Novel 4D-MRI of tumor infiltrating vasculature: characterizing tumor and vessel volume motion for selective boost volume definition in pancreatic radiotherapy View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Wensha Yang, Zhaoyang Fan, Zixin Deng, Jianing Pang, Xiaoming Bi, Benedick A Fraass, Howard Sandler, Debiao Li, Richard Tuli

ABSTRACT

BACKGROUND: Pancreatic ductal adenocarcinoma has dismal prognosis. Most patients receive radiation therapy (RT), which is complicated by respiration induced organ motion in upper abdomen. The purpose of this study is to report our early clinical experience in a novel self-gated k-space sorted four-dimensional magnetic resonance imaging (4D-MRI) with slab-selective (SS) excitation to highlight tumor infiltrating blood vessels for pancreatic RT. METHODS: Ten consecutive patients with borderline resectable or locally advanced pancreatic cancer were recruited to the study. Non-contrast 4D-MRI with and without slab-selective excitation and 4D-CT with delay contrast were performed on all patients. Vessel-tissue CNR were calculated for aorta and critical vessels (superior mesenteric artery or superior mesenteric vein) encompassed by tumor. Respiratory motion trajectories for tumor, as well as involved vessels were analyzed on SS-4D-MRI. Intra-class cross correlation (ICC) between tumor volume and involved vessels were calculated. RESULTS: Among all 4D imaging modalities evaluated, SS-4D-MRI sampling trajectory results in images with highest vessel-tissue CNR comparing to non-slab-selective 4D-MRI and 4D-CT for all patients studied. Average (±standard deviation) CNR for involved vessels are 13.1 ± 8.4 and 3.2 ± 2.7 for SS-4D-MRI and 4D-CT, respectively. The ICC factors comparing tumor and involved vessels motion trajectories are 0.93 ± 0.10, 0.65 ± 0.31 and 0.77 ± 0.23 for superior-inferior, anterior-posterior and medial-lateral directions respectively. CONCLUSIONS: A novel 4D-MRI sequence based on 3D-radial sampling and slab-selective excitation has been assessed for pancreatic cancer patients. The non-contrast 4D-MRI images showed significantly better contrast to noise ratio for the vessels that limit tumor resectability compared to 4D-CT with delayed contrast. The sequence has great potential in accurately defining both the tumor and boost volume margins for pancreas RT with simultaneous integrated boost. More... »

PAGES

191

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13014-018-1139-2

DOI

http://dx.doi.org/10.1186/s13014-018-1139-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107340058

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30285889


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Cedars-Sinai Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.50956.3f", 
          "name": [
            "Department of Radiation Oncology, Cedars Sinai Medical Center, 8700 Beverly Blvd., 90048, Los Angeles, CA, USA", 
            "Department of Biomedical Sciences, Biomedical Imaging Research Institute, Cedars Sinai Medical Center, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Wensha", 
        "id": "sg:person.0706325051.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0706325051.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cedars-Sinai Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.50956.3f", 
          "name": [
            "Department of Biomedical Sciences, Biomedical Imaging Research Institute, Cedars Sinai Medical Center, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fan", 
        "givenName": "Zhaoyang", 
        "id": "sg:person.01136172260.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136172260.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California Los Angeles", 
          "id": "https://www.grid.ac/institutes/grid.19006.3e", 
          "name": [
            "Department of Biomedical Sciences, Biomedical Imaging Research Institute, Cedars Sinai Medical Center, Los Angeles, CA, USA", 
            "Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Deng", 
        "givenName": "Zixin", 
        "id": "sg:person.01116105253.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01116105253.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Siemens Healthcare (United States)", 
          "id": "https://www.grid.ac/institutes/grid.415886.6", 
          "name": [
            "Siemens Healthineers, Los Angeles, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pang", 
        "givenName": "Jianing", 
        "id": "sg:person.01067525465.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01067525465.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Siemens Healthcare (United States)", 
          "id": "https://www.grid.ac/institutes/grid.415886.6", 
          "name": [
            "Siemens Healthineers, Los Angeles, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bi", 
        "givenName": "Xiaoming", 
        "id": "sg:person.01066244563.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066244563.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cedars-Sinai Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.50956.3f", 
          "name": [
            "Department of Radiation Oncology, Cedars Sinai Medical Center, 8700 Beverly Blvd., 90048, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fraass", 
        "givenName": "Benedick A", 
        "id": "sg:person.0746171413.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0746171413.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cedars-Sinai Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.50956.3f", 
          "name": [
            "Department of Radiation Oncology, Cedars Sinai Medical Center, 8700 Beverly Blvd., 90048, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sandler", 
        "givenName": "Howard", 
        "id": "sg:person.01146571437.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01146571437.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cedars-Sinai Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.50956.3f", 
          "name": [
            "Department of Biomedical Sciences, Biomedical Imaging Research Institute, Cedars Sinai Medical Center, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Debiao", 
        "id": "sg:person.01152021525.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152021525.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cedars-Sinai Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.50956.3f", 
          "name": [
            "Department of Radiation Oncology, Cedars Sinai Medical Center, 8700 Beverly Blvd., 90048, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tuli", 
        "givenName": "Richard", 
        "id": "sg:person.01075072512.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01075072512.69"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0140-6736(12)60815-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004307527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0000000000000298", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010026947"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0000000000000298", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010026947"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2174/138945012800564103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010102899"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.4929552", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015056640"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijrobp.2013.04.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025839987"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.25753", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027695644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijrobp.2011.12.073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029801937"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijrobp.2014.10.050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031194768"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1120/jacmp.v16i2.4949", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037769616"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijrobp.2014.06.066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039970497"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijrobp.2012.09.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044274901"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijrobp.2013.02.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044926217"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijrobp.2015.08.028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047549246"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cncr.27636", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051952201"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijrobp.2013.09.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052007653"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11912-014-0388-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053585406", 
          "https://doi.org/10.1007/s11912-014-0388-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/080716542", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062854487"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mp.12139", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074250044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/107327480801500404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077729998"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/107327480801500404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077729998"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00280-017-3288-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084513326", 
          "https://doi.org/10.1007/s00280-017-3288-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00280-017-3288-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084513326", 
          "https://doi.org/10.1007/s00280-017-3288-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/acm2.12194", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092089199"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "BACKGROUND: Pancreatic ductal adenocarcinoma has dismal prognosis. Most patients receive radiation therapy (RT), which is complicated by respiration induced organ motion in upper abdomen. The purpose of this study is to report our early clinical experience in a novel self-gated k-space sorted four-dimensional magnetic resonance imaging (4D-MRI) with slab-selective (SS) excitation to highlight tumor infiltrating blood vessels for pancreatic RT.\nMETHODS: Ten consecutive patients with borderline resectable or locally advanced pancreatic cancer were recruited to the study. Non-contrast 4D-MRI with and without slab-selective excitation and 4D-CT with delay contrast were performed on all patients. Vessel-tissue CNR were calculated for aorta and critical vessels (superior mesenteric artery or superior mesenteric vein) encompassed by tumor. Respiratory motion trajectories for tumor, as well as involved vessels were analyzed on SS-4D-MRI. Intra-class cross correlation (ICC) between tumor volume and involved vessels were calculated.\nRESULTS: Among all 4D imaging modalities evaluated, SS-4D-MRI sampling trajectory results in images with highest vessel-tissue CNR comparing to non-slab-selective 4D-MRI and 4D-CT for all patients studied. Average (\u00b1standard deviation) CNR for involved vessels are 13.1\u2009\u00b1\u20098.4 and 3.2\u2009\u00b1\u20092.7 for SS-4D-MRI and 4D-CT, respectively. The ICC factors comparing tumor and involved vessels motion trajectories are 0.93\u2009\u00b1\u20090.10, 0.65\u2009\u00b1\u20090.31 and 0.77\u2009\u00b1\u20090.23 for superior-inferior, anterior-posterior and medial-lateral directions respectively.\nCONCLUSIONS: A novel 4D-MRI sequence based on 3D-radial sampling and slab-selective excitation has been assessed for pancreatic cancer patients. The non-contrast 4D-MRI images showed significantly better contrast to noise ratio for the vessels that limit tumor resectability compared to 4D-CT with delayed contrast. The sequence has great potential in accurately defining both the tumor and boost volume margins for pancreas RT with simultaneous integrated boost.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s13014-018-1139-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2569981", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1036451", 
        "issn": [
          "1748-717X"
        ], 
        "name": "Radiation Oncology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "13"
      }
    ], 
    "name": "Novel 4D-MRI of tumor infiltrating vasculature: characterizing tumor and vessel volume motion for selective boost volume definition in pancreatic radiotherapy", 
    "pagination": "191", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5de14f0db8fa42ca929cece7bc3b860f5cbe0ce78ef4dfafe86b11c8dbc24615"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30285889"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101265111"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13014-018-1139-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107340058"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13014-018-1139-2", 
      "https://app.dimensions.ai/details/publication/pub.1107340058"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T13:26", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000559.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs13014-018-1139-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13014-018-1139-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13014-018-1139-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13014-018-1139-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13014-018-1139-2'


 

This table displays all metadata directly associated to this object as RDF triples.

199 TRIPLES      21 PREDICATES      50 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13014-018-1139-2 schema:about anzsrc-for:11
2 anzsrc-for:1112
3 schema:author N3774ff4ef5bf4eb0ad4a3be1f262dd57
4 schema:citation sg:pub.10.1007/s00280-017-3288-7
5 sg:pub.10.1007/s11912-014-0388-y
6 https://doi.org/10.1002/acm2.12194
7 https://doi.org/10.1002/cncr.27636
8 https://doi.org/10.1002/mp.12139
9 https://doi.org/10.1002/mrm.25753
10 https://doi.org/10.1016/j.ijrobp.2011.12.073
11 https://doi.org/10.1016/j.ijrobp.2012.09.014
12 https://doi.org/10.1016/j.ijrobp.2013.02.022
13 https://doi.org/10.1016/j.ijrobp.2013.04.012
14 https://doi.org/10.1016/j.ijrobp.2013.09.012
15 https://doi.org/10.1016/j.ijrobp.2014.06.066
16 https://doi.org/10.1016/j.ijrobp.2014.10.050
17 https://doi.org/10.1016/j.ijrobp.2015.08.028
18 https://doi.org/10.1016/s0140-6736(12)60815-0
19 https://doi.org/10.1097/rli.0000000000000298
20 https://doi.org/10.1118/1.4929552
21 https://doi.org/10.1120/jacmp.v16i2.4949
22 https://doi.org/10.1137/080716542
23 https://doi.org/10.1177/107327480801500404
24 https://doi.org/10.2174/138945012800564103
25 schema:datePublished 2018-12
26 schema:datePublishedReg 2018-12-01
27 schema:description BACKGROUND: Pancreatic ductal adenocarcinoma has dismal prognosis. Most patients receive radiation therapy (RT), which is complicated by respiration induced organ motion in upper abdomen. The purpose of this study is to report our early clinical experience in a novel self-gated k-space sorted four-dimensional magnetic resonance imaging (4D-MRI) with slab-selective (SS) excitation to highlight tumor infiltrating blood vessels for pancreatic RT. METHODS: Ten consecutive patients with borderline resectable or locally advanced pancreatic cancer were recruited to the study. Non-contrast 4D-MRI with and without slab-selective excitation and 4D-CT with delay contrast were performed on all patients. Vessel-tissue CNR were calculated for aorta and critical vessels (superior mesenteric artery or superior mesenteric vein) encompassed by tumor. Respiratory motion trajectories for tumor, as well as involved vessels were analyzed on SS-4D-MRI. Intra-class cross correlation (ICC) between tumor volume and involved vessels were calculated. RESULTS: Among all 4D imaging modalities evaluated, SS-4D-MRI sampling trajectory results in images with highest vessel-tissue CNR comparing to non-slab-selective 4D-MRI and 4D-CT for all patients studied. Average (±standard deviation) CNR for involved vessels are 13.1 ± 8.4 and 3.2 ± 2.7 for SS-4D-MRI and 4D-CT, respectively. The ICC factors comparing tumor and involved vessels motion trajectories are 0.93 ± 0.10, 0.65 ± 0.31 and 0.77 ± 0.23 for superior-inferior, anterior-posterior and medial-lateral directions respectively. CONCLUSIONS: A novel 4D-MRI sequence based on 3D-radial sampling and slab-selective excitation has been assessed for pancreatic cancer patients. The non-contrast 4D-MRI images showed significantly better contrast to noise ratio for the vessels that limit tumor resectability compared to 4D-CT with delayed contrast. The sequence has great potential in accurately defining both the tumor and boost volume margins for pancreas RT with simultaneous integrated boost.
28 schema:genre research_article
29 schema:inLanguage en
30 schema:isAccessibleForFree true
31 schema:isPartOf N8f3400ce8e4e40c0a7a9889e0327a237
32 Nde00dcc6cd984ebe8a069cd991c399d2
33 sg:journal.1036451
34 schema:name Novel 4D-MRI of tumor infiltrating vasculature: characterizing tumor and vessel volume motion for selective boost volume definition in pancreatic radiotherapy
35 schema:pagination 191
36 schema:productId N0f4c7d6215974f6dafa7813d43e21aca
37 N5e4734c8266f4a45bcec132e5f1fbc70
38 Nc2d7c39c85bc4ad198c2f4cb2dd89445
39 Nc86d70e6d9b74e04a75e0d0364ee3d85
40 Nd36062ffb9a145c4a128353a98dec311
41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107340058
42 https://doi.org/10.1186/s13014-018-1139-2
43 schema:sdDatePublished 2019-04-10T13:26
44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
45 schema:sdPublisher N9e75215c668448009618504651d00239
46 schema:url https://link.springer.com/10.1186%2Fs13014-018-1139-2
47 sgo:license sg:explorer/license/
48 sgo:sdDataset articles
49 rdf:type schema:ScholarlyArticle
50 N0f4c7d6215974f6dafa7813d43e21aca schema:name doi
51 schema:value 10.1186/s13014-018-1139-2
52 rdf:type schema:PropertyValue
53 N13f86bdea78f4690b30e03b4a97c9754 rdf:first sg:person.01152021525.33
54 rdf:rest N707094b5aaa44180964b19f74dde8f6e
55 N1d2f80d62abe48ba9f558a447d75bcc6 rdf:first sg:person.01116105253.25
56 rdf:rest Nd419bd5b03a5446fbe7ecfcf0e45e986
57 N2d66a9eb691a404fb1bbca3dbe0239b3 rdf:first sg:person.01146571437.22
58 rdf:rest N13f86bdea78f4690b30e03b4a97c9754
59 N3774ff4ef5bf4eb0ad4a3be1f262dd57 rdf:first sg:person.0706325051.06
60 rdf:rest Nbf421b5d41014faabc6b9b0202dfacde
61 N58b15adf70d249739e55642e44c79ce8 rdf:first sg:person.01066244563.44
62 rdf:rest N8a19dcccd4c94dba9dfdb4e545a65039
63 N5e4734c8266f4a45bcec132e5f1fbc70 schema:name dimensions_id
64 schema:value pub.1107340058
65 rdf:type schema:PropertyValue
66 N707094b5aaa44180964b19f74dde8f6e rdf:first sg:person.01075072512.69
67 rdf:rest rdf:nil
68 N8a19dcccd4c94dba9dfdb4e545a65039 rdf:first sg:person.0746171413.59
69 rdf:rest N2d66a9eb691a404fb1bbca3dbe0239b3
70 N8f3400ce8e4e40c0a7a9889e0327a237 schema:issueNumber 1
71 rdf:type schema:PublicationIssue
72 N9e75215c668448009618504651d00239 schema:name Springer Nature - SN SciGraph project
73 rdf:type schema:Organization
74 Nbf421b5d41014faabc6b9b0202dfacde rdf:first sg:person.01136172260.58
75 rdf:rest N1d2f80d62abe48ba9f558a447d75bcc6
76 Nc2d7c39c85bc4ad198c2f4cb2dd89445 schema:name pubmed_id
77 schema:value 30285889
78 rdf:type schema:PropertyValue
79 Nc86d70e6d9b74e04a75e0d0364ee3d85 schema:name nlm_unique_id
80 schema:value 101265111
81 rdf:type schema:PropertyValue
82 Nd36062ffb9a145c4a128353a98dec311 schema:name readcube_id
83 schema:value 5de14f0db8fa42ca929cece7bc3b860f5cbe0ce78ef4dfafe86b11c8dbc24615
84 rdf:type schema:PropertyValue
85 Nd419bd5b03a5446fbe7ecfcf0e45e986 rdf:first sg:person.01067525465.28
86 rdf:rest N58b15adf70d249739e55642e44c79ce8
87 Nde00dcc6cd984ebe8a069cd991c399d2 schema:volumeNumber 13
88 rdf:type schema:PublicationVolume
89 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
90 schema:name Medical and Health Sciences
91 rdf:type schema:DefinedTerm
92 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
93 schema:name Oncology and Carcinogenesis
94 rdf:type schema:DefinedTerm
95 sg:grant.2569981 http://pending.schema.org/fundedItem sg:pub.10.1186/s13014-018-1139-2
96 rdf:type schema:MonetaryGrant
97 sg:journal.1036451 schema:issn 1748-717X
98 schema:name Radiation Oncology
99 rdf:type schema:Periodical
100 sg:person.01066244563.44 schema:affiliation https://www.grid.ac/institutes/grid.415886.6
101 schema:familyName Bi
102 schema:givenName Xiaoming
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066244563.44
104 rdf:type schema:Person
105 sg:person.01067525465.28 schema:affiliation https://www.grid.ac/institutes/grid.415886.6
106 schema:familyName Pang
107 schema:givenName Jianing
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01067525465.28
109 rdf:type schema:Person
110 sg:person.01075072512.69 schema:affiliation https://www.grid.ac/institutes/grid.50956.3f
111 schema:familyName Tuli
112 schema:givenName Richard
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01075072512.69
114 rdf:type schema:Person
115 sg:person.01116105253.25 schema:affiliation https://www.grid.ac/institutes/grid.19006.3e
116 schema:familyName Deng
117 schema:givenName Zixin
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01116105253.25
119 rdf:type schema:Person
120 sg:person.01136172260.58 schema:affiliation https://www.grid.ac/institutes/grid.50956.3f
121 schema:familyName Fan
122 schema:givenName Zhaoyang
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136172260.58
124 rdf:type schema:Person
125 sg:person.01146571437.22 schema:affiliation https://www.grid.ac/institutes/grid.50956.3f
126 schema:familyName Sandler
127 schema:givenName Howard
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01146571437.22
129 rdf:type schema:Person
130 sg:person.01152021525.33 schema:affiliation https://www.grid.ac/institutes/grid.50956.3f
131 schema:familyName Li
132 schema:givenName Debiao
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152021525.33
134 rdf:type schema:Person
135 sg:person.0706325051.06 schema:affiliation https://www.grid.ac/institutes/grid.50956.3f
136 schema:familyName Yang
137 schema:givenName Wensha
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0706325051.06
139 rdf:type schema:Person
140 sg:person.0746171413.59 schema:affiliation https://www.grid.ac/institutes/grid.50956.3f
141 schema:familyName Fraass
142 schema:givenName Benedick A
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0746171413.59
144 rdf:type schema:Person
145 sg:pub.10.1007/s00280-017-3288-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084513326
146 https://doi.org/10.1007/s00280-017-3288-7
147 rdf:type schema:CreativeWork
148 sg:pub.10.1007/s11912-014-0388-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1053585406
149 https://doi.org/10.1007/s11912-014-0388-y
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1002/acm2.12194 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092089199
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1002/cncr.27636 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051952201
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1002/mp.12139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074250044
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1002/mrm.25753 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027695644
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.ijrobp.2011.12.073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029801937
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/j.ijrobp.2012.09.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044274901
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/j.ijrobp.2013.02.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044926217
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/j.ijrobp.2013.04.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025839987
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/j.ijrobp.2013.09.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052007653
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/j.ijrobp.2014.06.066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039970497
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/j.ijrobp.2014.10.050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031194768
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/j.ijrobp.2015.08.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047549246
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/s0140-6736(12)60815-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004307527
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1097/rli.0000000000000298 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010026947
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1118/1.4929552 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015056640
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1120/jacmp.v16i2.4949 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037769616
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1137/080716542 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062854487
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1177/107327480801500404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077729998
186 rdf:type schema:CreativeWork
187 https://doi.org/10.2174/138945012800564103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010102899
188 rdf:type schema:CreativeWork
189 https://www.grid.ac/institutes/grid.19006.3e schema:alternateName University of California Los Angeles
190 schema:name Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
191 Department of Biomedical Sciences, Biomedical Imaging Research Institute, Cedars Sinai Medical Center, Los Angeles, CA, USA
192 rdf:type schema:Organization
193 https://www.grid.ac/institutes/grid.415886.6 schema:alternateName Siemens Healthcare (United States)
194 schema:name Siemens Healthineers, Los Angeles, USA
195 rdf:type schema:Organization
196 https://www.grid.ac/institutes/grid.50956.3f schema:alternateName Cedars-Sinai Medical Center
197 schema:name Department of Biomedical Sciences, Biomedical Imaging Research Institute, Cedars Sinai Medical Center, Los Angeles, CA, USA
198 Department of Radiation Oncology, Cedars Sinai Medical Center, 8700 Beverly Blvd., 90048, Los Angeles, CA, USA
199 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...