Novel 4D-MRI of tumor infiltrating vasculature: characterizing tumor and vessel volume motion for selective boost volume definition in pancreatic radiotherapy View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-10-01

AUTHORS

Wensha Yang, Zhaoyang Fan, Zixin Deng, Jianing Pang, Xiaoming Bi, Benedick A Fraass, Howard Sandler, Debiao Li, Richard Tuli

ABSTRACT

BackgroundPancreatic ductal adenocarcinoma has dismal prognosis. Most patients receive radiation therapy (RT), which is complicated by respiration induced organ motion in upper abdomen. The purpose of this study is to report our early clinical experience in a novel self-gated k-space sorted four-dimensional magnetic resonance imaging (4D-MRI) with slab-selective (SS) excitation to highlight tumor infiltrating blood vessels for pancreatic RT.MethodsTen consecutive patients with borderline resectable or locally advanced pancreatic cancer were recruited to the study. Non-contrast 4D-MRI with and without slab-selective excitation and 4D-CT with delay contrast were performed on all patients. Vessel-tissue CNR were calculated for aorta and critical vessels (superior mesenteric artery or superior mesenteric vein) encompassed by tumor. Respiratory motion trajectories for tumor, as well as involved vessels were analyzed on SS-4D-MRI. Intra-class cross correlation (ICC) between tumor volume and involved vessels were calculated.ResultsAmong all 4D imaging modalities evaluated, SS-4D-MRI sampling trajectory results in images with highest vessel-tissue CNR comparing to non-slab-selective 4D-MRI and 4D-CT for all patients studied. Average (±standard deviation) CNR for involved vessels are 13.1 ± 8.4 and 3.2 ± 2.7 for SS-4D-MRI and 4D-CT, respectively. The ICC factors comparing tumor and involved vessels motion trajectories are 0.93 ± 0.10, 0.65 ± 0.31 and 0.77 ± 0.23 for superior-inferior, anterior-posterior and medial-lateral directions respectively.ConclusionsA novel 4D-MRI sequence based on 3D-radial sampling and slab-selective excitation has been assessed for pancreatic cancer patients. The non-contrast 4D-MRI images showed significantly better contrast to noise ratio for the vessels that limit tumor resectability compared to 4D-CT with delayed contrast. The sequence has great potential in accurately defining both the tumor and boost volume margins for pancreas RT with simultaneous integrated boost. More... »

PAGES

191

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13014-018-1139-2

DOI

http://dx.doi.org/10.1186/s13014-018-1139-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107340058

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30285889


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adolescent", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Four-Dimensional Computed Tomography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Movement", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neovascularization, Pathologic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pancreatic Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Respiration", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Respiratory-Gated Imaging Techniques", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tumor Burden", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Biomedical Sciences, Biomedical Imaging Research Institute, Cedars Sinai Medical Center, Los Angeles, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.50956.3f", 
          "name": [
            "Department of Radiation Oncology, Cedars Sinai Medical Center, 8700 Beverly Blvd., 90048, Los Angeles, CA, USA", 
            "Department of Biomedical Sciences, Biomedical Imaging Research Institute, Cedars Sinai Medical Center, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Wensha", 
        "id": "sg:person.0706325051.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0706325051.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Biomedical Sciences, Biomedical Imaging Research Institute, Cedars Sinai Medical Center, Los Angeles, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.50956.3f", 
          "name": [
            "Department of Biomedical Sciences, Biomedical Imaging Research Institute, Cedars Sinai Medical Center, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fan", 
        "givenName": "Zhaoyang", 
        "id": "sg:person.01136172260.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136172260.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.19006.3e", 
          "name": [
            "Department of Biomedical Sciences, Biomedical Imaging Research Institute, Cedars Sinai Medical Center, Los Angeles, CA, USA", 
            "Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Deng", 
        "givenName": "Zixin", 
        "id": "sg:person.01116105253.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01116105253.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Siemens Healthineers, Los Angeles, USA", 
          "id": "http://www.grid.ac/institutes/grid.415886.6", 
          "name": [
            "Siemens Healthineers, Los Angeles, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pang", 
        "givenName": "Jianing", 
        "id": "sg:person.01067525465.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01067525465.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Siemens Healthineers, Los Angeles, USA", 
          "id": "http://www.grid.ac/institutes/grid.415886.6", 
          "name": [
            "Siemens Healthineers, Los Angeles, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bi", 
        "givenName": "Xiaoming", 
        "id": "sg:person.01066244563.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066244563.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiation Oncology, Cedars Sinai Medical Center, 8700 Beverly Blvd., 90048, Los Angeles, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.50956.3f", 
          "name": [
            "Department of Radiation Oncology, Cedars Sinai Medical Center, 8700 Beverly Blvd., 90048, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fraass", 
        "givenName": "Benedick A", 
        "id": "sg:person.0746171413.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0746171413.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiation Oncology, Cedars Sinai Medical Center, 8700 Beverly Blvd., 90048, Los Angeles, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.50956.3f", 
          "name": [
            "Department of Radiation Oncology, Cedars Sinai Medical Center, 8700 Beverly Blvd., 90048, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sandler", 
        "givenName": "Howard", 
        "id": "sg:person.01146571437.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01146571437.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Biomedical Sciences, Biomedical Imaging Research Institute, Cedars Sinai Medical Center, Los Angeles, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.50956.3f", 
          "name": [
            "Department of Biomedical Sciences, Biomedical Imaging Research Institute, Cedars Sinai Medical Center, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Debiao", 
        "id": "sg:person.01152021525.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152021525.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiation Oncology, Cedars Sinai Medical Center, 8700 Beverly Blvd., 90048, Los Angeles, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.50956.3f", 
          "name": [
            "Department of Radiation Oncology, Cedars Sinai Medical Center, 8700 Beverly Blvd., 90048, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tuli", 
        "givenName": "Richard", 
        "id": "sg:person.01075072512.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01075072512.69"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00280-017-3288-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084513326", 
          "https://doi.org/10.1007/s00280-017-3288-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11912-014-0388-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053585406", 
          "https://doi.org/10.1007/s11912-014-0388-y"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-10-01", 
    "datePublishedReg": "2018-10-01", 
    "description": "BackgroundPancreatic ductal adenocarcinoma has dismal prognosis. Most patients receive radiation therapy (RT), which is complicated by respiration induced organ motion in upper abdomen. The purpose of this study is to report our early clinical experience in a novel self-gated k-space sorted four-dimensional magnetic resonance imaging (4D-MRI) with slab-selective (SS) excitation to highlight tumor infiltrating blood vessels for pancreatic RT.MethodsTen consecutive patients with borderline resectable or locally advanced pancreatic cancer were recruited to the study. Non-contrast 4D-MRI with and without slab-selective excitation and 4D-CT with delay contrast were performed on all patients. Vessel-tissue CNR were calculated for aorta and critical vessels (superior mesenteric artery or superior mesenteric vein) encompassed by tumor. Respiratory motion trajectories for tumor, as well as involved vessels were analyzed on SS-4D-MRI. Intra-class cross correlation (ICC) between tumor volume and involved vessels were calculated.ResultsAmong all 4D imaging modalities evaluated, SS-4D-MRI sampling trajectory results in images with highest vessel-tissue CNR comparing to non-slab-selective 4D-MRI and 4D-CT for all patients studied. Average (\u00b1standard deviation) CNR for involved vessels are 13.1\u2009\u00b1\u20098.4 and 3.2\u2009\u00b1\u20092.7 for SS-4D-MRI and 4D-CT, respectively. The ICC factors comparing tumor and involved vessels motion trajectories are 0.93\u2009\u00b1\u20090.10, 0.65\u2009\u00b1\u20090.31 and 0.77\u2009\u00b1\u20090.23 for superior-inferior, anterior-posterior and medial-lateral directions respectively.ConclusionsA novel 4D-MRI sequence based on 3D-radial sampling and slab-selective excitation has been assessed for pancreatic cancer patients. The non-contrast 4D-MRI images showed significantly better contrast to noise ratio for the vessels that limit tumor resectability compared to 4D-CT with delayed contrast. The sequence has great potential in accurately defining both the tumor and boost volume margins for pancreas RT with simultaneous integrated boost.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s13014-018-1139-2", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2569981", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1036451", 
        "issn": [
          "1748-717X"
        ], 
        "name": "Radiation Oncology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "13"
      }
    ], 
    "keywords": [
      "radiation therapy", 
      "involved vessel", 
      "BackgroundPancreatic ductal adenocarcinoma", 
      "advanced pancreatic cancer", 
      "MethodsTen consecutive patients", 
      "pancreatic cancer patients", 
      "simultaneous integrated boost", 
      "early clinical experience", 
      "magnetic resonance imaging", 
      "medial-lateral direction", 
      "four-dimensional magnetic resonance imaging", 
      "most patients", 
      "consecutive patients", 
      "tumor resectability", 
      "dismal prognosis", 
      "cancer patients", 
      "upper abdomen", 
      "pancreatic cancer", 
      "ductal adenocarcinoma", 
      "integrated boost", 
      "tumor volume", 
      "clinical experience", 
      "patients", 
      "resonance imaging", 
      "tumors", 
      "critical vessels", 
      "volume margins", 
      "volume definition", 
      "blood vessels", 
      "pancreatic radiotherapy", 
      "MRI", 
      "organ motion", 
      "vessels", 
      "resectability", 
      "adenocarcinoma", 
      "prognosis", 
      "ResultsAmong", 
      "radiotherapy", 
      "therapy", 
      "abdomen", 
      "cancer", 
      "vasculature", 
      "CNR", 
      "modalities", 
      "contrast", 
      "study", 
      "borderline", 
      "imaging", 
      "volume motion", 
      "factors", 
      "average CNR", 
      "correlation", 
      "good contrast", 
      "volume", 
      "experience", 
      "boost", 
      "respiration", 
      "purpose", 
      "margin", 
      "sampling", 
      "ratio", 
      "potential", 
      "results", 
      "definition", 
      "sequence", 
      "great potential", 
      "slab-selective excitation", 
      "images", 
      "motion", 
      "trajectories", 
      "motion trajectories", 
      "direction", 
      "excitation", 
      "cross correlation", 
      "k-space", 
      "trajectory results"
    ], 
    "name": "Novel 4D-MRI of tumor infiltrating vasculature: characterizing tumor and vessel volume motion for selective boost volume definition in pancreatic radiotherapy", 
    "pagination": "191", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107340058"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13014-018-1139-2"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30285889"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13014-018-1139-2", 
      "https://app.dimensions.ai/details/publication/pub.1107340058"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_760.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s13014-018-1139-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13014-018-1139-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13014-018-1139-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13014-018-1139-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13014-018-1139-2'


 

This table displays all metadata directly associated to this object as RDF triples.

267 TRIPLES      21 PREDICATES      117 URIs      107 LITERALS      21 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13014-018-1139-2 schema:about N02d23cb1dab646bf968b4d44f4982465
2 N0fe6de844a2a484bb5459f47f9dcfd38
3 N10e509ac0f4d466e885fb28728fbe4fa
4 N213cc419702f438a8b6fcea0a7373a2c
5 N41a119b526ff482a9a7b4c495f0a4aae
6 N47a5663be0c7495d846199d24abbf629
7 N55834a64f8ab4216be9fc009b5c0b11e
8 N5c2ccaf6dc124516b6824ce2bd480091
9 N630d00bdcbcd4060a03ba5c7b1b7709a
10 N68542a319f0b461fadce7107fd14ed29
11 N8d3bd48494474c6584a0b68f4f982921
12 Nab93dcd0ea7548c1a9d1ed1d433b12f6
13 Nc2ed1416b9454a86895ba20cec38c28b
14 Ndbeeacbfbaf34c548046756dd6962ad5
15 anzsrc-for:11
16 anzsrc-for:1112
17 schema:author N8d5a4cbfbf4e4fb693cd0a8a16e13c35
18 schema:citation sg:pub.10.1007/s00280-017-3288-7
19 sg:pub.10.1007/s11912-014-0388-y
20 schema:datePublished 2018-10-01
21 schema:datePublishedReg 2018-10-01
22 schema:description BackgroundPancreatic ductal adenocarcinoma has dismal prognosis. Most patients receive radiation therapy (RT), which is complicated by respiration induced organ motion in upper abdomen. The purpose of this study is to report our early clinical experience in a novel self-gated k-space sorted four-dimensional magnetic resonance imaging (4D-MRI) with slab-selective (SS) excitation to highlight tumor infiltrating blood vessels for pancreatic RT.MethodsTen consecutive patients with borderline resectable or locally advanced pancreatic cancer were recruited to the study. Non-contrast 4D-MRI with and without slab-selective excitation and 4D-CT with delay contrast were performed on all patients. Vessel-tissue CNR were calculated for aorta and critical vessels (superior mesenteric artery or superior mesenteric vein) encompassed by tumor. Respiratory motion trajectories for tumor, as well as involved vessels were analyzed on SS-4D-MRI. Intra-class cross correlation (ICC) between tumor volume and involved vessels were calculated.ResultsAmong all 4D imaging modalities evaluated, SS-4D-MRI sampling trajectory results in images with highest vessel-tissue CNR comparing to non-slab-selective 4D-MRI and 4D-CT for all patients studied. Average (±standard deviation) CNR for involved vessels are 13.1 ± 8.4 and 3.2 ± 2.7 for SS-4D-MRI and 4D-CT, respectively. The ICC factors comparing tumor and involved vessels motion trajectories are 0.93 ± 0.10, 0.65 ± 0.31 and 0.77 ± 0.23 for superior-inferior, anterior-posterior and medial-lateral directions respectively.ConclusionsA novel 4D-MRI sequence based on 3D-radial sampling and slab-selective excitation has been assessed for pancreatic cancer patients. The non-contrast 4D-MRI images showed significantly better contrast to noise ratio for the vessels that limit tumor resectability compared to 4D-CT with delayed contrast. The sequence has great potential in accurately defining both the tumor and boost volume margins for pancreas RT with simultaneous integrated boost.
23 schema:genre article
24 schema:isAccessibleForFree true
25 schema:isPartOf Na024320e3b36494484e718491b0544d6
26 Nc3235cad454440f2ae1850a9bcbfdf81
27 sg:journal.1036451
28 schema:keywords BackgroundPancreatic ductal adenocarcinoma
29 CNR
30 MRI
31 MethodsTen consecutive patients
32 ResultsAmong
33 abdomen
34 adenocarcinoma
35 advanced pancreatic cancer
36 average CNR
37 blood vessels
38 boost
39 borderline
40 cancer
41 cancer patients
42 clinical experience
43 consecutive patients
44 contrast
45 correlation
46 critical vessels
47 cross correlation
48 definition
49 direction
50 dismal prognosis
51 ductal adenocarcinoma
52 early clinical experience
53 excitation
54 experience
55 factors
56 four-dimensional magnetic resonance imaging
57 good contrast
58 great potential
59 images
60 imaging
61 integrated boost
62 involved vessel
63 k-space
64 magnetic resonance imaging
65 margin
66 medial-lateral direction
67 modalities
68 most patients
69 motion
70 motion trajectories
71 organ motion
72 pancreatic cancer
73 pancreatic cancer patients
74 pancreatic radiotherapy
75 patients
76 potential
77 prognosis
78 purpose
79 radiation therapy
80 radiotherapy
81 ratio
82 resectability
83 resonance imaging
84 respiration
85 results
86 sampling
87 sequence
88 simultaneous integrated boost
89 slab-selective excitation
90 study
91 therapy
92 trajectories
93 trajectory results
94 tumor resectability
95 tumor volume
96 tumors
97 upper abdomen
98 vasculature
99 vessels
100 volume
101 volume definition
102 volume margins
103 volume motion
104 schema:name Novel 4D-MRI of tumor infiltrating vasculature: characterizing tumor and vessel volume motion for selective boost volume definition in pancreatic radiotherapy
105 schema:pagination 191
106 schema:productId N0d92cf4064194e57b44536d164193b06
107 N74fac8c8747e4fd2a5f2e10647d96108
108 N868e3752274a4daf84d9a7013c522739
109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107340058
110 https://doi.org/10.1186/s13014-018-1139-2
111 schema:sdDatePublished 2022-12-01T06:36
112 schema:sdLicense https://scigraph.springernature.com/explorer/license/
113 schema:sdPublisher Nc5438f6b2ace4a8893f61c895aa80682
114 schema:url https://doi.org/10.1186/s13014-018-1139-2
115 sgo:license sg:explorer/license/
116 sgo:sdDataset articles
117 rdf:type schema:ScholarlyArticle
118 N02d23cb1dab646bf968b4d44f4982465 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Male
120 rdf:type schema:DefinedTerm
121 N0d92cf4064194e57b44536d164193b06 schema:name pubmed_id
122 schema:value 30285889
123 rdf:type schema:PropertyValue
124 N0fe6de844a2a484bb5459f47f9dcfd38 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Aged
126 rdf:type schema:DefinedTerm
127 N10e509ac0f4d466e885fb28728fbe4fa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Movement
129 rdf:type schema:DefinedTerm
130 N16fd915211fd4e2184f01fb5d1567f2e rdf:first sg:person.01152021525.33
131 rdf:rest Nbe7a351f123d4482813a18381dddf918
132 N213cc419702f438a8b6fcea0a7373a2c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Respiration
134 rdf:type schema:DefinedTerm
135 N27e56d1ed02540389e3cc3e66242844c rdf:first sg:person.0746171413.59
136 rdf:rest Nfea6b3729dec46909311e97bfd9b9224
137 N41a119b526ff482a9a7b4c495f0a4aae schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Neovascularization, Pathologic
139 rdf:type schema:DefinedTerm
140 N47a5663be0c7495d846199d24abbf629 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Adolescent
142 rdf:type schema:DefinedTerm
143 N55834a64f8ab4216be9fc009b5c0b11e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
144 schema:name Four-Dimensional Computed Tomography
145 rdf:type schema:DefinedTerm
146 N5c2ccaf6dc124516b6824ce2bd480091 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name Adult
148 rdf:type schema:DefinedTerm
149 N630d00bdcbcd4060a03ba5c7b1b7709a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
150 schema:name Tumor Burden
151 rdf:type schema:DefinedTerm
152 N68542a319f0b461fadce7107fd14ed29 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
153 schema:name Humans
154 rdf:type schema:DefinedTerm
155 N69f822b18ddc4af1a73c48407092655a rdf:first sg:person.01067525465.28
156 rdf:rest Nf81d7a065ae44a7a8c1274a67f87f823
157 N7458a7ebf08a4046b4b22ea407936397 rdf:first sg:person.01136172260.58
158 rdf:rest N80e052ae880644299a22e210c41706fe
159 N74fac8c8747e4fd2a5f2e10647d96108 schema:name doi
160 schema:value 10.1186/s13014-018-1139-2
161 rdf:type schema:PropertyValue
162 N80e052ae880644299a22e210c41706fe rdf:first sg:person.01116105253.25
163 rdf:rest N69f822b18ddc4af1a73c48407092655a
164 N868e3752274a4daf84d9a7013c522739 schema:name dimensions_id
165 schema:value pub.1107340058
166 rdf:type schema:PropertyValue
167 N8d3bd48494474c6584a0b68f4f982921 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
168 schema:name Female
169 rdf:type schema:DefinedTerm
170 N8d5a4cbfbf4e4fb693cd0a8a16e13c35 rdf:first sg:person.0706325051.06
171 rdf:rest N7458a7ebf08a4046b4b22ea407936397
172 Na024320e3b36494484e718491b0544d6 schema:volumeNumber 13
173 rdf:type schema:PublicationVolume
174 Nab93dcd0ea7548c1a9d1ed1d433b12f6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
175 schema:name Middle Aged
176 rdf:type schema:DefinedTerm
177 Nbe7a351f123d4482813a18381dddf918 rdf:first sg:person.01075072512.69
178 rdf:rest rdf:nil
179 Nc2ed1416b9454a86895ba20cec38c28b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
180 schema:name Pancreatic Neoplasms
181 rdf:type schema:DefinedTerm
182 Nc3235cad454440f2ae1850a9bcbfdf81 schema:issueNumber 1
183 rdf:type schema:PublicationIssue
184 Nc5438f6b2ace4a8893f61c895aa80682 schema:name Springer Nature - SN SciGraph project
185 rdf:type schema:Organization
186 Ndbeeacbfbaf34c548046756dd6962ad5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
187 schema:name Respiratory-Gated Imaging Techniques
188 rdf:type schema:DefinedTerm
189 Nf81d7a065ae44a7a8c1274a67f87f823 rdf:first sg:person.01066244563.44
190 rdf:rest N27e56d1ed02540389e3cc3e66242844c
191 Nfea6b3729dec46909311e97bfd9b9224 rdf:first sg:person.01146571437.22
192 rdf:rest N16fd915211fd4e2184f01fb5d1567f2e
193 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
194 schema:name Medical and Health Sciences
195 rdf:type schema:DefinedTerm
196 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
197 schema:name Oncology and Carcinogenesis
198 rdf:type schema:DefinedTerm
199 sg:grant.2569981 http://pending.schema.org/fundedItem sg:pub.10.1186/s13014-018-1139-2
200 rdf:type schema:MonetaryGrant
201 sg:journal.1036451 schema:issn 1748-717X
202 schema:name Radiation Oncology
203 schema:publisher Springer Nature
204 rdf:type schema:Periodical
205 sg:person.01066244563.44 schema:affiliation grid-institutes:grid.415886.6
206 schema:familyName Bi
207 schema:givenName Xiaoming
208 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066244563.44
209 rdf:type schema:Person
210 sg:person.01067525465.28 schema:affiliation grid-institutes:grid.415886.6
211 schema:familyName Pang
212 schema:givenName Jianing
213 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01067525465.28
214 rdf:type schema:Person
215 sg:person.01075072512.69 schema:affiliation grid-institutes:grid.50956.3f
216 schema:familyName Tuli
217 schema:givenName Richard
218 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01075072512.69
219 rdf:type schema:Person
220 sg:person.01116105253.25 schema:affiliation grid-institutes:grid.19006.3e
221 schema:familyName Deng
222 schema:givenName Zixin
223 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01116105253.25
224 rdf:type schema:Person
225 sg:person.01136172260.58 schema:affiliation grid-institutes:grid.50956.3f
226 schema:familyName Fan
227 schema:givenName Zhaoyang
228 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136172260.58
229 rdf:type schema:Person
230 sg:person.01146571437.22 schema:affiliation grid-institutes:grid.50956.3f
231 schema:familyName Sandler
232 schema:givenName Howard
233 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01146571437.22
234 rdf:type schema:Person
235 sg:person.01152021525.33 schema:affiliation grid-institutes:grid.50956.3f
236 schema:familyName Li
237 schema:givenName Debiao
238 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152021525.33
239 rdf:type schema:Person
240 sg:person.0706325051.06 schema:affiliation grid-institutes:grid.50956.3f
241 schema:familyName Yang
242 schema:givenName Wensha
243 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0706325051.06
244 rdf:type schema:Person
245 sg:person.0746171413.59 schema:affiliation grid-institutes:grid.50956.3f
246 schema:familyName Fraass
247 schema:givenName Benedick A
248 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0746171413.59
249 rdf:type schema:Person
250 sg:pub.10.1007/s00280-017-3288-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084513326
251 https://doi.org/10.1007/s00280-017-3288-7
252 rdf:type schema:CreativeWork
253 sg:pub.10.1007/s11912-014-0388-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1053585406
254 https://doi.org/10.1007/s11912-014-0388-y
255 rdf:type schema:CreativeWork
256 grid-institutes:grid.19006.3e schema:alternateName Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
257 schema:name Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
258 Department of Biomedical Sciences, Biomedical Imaging Research Institute, Cedars Sinai Medical Center, Los Angeles, CA, USA
259 rdf:type schema:Organization
260 grid-institutes:grid.415886.6 schema:alternateName Siemens Healthineers, Los Angeles, USA
261 schema:name Siemens Healthineers, Los Angeles, USA
262 rdf:type schema:Organization
263 grid-institutes:grid.50956.3f schema:alternateName Department of Biomedical Sciences, Biomedical Imaging Research Institute, Cedars Sinai Medical Center, Los Angeles, CA, USA
264 Department of Radiation Oncology, Cedars Sinai Medical Center, 8700 Beverly Blvd., 90048, Los Angeles, CA, USA
265 schema:name Department of Biomedical Sciences, Biomedical Imaging Research Institute, Cedars Sinai Medical Center, Los Angeles, CA, USA
266 Department of Radiation Oncology, Cedars Sinai Medical Center, 8700 Beverly Blvd., 90048, Los Angeles, CA, USA
267 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...