Novel 4D-MRI of tumor infiltrating vasculature: characterizing tumor and vessel volume motion for selective boost volume definition in pancreatic radiotherapy View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-10-01

AUTHORS

Wensha Yang, Zhaoyang Fan, Zixin Deng, Jianing Pang, Xiaoming Bi, Benedick A Fraass, Howard Sandler, Debiao Li, Richard Tuli

ABSTRACT

BackgroundPancreatic ductal adenocarcinoma has dismal prognosis. Most patients receive radiation therapy (RT), which is complicated by respiration induced organ motion in upper abdomen. The purpose of this study is to report our early clinical experience in a novel self-gated k-space sorted four-dimensional magnetic resonance imaging (4D-MRI) with slab-selective (SS) excitation to highlight tumor infiltrating blood vessels for pancreatic RT.MethodsTen consecutive patients with borderline resectable or locally advanced pancreatic cancer were recruited to the study. Non-contrast 4D-MRI with and without slab-selective excitation and 4D-CT with delay contrast were performed on all patients. Vessel-tissue CNR were calculated for aorta and critical vessels (superior mesenteric artery or superior mesenteric vein) encompassed by tumor. Respiratory motion trajectories for tumor, as well as involved vessels were analyzed on SS-4D-MRI. Intra-class cross correlation (ICC) between tumor volume and involved vessels were calculated.ResultsAmong all 4D imaging modalities evaluated, SS-4D-MRI sampling trajectory results in images with highest vessel-tissue CNR comparing to non-slab-selective 4D-MRI and 4D-CT for all patients studied. Average (±standard deviation) CNR for involved vessels are 13.1 ± 8.4 and 3.2 ± 2.7 for SS-4D-MRI and 4D-CT, respectively. The ICC factors comparing tumor and involved vessels motion trajectories are 0.93 ± 0.10, 0.65 ± 0.31 and 0.77 ± 0.23 for superior-inferior, anterior-posterior and medial-lateral directions respectively.ConclusionsA novel 4D-MRI sequence based on 3D-radial sampling and slab-selective excitation has been assessed for pancreatic cancer patients. The non-contrast 4D-MRI images showed significantly better contrast to noise ratio for the vessels that limit tumor resectability compared to 4D-CT with delayed contrast. The sequence has great potential in accurately defining both the tumor and boost volume margins for pancreas RT with simultaneous integrated boost. More... »

PAGES

191

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13014-018-1139-2

DOI

http://dx.doi.org/10.1186/s13014-018-1139-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107340058

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30285889


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adolescent", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Four-Dimensional Computed Tomography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Movement", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neovascularization, Pathologic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pancreatic Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Respiration", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Respiratory-Gated Imaging Techniques", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tumor Burden", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Biomedical Sciences, Biomedical Imaging Research Institute, Cedars Sinai Medical Center, Los Angeles, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.50956.3f", 
          "name": [
            "Department of Radiation Oncology, Cedars Sinai Medical Center, 8700 Beverly Blvd., 90048, Los Angeles, CA, USA", 
            "Department of Biomedical Sciences, Biomedical Imaging Research Institute, Cedars Sinai Medical Center, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Wensha", 
        "id": "sg:person.0706325051.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0706325051.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Biomedical Sciences, Biomedical Imaging Research Institute, Cedars Sinai Medical Center, Los Angeles, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.50956.3f", 
          "name": [
            "Department of Biomedical Sciences, Biomedical Imaging Research Institute, Cedars Sinai Medical Center, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fan", 
        "givenName": "Zhaoyang", 
        "id": "sg:person.01136172260.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136172260.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.266100.3", 
          "name": [
            "Department of Biomedical Sciences, Biomedical Imaging Research Institute, Cedars Sinai Medical Center, Los Angeles, CA, USA", 
            "Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Deng", 
        "givenName": "Zixin", 
        "id": "sg:person.01116105253.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01116105253.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Siemens Healthineers, Los Angeles, USA", 
          "id": "http://www.grid.ac/institutes/grid.415886.6", 
          "name": [
            "Siemens Healthineers, Los Angeles, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pang", 
        "givenName": "Jianing", 
        "id": "sg:person.01067525465.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01067525465.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Siemens Healthineers, Los Angeles, USA", 
          "id": "http://www.grid.ac/institutes/grid.415886.6", 
          "name": [
            "Siemens Healthineers, Los Angeles, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bi", 
        "givenName": "Xiaoming", 
        "id": "sg:person.01066244563.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066244563.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiation Oncology, Cedars Sinai Medical Center, 8700 Beverly Blvd., 90048, Los Angeles, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.50956.3f", 
          "name": [
            "Department of Radiation Oncology, Cedars Sinai Medical Center, 8700 Beverly Blvd., 90048, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fraass", 
        "givenName": "Benedick A", 
        "id": "sg:person.0746171413.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0746171413.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiation Oncology, Cedars Sinai Medical Center, 8700 Beverly Blvd., 90048, Los Angeles, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.50956.3f", 
          "name": [
            "Department of Radiation Oncology, Cedars Sinai Medical Center, 8700 Beverly Blvd., 90048, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sandler", 
        "givenName": "Howard", 
        "id": "sg:person.01146571437.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01146571437.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Biomedical Sciences, Biomedical Imaging Research Institute, Cedars Sinai Medical Center, Los Angeles, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.50956.3f", 
          "name": [
            "Department of Biomedical Sciences, Biomedical Imaging Research Institute, Cedars Sinai Medical Center, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Debiao", 
        "id": "sg:person.01152021525.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152021525.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiation Oncology, Cedars Sinai Medical Center, 8700 Beverly Blvd., 90048, Los Angeles, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.50956.3f", 
          "name": [
            "Department of Radiation Oncology, Cedars Sinai Medical Center, 8700 Beverly Blvd., 90048, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tuli", 
        "givenName": "Richard", 
        "id": "sg:person.01075072512.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01075072512.69"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11912-014-0388-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053585406", 
          "https://doi.org/10.1007/s11912-014-0388-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00280-017-3288-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084513326", 
          "https://doi.org/10.1007/s00280-017-3288-7"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-10-01", 
    "datePublishedReg": "2018-10-01", 
    "description": "BackgroundPancreatic ductal adenocarcinoma has dismal prognosis. Most patients receive radiation therapy (RT), which is complicated by respiration induced organ motion in upper abdomen. The purpose of this study is to report our early clinical experience in a novel self-gated k-space sorted four-dimensional magnetic resonance imaging (4D-MRI) with slab-selective (SS) excitation to highlight tumor infiltrating blood vessels for pancreatic RT.MethodsTen consecutive patients with borderline resectable or locally advanced pancreatic cancer were recruited to the study. Non-contrast 4D-MRI with and without slab-selective excitation and 4D-CT with delay contrast were performed on all patients. Vessel-tissue CNR were calculated for aorta and critical vessels (superior mesenteric artery or superior mesenteric vein) encompassed by tumor. Respiratory motion trajectories for tumor, as well as involved vessels were analyzed on SS-4D-MRI. Intra-class cross correlation (ICC) between tumor volume and involved vessels were calculated.ResultsAmong all 4D imaging modalities evaluated, SS-4D-MRI sampling trajectory results in images with highest vessel-tissue CNR comparing to non-slab-selective 4D-MRI and 4D-CT for all patients studied. Average (\u00b1standard deviation) CNR for involved vessels are 13.1\u2009\u00b1\u20098.4 and 3.2\u2009\u00b1\u20092.7 for SS-4D-MRI and 4D-CT, respectively. The ICC factors comparing tumor and involved vessels motion trajectories are 0.93\u2009\u00b1\u20090.10, 0.65\u2009\u00b1\u20090.31 and 0.77\u2009\u00b1\u20090.23 for superior-inferior, anterior-posterior and medial-lateral directions respectively.ConclusionsA novel 4D-MRI sequence based on 3D-radial sampling and slab-selective excitation has been assessed for pancreatic cancer patients. The non-contrast 4D-MRI images showed significantly better contrast to noise ratio for the vessels that limit tumor resectability compared to 4D-CT with delayed contrast. The sequence has great potential in accurately defining both the tumor and boost volume margins for pancreas RT with simultaneous integrated boost.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s13014-018-1139-2", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2569981", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1036451", 
        "issn": [
          "1748-717X"
        ], 
        "name": "Radiation Oncology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "13"
      }
    ], 
    "keywords": [
      "radiation therapy", 
      "involved vessel", 
      "BackgroundPancreatic ductal adenocarcinoma", 
      "advanced pancreatic cancer", 
      "MethodsTen consecutive patients", 
      "pancreatic cancer patients", 
      "simultaneous integrated boost", 
      "early clinical experience", 
      "magnetic resonance imaging", 
      "medial-lateral direction", 
      "four-dimensional magnetic resonance imaging", 
      "most patients", 
      "consecutive patients", 
      "tumor resectability", 
      "dismal prognosis", 
      "cancer patients", 
      "upper abdomen", 
      "pancreatic cancer", 
      "ductal adenocarcinoma", 
      "integrated boost", 
      "tumor volume", 
      "clinical experience", 
      "patients", 
      "resonance imaging", 
      "tumors", 
      "critical vessels", 
      "volume margins", 
      "volume definition", 
      "blood vessels", 
      "pancreatic radiotherapy", 
      "MRI", 
      "organ motion", 
      "vessels", 
      "resectability", 
      "adenocarcinoma", 
      "prognosis", 
      "ResultsAmong", 
      "radiotherapy", 
      "therapy", 
      "abdomen", 
      "cancer", 
      "vasculature", 
      "CNR", 
      "modalities", 
      "contrast", 
      "study", 
      "borderline", 
      "imaging", 
      "volume motion", 
      "factors", 
      "average CNR", 
      "correlation", 
      "good contrast", 
      "volume", 
      "experience", 
      "boost", 
      "respiration", 
      "purpose", 
      "margin", 
      "sampling", 
      "ratio", 
      "potential", 
      "results", 
      "definition", 
      "sequence", 
      "great potential", 
      "slab-selective excitation", 
      "images", 
      "motion", 
      "trajectories", 
      "motion trajectories", 
      "direction", 
      "excitation", 
      "cross correlation", 
      "k-space", 
      "trajectory results"
    ], 
    "name": "Novel 4D-MRI of tumor infiltrating vasculature: characterizing tumor and vessel volume motion for selective boost volume definition in pancreatic radiotherapy", 
    "pagination": "191", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107340058"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13014-018-1139-2"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30285889"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13014-018-1139-2", 
      "https://app.dimensions.ai/details/publication/pub.1107340058"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:44", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_787.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s13014-018-1139-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13014-018-1139-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13014-018-1139-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13014-018-1139-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13014-018-1139-2'


 

This table displays all metadata directly associated to this object as RDF triples.

267 TRIPLES      21 PREDICATES      117 URIs      107 LITERALS      21 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13014-018-1139-2 schema:about N0d6aa129bdd640d69ad73503e0d588e3
2 N0faa0698538043f48b11eef2e5b05f54
3 N136d3e3e2a3845ccab98c1496557bcfa
4 N2a6dcaf471a94a28967e204287160e21
5 N2cf3eb7c2fba444681ecc1b72a912370
6 N357ad2ba23734cbe815afdece6c7626b
7 N40500e885eb5482dabf950e3bc82a1e4
8 N456dd726b6124c569065ec68973a0004
9 N5fd8f310cee046e697ff50f2d2c7d652
10 N6b22197bb6044a6a803cfd688a6211dd
11 N793e74dae66b4403b5cb37d0ddda81d6
12 N87cae39ed881409ebaca50f0f3e7904c
13 Nd0908e2ebb5e43be8879a4eca4794e7c
14 Nf6e60edfffbe4116839435ff2a44c8b1
15 anzsrc-for:11
16 anzsrc-for:1112
17 schema:author N9566c780c3a248fb8f30d69576085c99
18 schema:citation sg:pub.10.1007/s00280-017-3288-7
19 sg:pub.10.1007/s11912-014-0388-y
20 schema:datePublished 2018-10-01
21 schema:datePublishedReg 2018-10-01
22 schema:description BackgroundPancreatic ductal adenocarcinoma has dismal prognosis. Most patients receive radiation therapy (RT), which is complicated by respiration induced organ motion in upper abdomen. The purpose of this study is to report our early clinical experience in a novel self-gated k-space sorted four-dimensional magnetic resonance imaging (4D-MRI) with slab-selective (SS) excitation to highlight tumor infiltrating blood vessels for pancreatic RT.MethodsTen consecutive patients with borderline resectable or locally advanced pancreatic cancer were recruited to the study. Non-contrast 4D-MRI with and without slab-selective excitation and 4D-CT with delay contrast were performed on all patients. Vessel-tissue CNR were calculated for aorta and critical vessels (superior mesenteric artery or superior mesenteric vein) encompassed by tumor. Respiratory motion trajectories for tumor, as well as involved vessels were analyzed on SS-4D-MRI. Intra-class cross correlation (ICC) between tumor volume and involved vessels were calculated.ResultsAmong all 4D imaging modalities evaluated, SS-4D-MRI sampling trajectory results in images with highest vessel-tissue CNR comparing to non-slab-selective 4D-MRI and 4D-CT for all patients studied. Average (±standard deviation) CNR for involved vessels are 13.1 ± 8.4 and 3.2 ± 2.7 for SS-4D-MRI and 4D-CT, respectively. The ICC factors comparing tumor and involved vessels motion trajectories are 0.93 ± 0.10, 0.65 ± 0.31 and 0.77 ± 0.23 for superior-inferior, anterior-posterior and medial-lateral directions respectively.ConclusionsA novel 4D-MRI sequence based on 3D-radial sampling and slab-selective excitation has been assessed for pancreatic cancer patients. The non-contrast 4D-MRI images showed significantly better contrast to noise ratio for the vessels that limit tumor resectability compared to 4D-CT with delayed contrast. The sequence has great potential in accurately defining both the tumor and boost volume margins for pancreas RT with simultaneous integrated boost.
23 schema:genre article
24 schema:isAccessibleForFree true
25 schema:isPartOf N2dd647bf75d94e06a46ce9425456c213
26 N976cdd04590e422e812628d398f6f35c
27 sg:journal.1036451
28 schema:keywords BackgroundPancreatic ductal adenocarcinoma
29 CNR
30 MRI
31 MethodsTen consecutive patients
32 ResultsAmong
33 abdomen
34 adenocarcinoma
35 advanced pancreatic cancer
36 average CNR
37 blood vessels
38 boost
39 borderline
40 cancer
41 cancer patients
42 clinical experience
43 consecutive patients
44 contrast
45 correlation
46 critical vessels
47 cross correlation
48 definition
49 direction
50 dismal prognosis
51 ductal adenocarcinoma
52 early clinical experience
53 excitation
54 experience
55 factors
56 four-dimensional magnetic resonance imaging
57 good contrast
58 great potential
59 images
60 imaging
61 integrated boost
62 involved vessel
63 k-space
64 magnetic resonance imaging
65 margin
66 medial-lateral direction
67 modalities
68 most patients
69 motion
70 motion trajectories
71 organ motion
72 pancreatic cancer
73 pancreatic cancer patients
74 pancreatic radiotherapy
75 patients
76 potential
77 prognosis
78 purpose
79 radiation therapy
80 radiotherapy
81 ratio
82 resectability
83 resonance imaging
84 respiration
85 results
86 sampling
87 sequence
88 simultaneous integrated boost
89 slab-selective excitation
90 study
91 therapy
92 trajectories
93 trajectory results
94 tumor resectability
95 tumor volume
96 tumors
97 upper abdomen
98 vasculature
99 vessels
100 volume
101 volume definition
102 volume margins
103 volume motion
104 schema:name Novel 4D-MRI of tumor infiltrating vasculature: characterizing tumor and vessel volume motion for selective boost volume definition in pancreatic radiotherapy
105 schema:pagination 191
106 schema:productId N04a55b10f0af4071bf687a32c21f3082
107 Nb2d2b46877a14b88a0b63ee7b5314284
108 Nff955e67543f4137914437f4c89321c3
109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107340058
110 https://doi.org/10.1186/s13014-018-1139-2
111 schema:sdDatePublished 2022-10-01T06:44
112 schema:sdLicense https://scigraph.springernature.com/explorer/license/
113 schema:sdPublisher N3be9a72899ec46b7927bc9efdc97b33c
114 schema:url https://doi.org/10.1186/s13014-018-1139-2
115 sgo:license sg:explorer/license/
116 sgo:sdDataset articles
117 rdf:type schema:ScholarlyArticle
118 N04a55b10f0af4071bf687a32c21f3082 schema:name doi
119 schema:value 10.1186/s13014-018-1139-2
120 rdf:type schema:PropertyValue
121 N0d6aa129bdd640d69ad73503e0d588e3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Movement
123 rdf:type schema:DefinedTerm
124 N0faa0698538043f48b11eef2e5b05f54 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Male
126 rdf:type schema:DefinedTerm
127 N136d3e3e2a3845ccab98c1496557bcfa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Pancreatic Neoplasms
129 rdf:type schema:DefinedTerm
130 N18090cc8888244c88ec4780a2a11e8c3 rdf:first sg:person.01116105253.25
131 rdf:rest Nb6226b1ce21e418da1a4703c72f4257d
132 N2823c8f03560450ea32d93270072af66 rdf:first sg:person.01075072512.69
133 rdf:rest rdf:nil
134 N2a6dcaf471a94a28967e204287160e21 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Neovascularization, Pathologic
136 rdf:type schema:DefinedTerm
137 N2cf3eb7c2fba444681ecc1b72a912370 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Adolescent
139 rdf:type schema:DefinedTerm
140 N2dd647bf75d94e06a46ce9425456c213 schema:volumeNumber 13
141 rdf:type schema:PublicationVolume
142 N357ad2ba23734cbe815afdece6c7626b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Respiratory-Gated Imaging Techniques
144 rdf:type schema:DefinedTerm
145 N3be9a72899ec46b7927bc9efdc97b33c schema:name Springer Nature - SN SciGraph project
146 rdf:type schema:Organization
147 N40500e885eb5482dabf950e3bc82a1e4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Middle Aged
149 rdf:type schema:DefinedTerm
150 N456dd726b6124c569065ec68973a0004 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Respiration
152 rdf:type schema:DefinedTerm
153 N5fd8f310cee046e697ff50f2d2c7d652 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name Tumor Burden
155 rdf:type schema:DefinedTerm
156 N6b22197bb6044a6a803cfd688a6211dd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
157 schema:name Aged
158 rdf:type schema:DefinedTerm
159 N711e7f4d16ae44c79cca812144e64bb2 rdf:first sg:person.01136172260.58
160 rdf:rest N18090cc8888244c88ec4780a2a11e8c3
161 N793e74dae66b4403b5cb37d0ddda81d6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
162 schema:name Female
163 rdf:type schema:DefinedTerm
164 N87cae39ed881409ebaca50f0f3e7904c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
165 schema:name Adult
166 rdf:type schema:DefinedTerm
167 N9566c780c3a248fb8f30d69576085c99 rdf:first sg:person.0706325051.06
168 rdf:rest N711e7f4d16ae44c79cca812144e64bb2
169 N976cdd04590e422e812628d398f6f35c schema:issueNumber 1
170 rdf:type schema:PublicationIssue
171 Nb2d2b46877a14b88a0b63ee7b5314284 schema:name pubmed_id
172 schema:value 30285889
173 rdf:type schema:PropertyValue
174 Nb6226b1ce21e418da1a4703c72f4257d rdf:first sg:person.01067525465.28
175 rdf:rest Nedc5ea87b449416e81396508f1172cda
176 Nb8f815c221e54912aa24ee0228679cda rdf:first sg:person.01152021525.33
177 rdf:rest N2823c8f03560450ea32d93270072af66
178 Nce81498603684c199c99b8bd41d4fec2 rdf:first sg:person.01146571437.22
179 rdf:rest Nb8f815c221e54912aa24ee0228679cda
180 Nd0908e2ebb5e43be8879a4eca4794e7c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
181 schema:name Humans
182 rdf:type schema:DefinedTerm
183 Nedc5ea87b449416e81396508f1172cda rdf:first sg:person.01066244563.44
184 rdf:rest Nf4ba1a83b0754698a1fba2de84359828
185 Nf4ba1a83b0754698a1fba2de84359828 rdf:first sg:person.0746171413.59
186 rdf:rest Nce81498603684c199c99b8bd41d4fec2
187 Nf6e60edfffbe4116839435ff2a44c8b1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
188 schema:name Four-Dimensional Computed Tomography
189 rdf:type schema:DefinedTerm
190 Nff955e67543f4137914437f4c89321c3 schema:name dimensions_id
191 schema:value pub.1107340058
192 rdf:type schema:PropertyValue
193 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
194 schema:name Medical and Health Sciences
195 rdf:type schema:DefinedTerm
196 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
197 schema:name Oncology and Carcinogenesis
198 rdf:type schema:DefinedTerm
199 sg:grant.2569981 http://pending.schema.org/fundedItem sg:pub.10.1186/s13014-018-1139-2
200 rdf:type schema:MonetaryGrant
201 sg:journal.1036451 schema:issn 1748-717X
202 schema:name Radiation Oncology
203 schema:publisher Springer Nature
204 rdf:type schema:Periodical
205 sg:person.01066244563.44 schema:affiliation grid-institutes:grid.415886.6
206 schema:familyName Bi
207 schema:givenName Xiaoming
208 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066244563.44
209 rdf:type schema:Person
210 sg:person.01067525465.28 schema:affiliation grid-institutes:grid.415886.6
211 schema:familyName Pang
212 schema:givenName Jianing
213 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01067525465.28
214 rdf:type schema:Person
215 sg:person.01075072512.69 schema:affiliation grid-institutes:grid.50956.3f
216 schema:familyName Tuli
217 schema:givenName Richard
218 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01075072512.69
219 rdf:type schema:Person
220 sg:person.01116105253.25 schema:affiliation grid-institutes:grid.266100.3
221 schema:familyName Deng
222 schema:givenName Zixin
223 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01116105253.25
224 rdf:type schema:Person
225 sg:person.01136172260.58 schema:affiliation grid-institutes:grid.50956.3f
226 schema:familyName Fan
227 schema:givenName Zhaoyang
228 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136172260.58
229 rdf:type schema:Person
230 sg:person.01146571437.22 schema:affiliation grid-institutes:grid.50956.3f
231 schema:familyName Sandler
232 schema:givenName Howard
233 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01146571437.22
234 rdf:type schema:Person
235 sg:person.01152021525.33 schema:affiliation grid-institutes:grid.50956.3f
236 schema:familyName Li
237 schema:givenName Debiao
238 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152021525.33
239 rdf:type schema:Person
240 sg:person.0706325051.06 schema:affiliation grid-institutes:grid.50956.3f
241 schema:familyName Yang
242 schema:givenName Wensha
243 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0706325051.06
244 rdf:type schema:Person
245 sg:person.0746171413.59 schema:affiliation grid-institutes:grid.50956.3f
246 schema:familyName Fraass
247 schema:givenName Benedick A
248 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0746171413.59
249 rdf:type schema:Person
250 sg:pub.10.1007/s00280-017-3288-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084513326
251 https://doi.org/10.1007/s00280-017-3288-7
252 rdf:type schema:CreativeWork
253 sg:pub.10.1007/s11912-014-0388-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1053585406
254 https://doi.org/10.1007/s11912-014-0388-y
255 rdf:type schema:CreativeWork
256 grid-institutes:grid.266100.3 schema:alternateName Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
257 schema:name Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
258 Department of Biomedical Sciences, Biomedical Imaging Research Institute, Cedars Sinai Medical Center, Los Angeles, CA, USA
259 rdf:type schema:Organization
260 grid-institutes:grid.415886.6 schema:alternateName Siemens Healthineers, Los Angeles, USA
261 schema:name Siemens Healthineers, Los Angeles, USA
262 rdf:type schema:Organization
263 grid-institutes:grid.50956.3f schema:alternateName Department of Biomedical Sciences, Biomedical Imaging Research Institute, Cedars Sinai Medical Center, Los Angeles, CA, USA
264 Department of Radiation Oncology, Cedars Sinai Medical Center, 8700 Beverly Blvd., 90048, Los Angeles, CA, USA
265 schema:name Department of Biomedical Sciences, Biomedical Imaging Research Institute, Cedars Sinai Medical Center, Los Angeles, CA, USA
266 Department of Radiation Oncology, Cedars Sinai Medical Center, 8700 Beverly Blvd., 90048, Los Angeles, CA, USA
267 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...