Auto- versus human-driven plan in mediastinal Hodgkin lymphoma radiation treatment View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Stefania Clemente, Caterina Oliviero, Giuseppe Palma, Vittoria D’Avino, Raffaele Liuzzi, Manuel Conson, Roberto Pacelli, Laura Cella

ABSTRACT

BACKGROUND: Technological advances in Hodgkin lymphoma (HL) radiation therapy (RT) by high conformal treatments potentially increase control over organs-at-risk (OARs) dose distribution. However, plan optimization remains a time-consuming task with great operator dependent variability. Purpose of the present study was to devise a fully automated pipeline based on the Pinnacle3 Auto-Planning (AP) algorithm for treating female supradiaphragmatic HL (SHL) patients. METHODS: CT-scans of 10 female patients with SHL were considered. A "butterfly" (BF) volumetric modulated arc therapy was optimized using SmartArc module integrated in Pinnacle3 v. 9.10 using Collapsed Cone Convolution Superposition algorithm (30 Gy in 20 fractions). Human-driven (Manual-BF) and AP-BF optimization plans were generated. For AP, an optimization objective list of Planning Target Volume (PTV)/OAR clinical goals was first implemented, starting from a subset of 5 patients used for algorithm training. This list was then tested on the remaining 5 patients (validation set). In addition to the BF technique, the AP engine was applied to a 2 coplanar disjointed arc (AP-ARC) technique using the same objective list. For plan evaluation, dose-volume-histograms of PTVs and OARs were extracted; homogeneity and conformity indices (HI and CI), OARs dose-volume metrics and odds for different toxicity endpoints were computed. Non-parametric Friedman and Dunn tests were used to identify significant differences between groups. RESULTS: A single AP objective list for SHL was obtained. Compared to the manual plan, both AP-plans offer comparable CIs while AP-ARC also achieved comparable HIs. All plans fulfilled the clinical dose criteria set for OARs: both AP solutions performed at least as good as Manual-BF plan. In particular, AP-ARC outperformed AP-BF in terms of heart sparing involving a lower risk of coronary events and radiation-induced lung fibrosis. Hands-on planning time decreased by a factor of 10 using AP on average. CONCLUSIONS: Despite the high interpatient PTV (size and position) variability, it was possible to set a standard SHL AP optimization list with a high level of generalizability. Using the implemented list, the AP module was able to limit OAR doses, producing clinically acceptable plans with stable quality without additional user input. Overall, the AP engine associated to the arc technique represents the best option for SHL. More... »

PAGES

202

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13014-018-1146-3

DOI

http://dx.doi.org/10.1186/s13014-018-1146-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107727701

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30340604


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Federico II University Hospital", 
          "id": "https://www.grid.ac/institutes/grid.411293.c", 
          "name": [
            "Azienda Ospedaliera Universitaria Federico II, Naples, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Clemente", 
        "givenName": "Stefania", 
        "id": "sg:person.01076402300.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01076402300.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Federico II University Hospital", 
          "id": "https://www.grid.ac/institutes/grid.411293.c", 
          "name": [
            "Azienda Ospedaliera Universitaria Federico II, Naples, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Oliviero", 
        "givenName": "Caterina", 
        "id": "sg:person.01137703274.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01137703274.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Research Council", 
          "id": "https://www.grid.ac/institutes/grid.5326.2", 
          "name": [
            "National Research Council, Institute of Biostructures and Bioimaging, Naples, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Palma", 
        "givenName": "Giuseppe", 
        "id": "sg:person.012733674720.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012733674720.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Research Council", 
          "id": "https://www.grid.ac/institutes/grid.5326.2", 
          "name": [
            "National Research Council, Institute of Biostructures and Bioimaging, Naples, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "D\u2019Avino", 
        "givenName": "Vittoria", 
        "id": "sg:person.01323447052.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01323447052.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Research Council", 
          "id": "https://www.grid.ac/institutes/grid.5326.2", 
          "name": [
            "National Research Council, Institute of Biostructures and Bioimaging, Naples, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liuzzi", 
        "givenName": "Raffaele", 
        "id": "sg:person.01362116517.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01362116517.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Naples Federico II", 
          "id": "https://www.grid.ac/institutes/grid.4691.a", 
          "name": [
            "Department of Advanced Biomedical Sciences, Federico II University School of Medicine, Naples, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Conson", 
        "givenName": "Manuel", 
        "id": "sg:person.01170116132.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01170116132.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Naples Federico II", 
          "id": "https://www.grid.ac/institutes/grid.4691.a", 
          "name": [
            "Department of Advanced Biomedical Sciences, Federico II University School of Medicine, Naples, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pacelli", 
        "givenName": "Roberto", 
        "id": "sg:person.01341406466.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01341406466.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Research Council", 
          "id": "https://www.grid.ac/institutes/grid.5326.2", 
          "name": [
            "National Research Council, Institute of Biostructures and Bioimaging, Naples, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cella", 
        "givenName": "Laura", 
        "id": "sg:person.0737441132.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0737441132.07"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.ijrobp.2013.05.049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003815963"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1748-717x-7-186", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005644063", 
          "https://doi.org/10.1186/1748-717x-7-186"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3109/0284186x.2015.1016624", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007948824"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijrobp.2015.02.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007981744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijrobp.2013.05.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013233306"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.radonc.2011.08.040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015280611"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijrobp.2013.12.046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015631701"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijrobp.2016.04.033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017658028"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1120/jacmp.v17i3.6167", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024066923"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.prro.2011.11.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027882066"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.radonc.2015.07.043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029583464"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.radonc.2014.11.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032959894"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0111753", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033607054"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.4842515", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034127525"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijrobp.2009.10.058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034143534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1748-717x-7-224", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035356094", 
          "https://doi.org/10.1186/1748-717x-7-224"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1748-717x-9-94", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038473640", 
          "https://doi.org/10.1186/1748-717x-9-94"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2015.63.4444", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039943680"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1182/asheducation-2011.1.323", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040168133"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1120/jacmp.v16i3.5410", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046376818"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.radonc.2015.07.051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048508390"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1748-717x-8-22", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048714966", 
          "https://doi.org/10.1186/1748-717x-8-22"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2010.32.8427", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048810230"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijrobp.2015.01.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052514741"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3109/0284186x.2013.850739", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053136311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1078582617", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00066-017-1121-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084018427", 
          "https://doi.org/10.1007/s00066-017-1121-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00066-017-1121-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084018427", 
          "https://doi.org/10.1007/s00066-017-1121-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00066-017-1187-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090943636", 
          "https://doi.org/10.1007/s00066-017-1187-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00066-017-1187-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090943636", 
          "https://doi.org/10.1007/s00066-017-1187-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.radonc.2017.07.033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091343461"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijrobp.2018.03.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101525918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijrobp.2018.03.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101525918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.radonc.2018.05.028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104424494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.radonc.2018.05.028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104424494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.radonc.2018.05.028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104424494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13014-018-1066-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105301670", 
          "https://doi.org/10.1186/s13014-018-1066-2"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "BACKGROUND: Technological advances in Hodgkin lymphoma (HL) radiation therapy (RT) by high conformal treatments potentially increase control over organs-at-risk (OARs) dose distribution. However, plan optimization remains a time-consuming task with great operator dependent variability. Purpose of the present study was to devise a fully automated pipeline based on the Pinnacle3 Auto-Planning (AP) algorithm for treating female supradiaphragmatic HL (SHL) patients.\nMETHODS: CT-scans of 10 female patients with SHL were considered. A \"butterfly\" (BF) volumetric modulated arc therapy was optimized using SmartArc module integrated in Pinnacle3 v. 9.10 using Collapsed Cone Convolution Superposition algorithm (30\u00a0Gy in 20 fractions). Human-driven (Manual-BF) and AP-BF optimization plans were generated. For AP, an optimization objective list of Planning Target Volume (PTV)/OAR clinical goals was first implemented, starting from a subset of 5 patients used for algorithm training. This list was then tested on the remaining 5 patients (validation set). In addition to the BF technique, the AP engine was applied to a 2 coplanar disjointed arc (AP-ARC) technique using the same objective list. For plan evaluation, dose-volume-histograms of PTVs and OARs were extracted; homogeneity and conformity indices (HI and CI), OARs dose-volume metrics and odds for different toxicity endpoints were computed. Non-parametric Friedman and Dunn tests were used to identify significant differences between groups.\nRESULTS: A single AP objective list for SHL was obtained. Compared to the manual plan, both AP-plans offer comparable CIs while AP-ARC also achieved comparable HIs. All plans fulfilled the clinical dose criteria set for OARs: both AP solutions performed at least as good as Manual-BF plan. In particular, AP-ARC outperformed AP-BF in terms of heart sparing involving a lower risk of coronary events and radiation-induced lung fibrosis. Hands-on planning time decreased by a factor of 10 using AP on average.\nCONCLUSIONS: Despite the high interpatient PTV (size and position) variability, it was possible to set a standard SHL AP optimization list with a high level of generalizability. Using the implemented list, the AP module was able to limit OAR doses, producing clinically acceptable plans with stable quality without additional user input. Overall, the AP engine associated to the arc technique represents the best option for SHL.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s13014-018-1146-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1036451", 
        "issn": [
          "1748-717X"
        ], 
        "name": "Radiation Oncology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "13"
      }
    ], 
    "name": "Auto- versus human-driven plan in mediastinal Hodgkin lymphoma radiation treatment", 
    "pagination": "202", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "91afb3b8fca60ae45c10c0abcc8122731f068c9cd6015a81723a604c267ca83f"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30340604"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101265111"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13014-018-1146-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107727701"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13014-018-1146-3", 
      "https://app.dimensions.ai/details/publication/pub.1107727701"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T18:29", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000572.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs13014-018-1146-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13014-018-1146-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13014-018-1146-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13014-018-1146-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13014-018-1146-3'


 

This table displays all metadata directly associated to this object as RDF triples.

225 TRIPLES      21 PREDICATES      61 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13014-018-1146-3 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nf85c223581054f6e915d8957a9850e5d
4 schema:citation sg:pub.10.1007/s00066-017-1121-1
5 sg:pub.10.1007/s00066-017-1187-9
6 sg:pub.10.1186/1748-717x-7-186
7 sg:pub.10.1186/1748-717x-7-224
8 sg:pub.10.1186/1748-717x-8-22
9 sg:pub.10.1186/1748-717x-9-94
10 sg:pub.10.1186/s13014-018-1066-2
11 https://app.dimensions.ai/details/publication/pub.1078582617
12 https://doi.org/10.1016/j.ijrobp.2009.10.058
13 https://doi.org/10.1016/j.ijrobp.2013.05.005
14 https://doi.org/10.1016/j.ijrobp.2013.05.049
15 https://doi.org/10.1016/j.ijrobp.2013.12.046
16 https://doi.org/10.1016/j.ijrobp.2015.01.013
17 https://doi.org/10.1016/j.ijrobp.2015.02.010
18 https://doi.org/10.1016/j.ijrobp.2016.04.033
19 https://doi.org/10.1016/j.ijrobp.2018.03.003
20 https://doi.org/10.1016/j.prro.2011.11.012
21 https://doi.org/10.1016/j.radonc.2011.08.040
22 https://doi.org/10.1016/j.radonc.2014.11.009
23 https://doi.org/10.1016/j.radonc.2015.07.043
24 https://doi.org/10.1016/j.radonc.2015.07.051
25 https://doi.org/10.1016/j.radonc.2017.07.033
26 https://doi.org/10.1016/j.radonc.2018.05.028
27 https://doi.org/10.1118/1.4842515
28 https://doi.org/10.1120/jacmp.v16i3.5410
29 https://doi.org/10.1120/jacmp.v17i3.6167
30 https://doi.org/10.1182/asheducation-2011.1.323
31 https://doi.org/10.1200/jco.2010.32.8427
32 https://doi.org/10.1200/jco.2015.63.4444
33 https://doi.org/10.1371/journal.pone.0111753
34 https://doi.org/10.3109/0284186x.2013.850739
35 https://doi.org/10.3109/0284186x.2015.1016624
36 schema:datePublished 2018-12
37 schema:datePublishedReg 2018-12-01
38 schema:description BACKGROUND: Technological advances in Hodgkin lymphoma (HL) radiation therapy (RT) by high conformal treatments potentially increase control over organs-at-risk (OARs) dose distribution. However, plan optimization remains a time-consuming task with great operator dependent variability. Purpose of the present study was to devise a fully automated pipeline based on the Pinnacle3 Auto-Planning (AP) algorithm for treating female supradiaphragmatic HL (SHL) patients. METHODS: CT-scans of 10 female patients with SHL were considered. A "butterfly" (BF) volumetric modulated arc therapy was optimized using SmartArc module integrated in Pinnacle3 v. 9.10 using Collapsed Cone Convolution Superposition algorithm (30 Gy in 20 fractions). Human-driven (Manual-BF) and AP-BF optimization plans were generated. For AP, an optimization objective list of Planning Target Volume (PTV)/OAR clinical goals was first implemented, starting from a subset of 5 patients used for algorithm training. This list was then tested on the remaining 5 patients (validation set). In addition to the BF technique, the AP engine was applied to a 2 coplanar disjointed arc (AP-ARC) technique using the same objective list. For plan evaluation, dose-volume-histograms of PTVs and OARs were extracted; homogeneity and conformity indices (HI and CI), OARs dose-volume metrics and odds for different toxicity endpoints were computed. Non-parametric Friedman and Dunn tests were used to identify significant differences between groups. RESULTS: A single AP objective list for SHL was obtained. Compared to the manual plan, both AP-plans offer comparable CIs while AP-ARC also achieved comparable HIs. All plans fulfilled the clinical dose criteria set for OARs: both AP solutions performed at least as good as Manual-BF plan. In particular, AP-ARC outperformed AP-BF in terms of heart sparing involving a lower risk of coronary events and radiation-induced lung fibrosis. Hands-on planning time decreased by a factor of 10 using AP on average. CONCLUSIONS: Despite the high interpatient PTV (size and position) variability, it was possible to set a standard SHL AP optimization list with a high level of generalizability. Using the implemented list, the AP module was able to limit OAR doses, producing clinically acceptable plans with stable quality without additional user input. Overall, the AP engine associated to the arc technique represents the best option for SHL.
39 schema:genre research_article
40 schema:inLanguage en
41 schema:isAccessibleForFree true
42 schema:isPartOf N75613bacd9dc496983954682f0027bb1
43 Nc9a3f6b08bcc49cd85899cc3e3f79418
44 sg:journal.1036451
45 schema:name Auto- versus human-driven plan in mediastinal Hodgkin lymphoma radiation treatment
46 schema:pagination 202
47 schema:productId N03c52422966e434eb2a9bbc34d4da746
48 N3b55c402860244c4b293a7faafabafb7
49 Nc3404a1e8c0d407c9affe80e9edccc89
50 Nc4716a7c64b54d5883e2bcb44911d34e
51 Nd69f20dfd7b34d418b0a2812fe08ddd9
52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107727701
53 https://doi.org/10.1186/s13014-018-1146-3
54 schema:sdDatePublished 2019-04-10T18:29
55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
56 schema:sdPublisher Nf1ee0c894bfd4469b68197b2e54faca8
57 schema:url https://link.springer.com/10.1186%2Fs13014-018-1146-3
58 sgo:license sg:explorer/license/
59 sgo:sdDataset articles
60 rdf:type schema:ScholarlyArticle
61 N001c18a0b3f440348177ef80bd098aab rdf:first sg:person.01362116517.48
62 rdf:rest N08010e22c8d44e85a74b9f7581e739cd
63 N02a03138d2f345cdb4d4c7829e0b7c0a rdf:first sg:person.01323447052.44
64 rdf:rest N001c18a0b3f440348177ef80bd098aab
65 N03c52422966e434eb2a9bbc34d4da746 schema:name doi
66 schema:value 10.1186/s13014-018-1146-3
67 rdf:type schema:PropertyValue
68 N08010e22c8d44e85a74b9f7581e739cd rdf:first sg:person.01170116132.92
69 rdf:rest Na3cfb35a369d4d49bd3755ec2c3c4ea1
70 N1e49a8fba1ce435f92038f89d33e29c0 rdf:first sg:person.0737441132.07
71 rdf:rest rdf:nil
72 N3b55c402860244c4b293a7faafabafb7 schema:name nlm_unique_id
73 schema:value 101265111
74 rdf:type schema:PropertyValue
75 N72d31bc62ddb47229f5fb15634e3b204 rdf:first sg:person.012733674720.32
76 rdf:rest N02a03138d2f345cdb4d4c7829e0b7c0a
77 N75613bacd9dc496983954682f0027bb1 schema:volumeNumber 13
78 rdf:type schema:PublicationVolume
79 Na3cfb35a369d4d49bd3755ec2c3c4ea1 rdf:first sg:person.01341406466.66
80 rdf:rest N1e49a8fba1ce435f92038f89d33e29c0
81 Nc3404a1e8c0d407c9affe80e9edccc89 schema:name readcube_id
82 schema:value 91afb3b8fca60ae45c10c0abcc8122731f068c9cd6015a81723a604c267ca83f
83 rdf:type schema:PropertyValue
84 Nc4716a7c64b54d5883e2bcb44911d34e schema:name pubmed_id
85 schema:value 30340604
86 rdf:type schema:PropertyValue
87 Nc9a3f6b08bcc49cd85899cc3e3f79418 schema:issueNumber 1
88 rdf:type schema:PublicationIssue
89 Nd638e84768e44cd0bf5a59f1fdfa9549 rdf:first sg:person.01137703274.13
90 rdf:rest N72d31bc62ddb47229f5fb15634e3b204
91 Nd69f20dfd7b34d418b0a2812fe08ddd9 schema:name dimensions_id
92 schema:value pub.1107727701
93 rdf:type schema:PropertyValue
94 Nf1ee0c894bfd4469b68197b2e54faca8 schema:name Springer Nature - SN SciGraph project
95 rdf:type schema:Organization
96 Nf85c223581054f6e915d8957a9850e5d rdf:first sg:person.01076402300.42
97 rdf:rest Nd638e84768e44cd0bf5a59f1fdfa9549
98 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
99 schema:name Information and Computing Sciences
100 rdf:type schema:DefinedTerm
101 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
102 schema:name Artificial Intelligence and Image Processing
103 rdf:type schema:DefinedTerm
104 sg:journal.1036451 schema:issn 1748-717X
105 schema:name Radiation Oncology
106 rdf:type schema:Periodical
107 sg:person.01076402300.42 schema:affiliation https://www.grid.ac/institutes/grid.411293.c
108 schema:familyName Clemente
109 schema:givenName Stefania
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01076402300.42
111 rdf:type schema:Person
112 sg:person.01137703274.13 schema:affiliation https://www.grid.ac/institutes/grid.411293.c
113 schema:familyName Oliviero
114 schema:givenName Caterina
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01137703274.13
116 rdf:type schema:Person
117 sg:person.01170116132.92 schema:affiliation https://www.grid.ac/institutes/grid.4691.a
118 schema:familyName Conson
119 schema:givenName Manuel
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01170116132.92
121 rdf:type schema:Person
122 sg:person.012733674720.32 schema:affiliation https://www.grid.ac/institutes/grid.5326.2
123 schema:familyName Palma
124 schema:givenName Giuseppe
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012733674720.32
126 rdf:type schema:Person
127 sg:person.01323447052.44 schema:affiliation https://www.grid.ac/institutes/grid.5326.2
128 schema:familyName D’Avino
129 schema:givenName Vittoria
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01323447052.44
131 rdf:type schema:Person
132 sg:person.01341406466.66 schema:affiliation https://www.grid.ac/institutes/grid.4691.a
133 schema:familyName Pacelli
134 schema:givenName Roberto
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01341406466.66
136 rdf:type schema:Person
137 sg:person.01362116517.48 schema:affiliation https://www.grid.ac/institutes/grid.5326.2
138 schema:familyName Liuzzi
139 schema:givenName Raffaele
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01362116517.48
141 rdf:type schema:Person
142 sg:person.0737441132.07 schema:affiliation https://www.grid.ac/institutes/grid.5326.2
143 schema:familyName Cella
144 schema:givenName Laura
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0737441132.07
146 rdf:type schema:Person
147 sg:pub.10.1007/s00066-017-1121-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084018427
148 https://doi.org/10.1007/s00066-017-1121-1
149 rdf:type schema:CreativeWork
150 sg:pub.10.1007/s00066-017-1187-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090943636
151 https://doi.org/10.1007/s00066-017-1187-9
152 rdf:type schema:CreativeWork
153 sg:pub.10.1186/1748-717x-7-186 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005644063
154 https://doi.org/10.1186/1748-717x-7-186
155 rdf:type schema:CreativeWork
156 sg:pub.10.1186/1748-717x-7-224 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035356094
157 https://doi.org/10.1186/1748-717x-7-224
158 rdf:type schema:CreativeWork
159 sg:pub.10.1186/1748-717x-8-22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048714966
160 https://doi.org/10.1186/1748-717x-8-22
161 rdf:type schema:CreativeWork
162 sg:pub.10.1186/1748-717x-9-94 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038473640
163 https://doi.org/10.1186/1748-717x-9-94
164 rdf:type schema:CreativeWork
165 sg:pub.10.1186/s13014-018-1066-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105301670
166 https://doi.org/10.1186/s13014-018-1066-2
167 rdf:type schema:CreativeWork
168 https://app.dimensions.ai/details/publication/pub.1078582617 schema:CreativeWork
169 https://doi.org/10.1016/j.ijrobp.2009.10.058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034143534
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/j.ijrobp.2013.05.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013233306
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/j.ijrobp.2013.05.049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003815963
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/j.ijrobp.2013.12.046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015631701
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/j.ijrobp.2015.01.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052514741
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/j.ijrobp.2015.02.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007981744
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/j.ijrobp.2016.04.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017658028
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/j.ijrobp.2018.03.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101525918
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/j.prro.2011.11.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027882066
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/j.radonc.2011.08.040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015280611
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1016/j.radonc.2014.11.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032959894
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1016/j.radonc.2015.07.043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029583464
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1016/j.radonc.2015.07.051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048508390
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1016/j.radonc.2017.07.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091343461
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1016/j.radonc.2018.05.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104424494
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1118/1.4842515 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034127525
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1120/jacmp.v16i3.5410 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046376818
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1120/jacmp.v17i3.6167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024066923
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1182/asheducation-2011.1.323 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040168133
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1200/jco.2010.32.8427 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048810230
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1200/jco.2015.63.4444 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039943680
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1371/journal.pone.0111753 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033607054
212 rdf:type schema:CreativeWork
213 https://doi.org/10.3109/0284186x.2013.850739 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053136311
214 rdf:type schema:CreativeWork
215 https://doi.org/10.3109/0284186x.2015.1016624 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007948824
216 rdf:type schema:CreativeWork
217 https://www.grid.ac/institutes/grid.411293.c schema:alternateName Federico II University Hospital
218 schema:name Azienda Ospedaliera Universitaria Federico II, Naples, Italy
219 rdf:type schema:Organization
220 https://www.grid.ac/institutes/grid.4691.a schema:alternateName University of Naples Federico II
221 schema:name Department of Advanced Biomedical Sciences, Federico II University School of Medicine, Naples, Italy
222 rdf:type schema:Organization
223 https://www.grid.ac/institutes/grid.5326.2 schema:alternateName National Research Council
224 schema:name National Research Council, Institute of Biostructures and Bioimaging, Naples, Italy
225 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...