Reliability of the gamma index analysis as a verification method of volumetric modulated arc therapy plans View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Jong Min Park, Jung-in Kim, So-Yeon Park, Do Hoon Oh, Sang-Tae Kim

ABSTRACT

BACKGROUND: We investigate the gamma passing rate (GPR) consistency when applying different types of gamma analyses, linacs, and dosimeters for volumetric modulated arc therapy (VMAT). METHODS: A total of 240 VMAT plans for various treatment sites, which were generated with Trilogy (140 plans) and TrueBeam STx (100 plans), were retrospectively selected. For each VMAT plan, planar dose distributions were measured with both MapCHECK2 and ArcCHECK dosimeters. During the planar dose distribution measurements, the actual multileaf collimator (MLC) positions, gantry angles, and delivered monitor units were recorded and compared to the values in the original VMAT plans to calculate mechanical errors. For each VMAT plan, both the global and local gamma analyses were performed with 3%/3 mm, 2%/2 mm, 2%/1 mm, 1%/2 mm, and 1%/1 mm. The Pearson correlation coefficients (r) were calculated 1) between the global and the local GPRs, 2) between GPRs with the MapCHECK2 and the ArcCHECK dosimeters, 3) and between GPRs and the mechanical errors during the VMAT delivery. RESULTS: For the MapCHECK2 measurements, strong correlations between the global and local GPRs were observed only with 1%/2 mm and 1%/1 mm (r > 0.8 with p < 0.001), while weak or no correlations were observed for the ArcCHECK measurement. Between the MapCHECK2 and ArcCHECK measurements, the global GPRs showed no correlations (all with p > 0.05), while the local GPRs showed moderate correlations only with 2%/1 mm and 1%/1 mm for TrueBeam STx (r > 0.5 with p < 0.001). Both the global and local GPRs always showed weak or no correlations with the MLC positional errors except for the GPRs of MapCHECK2 with 1%/2 mm and 1%/1 mm for TrueBeam STx and the GPR of ArcCHECK with 1%/2 mm for Trilogy (r < - 0.5 with p < 0.001). CONCLUSIONS: The GPRs varied according to the types of gamma analyses, dosimeters, and linacs. Therefore, each institution should carefully establish their own gamma analysis protocol by determining the type of gamma index analysis and the gamma criterion with their own linac and their own dosimeter. More... »

PAGES

175

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13014-018-1123-x

DOI

http://dx.doi.org/10.1186/s13014-018-1123-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1106947548

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30217163


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Netherlands", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiotherapy Dosage", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiotherapy Planning, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiotherapy, Intensity-Modulated", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Retrospective Studies", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Advanced Institutes of Convergence Technology", 
          "id": "https://www.grid.ac/institutes/grid.410897.3", 
          "name": [
            "Department of Radiation Oncology, Seoul National University Hospital, Seoul, South Korea", 
            "Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, South Korea", 
            "Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea", 
            "Institute for Smart System, Robotics Research Laboratory for Extreme Environments, Advanced Institutes of Convergence Technology, Suwon, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Park", 
        "givenName": "Jong Min", 
        "id": "sg:person.01174734266.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01174734266.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University Hospital", 
          "id": "https://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Radiation Oncology, Seoul National University Hospital, Seoul, South Korea", 
            "Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, South Korea", 
            "Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Jung-in", 
        "id": "sg:person.01011372453.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01011372453.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Radiation Oncology, Veterans Health Service Medical Center, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Park", 
        "givenName": "So-Yeon", 
        "id": "sg:person.01022574470.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01022574470.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Myongji Hospital", 
          "id": "https://www.grid.ac/institutes/grid.416355.0", 
          "name": [
            "Department of Radiation Oncology, Myongji Hospital, Goyang, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Oh", 
        "givenName": "Do Hoon", 
        "id": "sg:person.011446441222.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011446441222.60"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nuclear Safety And Security Commission", 
          "id": "https://www.grid.ac/institutes/grid.453227.5", 
          "name": [
            "Nuclear Emergency Division, Radiation Protection and Emergency Preparedness Bureau, Nuclear Safety and Security Commission, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Sang-Tae", 
        "id": "sg:person.01331420034.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331420034.06"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1118/1.3190392", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004122028"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.2818738", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004257810"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.radonc.2014.03.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004543732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.radonc.2013.08.048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005739086"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.3544657", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006516811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.4788645", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007384545"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.1598711", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009300821"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0360-3016(93)90206-b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014920548"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.3528214", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021561379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.4949002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023083879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18632/oncotarget.12279", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023514658"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.598691", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023914373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.4810969", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024373930"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.598248", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024691600"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1120/jacmp.v15i4.4690", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026916527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1120/jacmp.v15i4.4690", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026916527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.1591194", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027183073"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1748-717x-9-167", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027374104", 
          "https://doi.org/10.1186/1748-717x-9-167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1120/jacmp.v17i2.5995", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032070906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.4802748", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032606714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijrobp.2009.03.033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036462815"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.597316", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046763941"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13014-015-0382-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047427088", 
          "https://doi.org/10.1186/s13014-015-0382-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13014-015-0382-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047427088", 
          "https://doi.org/10.1186/s13014-015-0382-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.4789580", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047822672"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-8140(88)90167-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048395706"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.4861821", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050523211"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-9155/60/18/7101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059030965"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1259/bjr.20140577", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064565447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1259/bjr.20140577", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064565447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1259/bjr.20140698", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064565497"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "BACKGROUND: We investigate the gamma passing rate (GPR) consistency when applying different types of gamma analyses, linacs, and dosimeters for volumetric modulated arc therapy (VMAT).\nMETHODS: A total of 240 VMAT plans for various treatment sites, which were generated with Trilogy (140 plans) and TrueBeam STx (100 plans), were retrospectively selected. For each VMAT plan, planar dose distributions were measured with both MapCHECK2 and ArcCHECK dosimeters. During the planar dose distribution measurements, the actual multileaf collimator (MLC) positions, gantry angles, and delivered monitor units were recorded and compared to the values in the original VMAT plans to calculate mechanical errors. For each VMAT plan, both the global and local gamma analyses were performed with 3%/3\u00a0mm, 2%/2\u00a0mm, 2%/1\u00a0mm, 1%/2\u00a0mm, and 1%/1\u00a0mm. The Pearson correlation coefficients (r) were calculated 1) between the global and the local GPRs, 2) between GPRs with the MapCHECK2 and the ArcCHECK dosimeters, 3) and between GPRs and the mechanical errors during the VMAT delivery.\nRESULTS: For the MapCHECK2 measurements, strong correlations between the global and local GPRs were observed only with 1%/2\u00a0mm and 1%/1\u00a0mm (r\u2009>\u20090.8 with p\u2009<\u20090.001), while weak or no correlations were observed for the ArcCHECK measurement. Between the MapCHECK2 and ArcCHECK measurements, the global GPRs showed no correlations (all with p\u2009>\u20090.05), while the local GPRs showed moderate correlations only with 2%/1\u00a0mm and 1%/1\u00a0mm for TrueBeam STx (r\u2009>\u20090.5 with p\u2009<\u20090.001). Both the global and local GPRs always showed weak or no correlations with the MLC positional errors except for the GPRs of MapCHECK2 with 1%/2\u00a0mm and 1%/1\u00a0mm for TrueBeam STx and the GPR of ArcCHECK with 1%/2\u00a0mm for Trilogy (r\u2009<\u2009-\u20090.5 with p\u2009<\u20090.001).\nCONCLUSIONS: The GPRs varied according to the types of gamma analyses, dosimeters, and linacs. Therefore, each institution should carefully establish their own gamma analysis protocol by determining the type of gamma index analysis and the gamma criterion with their own linac and their own dosimeter.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s13014-018-1123-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1036451", 
        "issn": [
          "1748-717X"
        ], 
        "name": "Radiation Oncology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "13"
      }
    ], 
    "name": "Reliability of the gamma index analysis as a verification method of volumetric modulated arc therapy plans", 
    "pagination": "175", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "7cdbcfb60a9c8a94c0a3b4eba43fcdf6776659482cabf6815f8d0f82a5fd1e00"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30217163"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101265111"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13014-018-1123-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1106947548"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13014-018-1123-x", 
      "https://app.dimensions.ai/details/publication/pub.1106947548"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000358_0000000358/records_127435_00000011.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs13014-018-1123-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13014-018-1123-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13014-018-1123-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13014-018-1123-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13014-018-1123-x'


 

This table displays all metadata directly associated to this object as RDF triples.

234 TRIPLES      21 PREDICATES      66 URIs      30 LITERALS      18 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13014-018-1123-x schema:about N18dc3df07510454db5c88053d4dd6fa1
2 N34d66fe9fe9046efacb25e130fe7a966
3 N372ac10e346c401196cd13074dc691d3
4 N4d39f2539dbd45a5a63c166f9c3695d4
5 N5f6807e9f0ff4548a16634a217b40f83
6 N68aca29740cb4af684a594c56f87a1c8
7 N8a872e57cbff4519b2c3b970c519eae1
8 N96540ab4b9ce4937bc8ce08d0b033b2c
9 Nef6acce47b3d4c69afdc4c439cc5352f
10 anzsrc-for:11
11 anzsrc-for:1103
12 schema:author Nc7950c088279469b851edfe35720dfea
13 schema:citation sg:pub.10.1186/1748-717x-9-167
14 sg:pub.10.1186/s13014-015-0382-z
15 https://doi.org/10.1016/0167-8140(88)90167-3
16 https://doi.org/10.1016/0360-3016(93)90206-b
17 https://doi.org/10.1016/j.ijrobp.2009.03.033
18 https://doi.org/10.1016/j.radonc.2013.08.048
19 https://doi.org/10.1016/j.radonc.2014.03.021
20 https://doi.org/10.1088/0031-9155/60/18/7101
21 https://doi.org/10.1118/1.1591194
22 https://doi.org/10.1118/1.1598711
23 https://doi.org/10.1118/1.2818738
24 https://doi.org/10.1118/1.3190392
25 https://doi.org/10.1118/1.3528214
26 https://doi.org/10.1118/1.3544657
27 https://doi.org/10.1118/1.4788645
28 https://doi.org/10.1118/1.4789580
29 https://doi.org/10.1118/1.4802748
30 https://doi.org/10.1118/1.4810969
31 https://doi.org/10.1118/1.4861821
32 https://doi.org/10.1118/1.4949002
33 https://doi.org/10.1118/1.597316
34 https://doi.org/10.1118/1.598248
35 https://doi.org/10.1118/1.598691
36 https://doi.org/10.1120/jacmp.v15i4.4690
37 https://doi.org/10.1120/jacmp.v17i2.5995
38 https://doi.org/10.1259/bjr.20140577
39 https://doi.org/10.1259/bjr.20140698
40 https://doi.org/10.18632/oncotarget.12279
41 schema:datePublished 2018-12
42 schema:datePublishedReg 2018-12-01
43 schema:description BACKGROUND: We investigate the gamma passing rate (GPR) consistency when applying different types of gamma analyses, linacs, and dosimeters for volumetric modulated arc therapy (VMAT). METHODS: A total of 240 VMAT plans for various treatment sites, which were generated with Trilogy (140 plans) and TrueBeam STx (100 plans), were retrospectively selected. For each VMAT plan, planar dose distributions were measured with both MapCHECK2 and ArcCHECK dosimeters. During the planar dose distribution measurements, the actual multileaf collimator (MLC) positions, gantry angles, and delivered monitor units were recorded and compared to the values in the original VMAT plans to calculate mechanical errors. For each VMAT plan, both the global and local gamma analyses were performed with 3%/3 mm, 2%/2 mm, 2%/1 mm, 1%/2 mm, and 1%/1 mm. The Pearson correlation coefficients (r) were calculated 1) between the global and the local GPRs, 2) between GPRs with the MapCHECK2 and the ArcCHECK dosimeters, 3) and between GPRs and the mechanical errors during the VMAT delivery. RESULTS: For the MapCHECK2 measurements, strong correlations between the global and local GPRs were observed only with 1%/2 mm and 1%/1 mm (r > 0.8 with p < 0.001), while weak or no correlations were observed for the ArcCHECK measurement. Between the MapCHECK2 and ArcCHECK measurements, the global GPRs showed no correlations (all with p > 0.05), while the local GPRs showed moderate correlations only with 2%/1 mm and 1%/1 mm for TrueBeam STx (r > 0.5 with p < 0.001). Both the global and local GPRs always showed weak or no correlations with the MLC positional errors except for the GPRs of MapCHECK2 with 1%/2 mm and 1%/1 mm for TrueBeam STx and the GPR of ArcCHECK with 1%/2 mm for Trilogy (r < - 0.5 with p < 0.001). CONCLUSIONS: The GPRs varied according to the types of gamma analyses, dosimeters, and linacs. Therefore, each institution should carefully establish their own gamma analysis protocol by determining the type of gamma index analysis and the gamma criterion with their own linac and their own dosimeter.
44 schema:genre research_article
45 schema:inLanguage en
46 schema:isAccessibleForFree true
47 schema:isPartOf N11c881394b264fe5b20ebaaa92a529a5
48 Nfa58919832504c0a912860fa56311c50
49 sg:journal.1036451
50 schema:name Reliability of the gamma index analysis as a verification method of volumetric modulated arc therapy plans
51 schema:pagination 175
52 schema:productId N2c50c448e6ae4ae096b02f55d070a3f2
53 N779aee48f6fa4e7ab2a62d6e143cf5d2
54 Nbd2d13bb160f41dd8b14fbf20e6c450e
55 Nda7bf01f13cf415f842904c5384c04b1
56 Nf766a57624604031827131e6a4de6ba9
57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106947548
58 https://doi.org/10.1186/s13014-018-1123-x
59 schema:sdDatePublished 2019-04-11T11:39
60 schema:sdLicense https://scigraph.springernature.com/explorer/license/
61 schema:sdPublisher Nae1820909476491b90d73385bbd2e3d9
62 schema:url https://link.springer.com/10.1186%2Fs13014-018-1123-x
63 sgo:license sg:explorer/license/
64 sgo:sdDataset articles
65 rdf:type schema:ScholarlyArticle
66 N0d865c65f5d340379ff3839a5c10ba17 rdf:first sg:person.011446441222.60
67 rdf:rest N1b09708a974f4f74897a692d3658ed6b
68 N11c881394b264fe5b20ebaaa92a529a5 schema:volumeNumber 13
69 rdf:type schema:PublicationVolume
70 N18dc3df07510454db5c88053d4dd6fa1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
71 schema:name Retrospective Studies
72 rdf:type schema:DefinedTerm
73 N1a8c7c2b409142d8b895939fe15db20d rdf:first sg:person.01022574470.48
74 rdf:rest N0d865c65f5d340379ff3839a5c10ba17
75 N1b09708a974f4f74897a692d3658ed6b rdf:first sg:person.01331420034.06
76 rdf:rest rdf:nil
77 N1b262b8e48b947b1bf124f97441dd294 rdf:first sg:person.01011372453.49
78 rdf:rest N1a8c7c2b409142d8b895939fe15db20d
79 N2c50c448e6ae4ae096b02f55d070a3f2 schema:name nlm_unique_id
80 schema:value 101265111
81 rdf:type schema:PropertyValue
82 N34d66fe9fe9046efacb25e130fe7a966 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Radiotherapy Planning, Computer-Assisted
84 rdf:type schema:DefinedTerm
85 N372ac10e346c401196cd13074dc691d3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Netherlands
87 rdf:type schema:DefinedTerm
88 N4d39f2539dbd45a5a63c166f9c3695d4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Humans
90 rdf:type schema:DefinedTerm
91 N5f6807e9f0ff4548a16634a217b40f83 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Radiotherapy, Intensity-Modulated
93 rdf:type schema:DefinedTerm
94 N68aca29740cb4af684a594c56f87a1c8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Reproducibility of Results
96 rdf:type schema:DefinedTerm
97 N779aee48f6fa4e7ab2a62d6e143cf5d2 schema:name pubmed_id
98 schema:value 30217163
99 rdf:type schema:PropertyValue
100 N7892ac736ad14dc79d936c4ab13b9066 schema:name Department of Radiation Oncology, Veterans Health Service Medical Center, Seoul, South Korea
101 rdf:type schema:Organization
102 N8a872e57cbff4519b2c3b970c519eae1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Radiotherapy Dosage
104 rdf:type schema:DefinedTerm
105 N96540ab4b9ce4937bc8ce08d0b033b2c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Neoplasms
107 rdf:type schema:DefinedTerm
108 Nae1820909476491b90d73385bbd2e3d9 schema:name Springer Nature - SN SciGraph project
109 rdf:type schema:Organization
110 Nbd2d13bb160f41dd8b14fbf20e6c450e schema:name dimensions_id
111 schema:value pub.1106947548
112 rdf:type schema:PropertyValue
113 Nc7950c088279469b851edfe35720dfea rdf:first sg:person.01174734266.99
114 rdf:rest N1b262b8e48b947b1bf124f97441dd294
115 Nda7bf01f13cf415f842904c5384c04b1 schema:name doi
116 schema:value 10.1186/s13014-018-1123-x
117 rdf:type schema:PropertyValue
118 Nef6acce47b3d4c69afdc4c439cc5352f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Male
120 rdf:type schema:DefinedTerm
121 Nf766a57624604031827131e6a4de6ba9 schema:name readcube_id
122 schema:value 7cdbcfb60a9c8a94c0a3b4eba43fcdf6776659482cabf6815f8d0f82a5fd1e00
123 rdf:type schema:PropertyValue
124 Nfa58919832504c0a912860fa56311c50 schema:issueNumber 1
125 rdf:type schema:PublicationIssue
126 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
127 schema:name Medical and Health Sciences
128 rdf:type schema:DefinedTerm
129 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
130 schema:name Clinical Sciences
131 rdf:type schema:DefinedTerm
132 sg:journal.1036451 schema:issn 1748-717X
133 schema:name Radiation Oncology
134 rdf:type schema:Periodical
135 sg:person.01011372453.49 schema:affiliation https://www.grid.ac/institutes/grid.412484.f
136 schema:familyName Kim
137 schema:givenName Jung-in
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01011372453.49
139 rdf:type schema:Person
140 sg:person.01022574470.48 schema:affiliation N7892ac736ad14dc79d936c4ab13b9066
141 schema:familyName Park
142 schema:givenName So-Yeon
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01022574470.48
144 rdf:type schema:Person
145 sg:person.011446441222.60 schema:affiliation https://www.grid.ac/institutes/grid.416355.0
146 schema:familyName Oh
147 schema:givenName Do Hoon
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011446441222.60
149 rdf:type schema:Person
150 sg:person.01174734266.99 schema:affiliation https://www.grid.ac/institutes/grid.410897.3
151 schema:familyName Park
152 schema:givenName Jong Min
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01174734266.99
154 rdf:type schema:Person
155 sg:person.01331420034.06 schema:affiliation https://www.grid.ac/institutes/grid.453227.5
156 schema:familyName Kim
157 schema:givenName Sang-Tae
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331420034.06
159 rdf:type schema:Person
160 sg:pub.10.1186/1748-717x-9-167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027374104
161 https://doi.org/10.1186/1748-717x-9-167
162 rdf:type schema:CreativeWork
163 sg:pub.10.1186/s13014-015-0382-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1047427088
164 https://doi.org/10.1186/s13014-015-0382-z
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/0167-8140(88)90167-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048395706
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/0360-3016(93)90206-b schema:sameAs https://app.dimensions.ai/details/publication/pub.1014920548
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/j.ijrobp.2009.03.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036462815
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/j.radonc.2013.08.048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005739086
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/j.radonc.2014.03.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004543732
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1088/0031-9155/60/18/7101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059030965
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1118/1.1591194 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027183073
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1118/1.1598711 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009300821
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1118/1.2818738 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004257810
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1118/1.3190392 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004122028
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1118/1.3528214 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021561379
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1118/1.3544657 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006516811
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1118/1.4788645 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007384545
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1118/1.4789580 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047822672
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1118/1.4802748 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032606714
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1118/1.4810969 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024373930
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1118/1.4861821 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050523211
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1118/1.4949002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023083879
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1118/1.597316 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046763941
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1118/1.598248 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024691600
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1118/1.598691 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023914373
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1120/jacmp.v15i4.4690 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026916527
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1120/jacmp.v17i2.5995 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032070906
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1259/bjr.20140577 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064565447
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1259/bjr.20140698 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064565497
215 rdf:type schema:CreativeWork
216 https://doi.org/10.18632/oncotarget.12279 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023514658
217 rdf:type schema:CreativeWork
218 https://www.grid.ac/institutes/grid.410897.3 schema:alternateName Advanced Institutes of Convergence Technology
219 schema:name Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
220 Department of Radiation Oncology, Seoul National University Hospital, Seoul, South Korea
221 Institute for Smart System, Robotics Research Laboratory for Extreme Environments, Advanced Institutes of Convergence Technology, Suwon, South Korea
222 Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, South Korea
223 rdf:type schema:Organization
224 https://www.grid.ac/institutes/grid.412484.f schema:alternateName Seoul National University Hospital
225 schema:name Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
226 Department of Radiation Oncology, Seoul National University Hospital, Seoul, South Korea
227 Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, South Korea
228 rdf:type schema:Organization
229 https://www.grid.ac/institutes/grid.416355.0 schema:alternateName Myongji Hospital
230 schema:name Department of Radiation Oncology, Myongji Hospital, Goyang, South Korea
231 rdf:type schema:Organization
232 https://www.grid.ac/institutes/grid.453227.5 schema:alternateName Nuclear Safety And Security Commission
233 schema:name Nuclear Emergency Division, Radiation Protection and Emergency Preparedness Bureau, Nuclear Safety and Security Commission, Seoul, South Korea
234 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...