
122 rdf:type schema:DefinedTerm
123 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
124 schema:name Other Physical Sciences
125 rdf:type schema:DefinedTerm
126 sg:journal.1036451 schema:issn 1748-717X
127 schema:name Radiation Oncology
128 rdf:type schema:Periodical
129 sg:person.01122377024.56 schema:affiliation https://www.grid.ac/institutes/grid.469673.9
130 schema:familyName Pascau
131 schema:givenName Javier
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01122377024.56
133 rdf:type schema:Person
134 sg:person.013514362552.15 schema:affiliation https://www.grid.ac/institutes/grid.411730.0
135 schema:familyName Calvo
136 schema:givenName Felipe A.
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013514362552.15
138 rdf:type schema:Person
139 sg:person.015574702021.09 schema:affiliation https://www.grid.ac/institutes/grid.410526.4
140 schema:familyName Sesé-Lucio
141 schema:givenName Begoña
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015574702021.09
143 rdf:type schema:Person
144 sg:person.016417126340.98 schema:affiliation https://www.grid.ac/institutes/grid.410526.4
145 schema:familyName Vaquero
146 schema:givenName Juan J.
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016417126340.98
148 rdf:type schema:Person
149 sg:person.0706127602.78 schema:affiliation https://www.grid.ac/institutes/grid.410526.4
150 schema:familyName García-Vázquez
151 schema:givenName Verónica
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0706127602.78
153 rdf:type schema:Person
154 sg:person.07426371137.85 schema:affiliation https://www.grid.ac/institutes/grid.467824.b
155 schema:familyName Desco
156 schema:givenName Manuel
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07426371137.85
158 rdf:type schema:Person
159 sg:pub.10.1007/978-1-61779-015-7_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005662109
160 https://doi.org/10.1007/978-1-61779-015-7_3
161 rdf:type schema:CreativeWork
162 sg:pub.10.1007/978-1-61779-015-7_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000576606
163 https://doi.org/10.1007/978-1-61779-015-7_6
164 rdf:type schema:CreativeWork
165 sg:pub.10.1007/s00066-014-0689-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1019275368
166 https://doi.org/10.1007/s00066-014-0689-y
167 rdf:type schema:CreativeWork
168 sg:pub.10.1007/s10549-017-4321-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085861213
169 https://doi.org/10.1007/s10549-017-4321-6
170 rdf:type schema:CreativeWork
171 sg:pub.10.1186/s13014-016-0754-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1083812363
172 https://doi.org/10.1186/s13014-016-0754-z
173 rdf:type schema:CreativeWork
174 sg:pub.10.1186/s13014-017-0764-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083403214
175 https://doi.org/10.1186/s13014-017-0764-5
176 rdf:type schema:CreativeWork
177 sg:pub.10.1245/s10434-008-0172-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1019846518
178 https://doi.org/10.1245/s10434-008-0172-z
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1002/rcs.1446 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049332591
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1002/rcs.1788 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016221286
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/j.critrevonc.2005.11.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013628403
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1016/j.ejmp.2015.05.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047860338
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1016/j.ejmp.2017.11.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092868313
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1016/j.ijrobp.2011.12.063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038618171
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1016/j.media.2016.06.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040307430
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1016/j.mri.2012.05.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003426949
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1016/j.radonc.2003.09.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008752342
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1016/j.zemedi.2016.07.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006585099
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1053/ejso.2001.1161 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036418080
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1088/0031-9155/58/24/8769 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059030084
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1088/0031-9155/59/23/7159 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059030564
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1088/0031-9155/60/1/375 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059030775
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1109/cad-cg.2005.86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094988889
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1109/tbme.2012.2215033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061528956
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1109/tbme.2014.2308299 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061529518
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1109/tpami.1987.4767965 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061742339
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1118/1.4749968 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037314784
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1118/1.4829515 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032389950
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1259/bjr.20160193 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064566038
221 rdf:type schema:CreativeWork
222 https://doi.org/10.3390/jimaging1010180 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049269659
223 rdf:type schema:CreativeWork
224 https://doi.org/10.3390/s90907021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002558350
225 rdf:type schema:CreativeWork
226 https://www.grid.ac/institutes/grid.410526.4 schema:alternateName Hospital General Universitario Gregorio Marañón
227 schema:name Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid, Spain
228 Instituto de Investigación Sanitaria Gregorio Marañón. Calle Doctor Esquerdo, 46, 28007, Madrid, Spain
229 rdf:type schema:Organization
230 https://www.grid.ac/institutes/grid.411730.0 schema:alternateName Clinica Universidad de Navarra
231 schema:name Clínica Universidad de Navarra, Madrid, Spain
232 Departamento de Oncología, Hospital General Universitario Gregorio Marañón, Madrid, Spain
233 Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
234 Instituto de Investigación Sanitaria Gregorio Marañón. Calle Doctor Esquerdo, 46, 28007, Madrid, Spain
235 rdf:type schema:Organization
236 https://www.grid.ac/institutes/grid.467824.b schema:alternateName Spanish National Centre for Cardiovascular Research
237 schema:name Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
238 Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
239 Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid, Spain
240 Instituto de Investigación Sanitaria Gregorio Marañón. Calle Doctor Esquerdo, 46, 28007, Madrid, Spain
241 rdf:type schema:Organization
242 https://www.grid.ac/institutes/grid.469673.9 schema:alternateName Centro de Investigación Biomédica en Red de Salud Mental
243 schema:name Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
244 Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid, Spain
245 Instituto de Investigación Sanitaria Gregorio Marañón. Calle Doctor Esquerdo, 46, 28007, Madrid, Spain
246 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...