Ontology type: schema:ScholarlyArticle Open Access: True
2018-12
AUTHORSVerónica García-Vázquez, Begoña Sesé-Lucio, Felipe A. Calvo, Juan J. Vaquero, Manuel Desco, Javier Pascau
ABSTRACTBACKGROUND: Dose calculations in intraoperative electron radiation therapy (IOERT) rely on the conventional assumption of water-equivalent tissues at the applicator end, which defines a flat irradiation surface. However, the shape of the irradiation surface modifies the dose distribution. Our study explores, for the first time, the use of surface scanning methods for three-dimensional dose calculation of IOERT. METHODS: Two different three-dimensional scanning technologies were evaluated in a simulated IOERT scenario: a tracked conoscopic holography sensor (ConoProbe) and a structured-light three-dimensional scanner (Artec). Dose distributions obtained from computed tomography studies of the surgical field (gold standard) were compared with those calculated under the conventional assumption or from pseudo-computed tomography studies based on surfaces. RESULTS: In the simulated IOERT scenario, the conventional assumption led to an average gamma pass rate of 39.9% for dose values greater than 10% (two configurations, with and without blood in the surgical field). Results improved when considering surfaces in the dose calculation (88.5% for ConoProbe and 92.9% for Artec). CONCLUSIONS: More accurate three-dimensional dose distributions were obtained when considering surfaces in the dose calculation of the simulated surgical field. The structured-light three-dimensional scanner provided the best results in terms of dose distributions. The findings obtained in this specific experimental setup warrant further research on surface scanning in the IOERT context owing to the clinical interest of improving the documentation of the actual IOERT scenario. More... »
PAGES243
http://scigraph.springernature.com/pub.10.1186/s13014-018-1181-0
DOIhttp://dx.doi.org/10.1186/s13014-018-1181-0
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1110465212
PUBMEDhttps://www.ncbi.nlm.nih.gov/pubmed/30526626
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Other Physical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Sciences",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Electrons",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Humans",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Image Interpretation, Computer-Assisted",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Imaging, Three-Dimensional",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Radiosurgery",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Radiotherapy Dosage",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Radiotherapy Planning, Computer-Assisted",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Hospital General Universitario Gregorio Mara\u00f1\u00f3n",
"id": "https://www.grid.ac/institutes/grid.410526.4",
"name": [
"Instituto de Investigaci\u00f3n Sanitaria Gregorio Mara\u00f1\u00f3n. Calle Doctor Esquerdo, 46, 28007, Madrid, Spain"
],
"type": "Organization"
},
"familyName": "Garc\u00eda-V\u00e1zquez",
"givenName": "Ver\u00f3nica",
"id": "sg:person.0706127602.78",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0706127602.78"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Hospital General Universitario Gregorio Mara\u00f1\u00f3n",
"id": "https://www.grid.ac/institutes/grid.410526.4",
"name": [
"Instituto de Investigaci\u00f3n Sanitaria Gregorio Mara\u00f1\u00f3n. Calle Doctor Esquerdo, 46, 28007, Madrid, Spain"
],
"type": "Organization"
},
"familyName": "Ses\u00e9-Lucio",
"givenName": "Bego\u00f1a",
"id": "sg:person.015574702021.09",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015574702021.09"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Clinica Universidad de Navarra",
"id": "https://www.grid.ac/institutes/grid.411730.0",
"name": [
"Instituto de Investigaci\u00f3n Sanitaria Gregorio Mara\u00f1\u00f3n. Calle Doctor Esquerdo, 46, 28007, Madrid, Spain",
"Departamento de Oncolog\u00eda, Hospital General Universitario Gregorio Mara\u00f1\u00f3n, Madrid, Spain",
"Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain",
"Cl\u00ednica Universidad de Navarra, Madrid, Spain"
],
"type": "Organization"
},
"familyName": "Calvo",
"givenName": "Felipe A.",
"id": "sg:person.013514362552.15",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013514362552.15"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Hospital General Universitario Gregorio Mara\u00f1\u00f3n",
"id": "https://www.grid.ac/institutes/grid.410526.4",
"name": [
"Departamento de Bioingenier\u00eda e Ingenier\u00eda Aeroespacial, Universidad Carlos III de Madrid, Madrid, Spain",
"Instituto de Investigaci\u00f3n Sanitaria Gregorio Mara\u00f1\u00f3n. Calle Doctor Esquerdo, 46, 28007, Madrid, Spain"
],
"type": "Organization"
},
"familyName": "Vaquero",
"givenName": "Juan J.",
"id": "sg:person.016417126340.98",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016417126340.98"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Spanish National Centre for Cardiovascular Research",
"id": "https://www.grid.ac/institutes/grid.467824.b",
"name": [
"Departamento de Bioingenier\u00eda e Ingenier\u00eda Aeroespacial, Universidad Carlos III de Madrid, Madrid, Spain",
"Instituto de Investigaci\u00f3n Sanitaria Gregorio Mara\u00f1\u00f3n. Calle Doctor Esquerdo, 46, 28007, Madrid, Spain",
"Centro de Investigaci\u00f3n Biom\u00e9dica en Red de Salud Mental (CIBERSAM), Madrid, Spain",
"Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain"
],
"type": "Organization"
},
"familyName": "Desco",
"givenName": "Manuel",
"id": "sg:person.07426371137.85",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07426371137.85"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Centro de Investigaci\u00f3n Biom\u00e9dica en Red de Salud Mental",
"id": "https://www.grid.ac/institutes/grid.469673.9",
"name": [
"Departamento de Bioingenier\u00eda e Ingenier\u00eda Aeroespacial, Universidad Carlos III de Madrid, Madrid, Spain",
"Instituto de Investigaci\u00f3n Sanitaria Gregorio Mara\u00f1\u00f3n. Calle Doctor Esquerdo, 46, 28007, Madrid, Spain",
"Centro de Investigaci\u00f3n Biom\u00e9dica en Red de Salud Mental (CIBERSAM), Madrid, Spain"
],
"type": "Organization"
},
"familyName": "Pascau",
"givenName": "Javier",
"id": "sg:person.01122377024.56",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01122377024.56"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/978-1-61779-015-7_6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1000576606",
"https://doi.org/10.1007/978-1-61779-015-7_6"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.3390/s90907021",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1002558350"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.mri.2012.05.001",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1003426949"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-61779-015-7_3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005662109",
"https://doi.org/10.1007/978-1-61779-015-7_3"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-61779-015-7_3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005662109",
"https://doi.org/10.1007/978-1-61779-015-7_3"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.zemedi.2016.07.002",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1006585099"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.radonc.2003.09.001",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1008752342"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.critrevonc.2005.11.004",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1013628403"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/rcs.1788",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1016221286"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00066-014-0689-y",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1019275368",
"https://doi.org/10.1007/s00066-014-0689-y"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1245/s10434-008-0172-z",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1019846518",
"https://doi.org/10.1245/s10434-008-0172-z"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1118/1.4829515",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1032389950"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1053/ejso.2001.1161",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1036418080"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1118/1.4749968",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1037314784"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.ijrobp.2011.12.063",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1038618171"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.media.2016.06.011",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1040307430"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.ejmp.2015.05.013",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1047860338"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.3390/jimaging1010180",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1049269659"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/rcs.1446",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1049332591"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1088/0031-9155/58/24/8769",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1059030084"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1088/0031-9155/59/23/7159",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1059030564"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1088/0031-9155/60/1/375",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1059030775"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/tbme.2012.2215033",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061528956"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/tbme.2014.2308299",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061529518"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/tpami.1987.4767965",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061742339"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1259/bjr.20160193",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1064566038"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/s13014-017-0764-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1083403214",
"https://doi.org/10.1186/s13014-017-0764-5"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/s13014-017-0764-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1083403214",
"https://doi.org/10.1186/s13014-017-0764-5"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/s13014-016-0754-z",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1083812363",
"https://doi.org/10.1186/s13014-016-0754-z"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/s13014-016-0754-z",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1083812363",
"https://doi.org/10.1186/s13014-016-0754-z"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10549-017-4321-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1085861213",
"https://doi.org/10.1007/s10549-017-4321-6"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10549-017-4321-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1085861213",
"https://doi.org/10.1007/s10549-017-4321-6"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.ejmp.2017.11.004",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1092868313"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/cad-cg.2005.86",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1094988889"
],
"type": "CreativeWork"
}
],
"datePublished": "2018-12",
"datePublishedReg": "2018-12-01",
"description": "BACKGROUND: Dose calculations in intraoperative electron radiation therapy (IOERT) rely on the conventional assumption of water-equivalent tissues at the applicator end, which defines a flat irradiation surface. However, the shape of the irradiation surface modifies the dose distribution. Our study explores, for the first time, the use of surface scanning methods for three-dimensional dose calculation of IOERT.\nMETHODS: Two different three-dimensional scanning technologies were evaluated in a simulated IOERT scenario: a tracked conoscopic holography sensor (ConoProbe) and a structured-light three-dimensional scanner (Artec). Dose distributions obtained from computed tomography studies of the surgical field (gold standard) were compared with those calculated under the conventional assumption or from pseudo-computed tomography studies based on surfaces.\nRESULTS: In the simulated IOERT scenario, the conventional assumption led to an average gamma pass rate of 39.9% for dose values greater than 10% (two configurations, with and without blood in the surgical field). Results improved when considering surfaces in the dose calculation (88.5% for ConoProbe and 92.9% for Artec).\nCONCLUSIONS: More accurate three-dimensional dose distributions were obtained when considering surfaces in the dose calculation of the simulated surgical field. The structured-light three-dimensional scanner provided the best results in terms of dose distributions. The findings obtained in this specific experimental setup warrant further research on surface scanning in the IOERT context owing to the clinical interest of improving the documentation of the actual IOERT scenario.",
"genre": "research_article",
"id": "sg:pub.10.1186/s13014-018-1181-0",
"inLanguage": [
"en"
],
"isAccessibleForFree": true,
"isPartOf": [
{
"id": "sg:journal.1036451",
"issn": [
"1748-717X"
],
"name": "Radiation Oncology",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "13"
}
],
"name": "Surface scanning for 3D dose calculation in intraoperative electron radiation therapy",
"pagination": "243",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"1f90b9e5bf03c9f9a877db25904f9c1ebb149f2f7dff3bf139fefdda3dbc73f7"
]
},
{
"name": "pubmed_id",
"type": "PropertyValue",
"value": [
"30526626"
]
},
{
"name": "nlm_unique_id",
"type": "PropertyValue",
"value": [
"101265111"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1186/s13014-018-1181-0"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1110465212"
]
}
],
"sameAs": [
"https://doi.org/10.1186/s13014-018-1181-0",
"https://app.dimensions.ai/details/publication/pub.1110465212"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-11T08:30",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000309_0000000309/records_106262_00000000.jsonl",
"type": "ScholarlyArticle",
"url": "https://link.springer.com/10.1186%2Fs13014-018-1181-0"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13014-018-1181-0'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13014-018-1181-0'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13014-018-1181-0'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13014-018-1181-0'
This table displays all metadata directly associated to this object as RDF triples.
246 TRIPLES
21 PREDICATES
66 URIs
28 LITERALS
16 BLANK NODES