Reliability of the gamma index analysis as a verification method of volumetric modulated arc therapy plans View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Jong Min Park, Jung-in Kim, So-Yeon Park, Do Hoon Oh, Sang-Tae Kim

ABSTRACT

BACKGROUND: We investigate the gamma passing rate (GPR) consistency when applying different types of gamma analyses, linacs, and dosimeters for volumetric modulated arc therapy (VMAT). METHODS: A total of 240 VMAT plans for various treatment sites, which were generated with Trilogy (140 plans) and TrueBeam STx (100 plans), were retrospectively selected. For each VMAT plan, planar dose distributions were measured with both MapCHECK2 and ArcCHECK dosimeters. During the planar dose distribution measurements, the actual multileaf collimator (MLC) positions, gantry angles, and delivered monitor units were recorded and compared to the values in the original VMAT plans to calculate mechanical errors. For each VMAT plan, both the global and local gamma analyses were performed with 3%/3 mm, 2%/2 mm, 2%/1 mm, 1%/2 mm, and 1%/1 mm. The Pearson correlation coefficients (r) were calculated 1) between the global and the local GPRs, 2) between GPRs with the MapCHECK2 and the ArcCHECK dosimeters, 3) and between GPRs and the mechanical errors during the VMAT delivery. RESULTS: For the MapCHECK2 measurements, strong correlations between the global and local GPRs were observed only with 1%/2 mm and 1%/1 mm (r > 0.8 with p < 0.001), while weak or no correlations were observed for the ArcCHECK measurement. Between the MapCHECK2 and ArcCHECK measurements, the global GPRs showed no correlations (all with p > 0.05), while the local GPRs showed moderate correlations only with 2%/1 mm and 1%/1 mm for TrueBeam STx (r > 0.5 with p < 0.001). Both the global and local GPRs always showed weak or no correlations with the MLC positional errors except for the GPRs of MapCHECK2 with 1%/2 mm and 1%/1 mm for TrueBeam STx and the GPR of ArcCHECK with 1%/2 mm for Trilogy (r < - 0.5 with p < 0.001). CONCLUSIONS: The GPRs varied according to the types of gamma analyses, dosimeters, and linacs. Therefore, each institution should carefully establish their own gamma analysis protocol by determining the type of gamma index analysis and the gamma criterion with their own linac and their own dosimeter. More... »

PAGES

175

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13014-018-1123-x

DOI

http://dx.doi.org/10.1186/s13014-018-1123-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1106947548

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30217163


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Netherlands", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiotherapy Dosage", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiotherapy Planning, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiotherapy, Intensity-Modulated", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Retrospective Studies", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Advanced Institutes of Convergence Technology", 
          "id": "https://www.grid.ac/institutes/grid.410897.3", 
          "name": [
            "Department of Radiation Oncology, Seoul National University Hospital, Seoul, South Korea", 
            "Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, South Korea", 
            "Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea", 
            "Institute for Smart System, Robotics Research Laboratory for Extreme Environments, Advanced Institutes of Convergence Technology, Suwon, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Park", 
        "givenName": "Jong Min", 
        "id": "sg:person.01174734266.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01174734266.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University Hospital", 
          "id": "https://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Radiation Oncology, Seoul National University Hospital, Seoul, South Korea", 
            "Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, South Korea", 
            "Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Jung-in", 
        "id": "sg:person.01011372453.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01011372453.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Radiation Oncology, Veterans Health Service Medical Center, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Park", 
        "givenName": "So-Yeon", 
        "id": "sg:person.01022574470.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01022574470.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Myongji Hospital", 
          "id": "https://www.grid.ac/institutes/grid.416355.0", 
          "name": [
            "Department of Radiation Oncology, Myongji Hospital, Goyang, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Oh", 
        "givenName": "Do Hoon", 
        "id": "sg:person.011446441222.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011446441222.60"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nuclear Safety And Security Commission", 
          "id": "https://www.grid.ac/institutes/grid.453227.5", 
          "name": [
            "Nuclear Emergency Division, Radiation Protection and Emergency Preparedness Bureau, Nuclear Safety and Security Commission, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Sang-Tae", 
        "id": "sg:person.01331420034.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331420034.06"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1118/1.3190392", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004122028"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.2818738", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004257810"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.radonc.2014.03.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004543732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.radonc.2013.08.048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005739086"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.3544657", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006516811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.4788645", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007384545"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.1598711", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009300821"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0360-3016(93)90206-b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014920548"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.3528214", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021561379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.4949002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023083879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18632/oncotarget.12279", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023514658"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.598691", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023914373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.4810969", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024373930"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.598248", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024691600"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1120/jacmp.v15i4.4690", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026916527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1120/jacmp.v15i4.4690", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026916527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.1591194", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027183073"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1748-717x-9-167", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027374104", 
          "https://doi.org/10.1186/1748-717x-9-167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1120/jacmp.v17i2.5995", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032070906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.4802748", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032606714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijrobp.2009.03.033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036462815"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.597316", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046763941"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13014-015-0382-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047427088", 
          "https://doi.org/10.1186/s13014-015-0382-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13014-015-0382-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047427088", 
          "https://doi.org/10.1186/s13014-015-0382-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.4789580", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047822672"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-8140(88)90167-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048395706"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.4861821", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050523211"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-9155/60/18/7101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059030965"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1259/bjr.20140577", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064565447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1259/bjr.20140577", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064565447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1259/bjr.20140698", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064565497"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "BACKGROUND: We investigate the gamma passing rate (GPR) consistency when applying different types of gamma analyses, linacs, and dosimeters for volumetric modulated arc therapy (VMAT).\nMETHODS: A total of 240 VMAT plans for various treatment sites, which were generated with Trilogy (140 plans) and TrueBeam STx (100 plans), were retrospectively selected. For each VMAT plan, planar dose distributions were measured with both MapCHECK2 and ArcCHECK dosimeters. During the planar dose distribution measurements, the actual multileaf collimator (MLC) positions, gantry angles, and delivered monitor units were recorded and compared to the values in the original VMAT plans to calculate mechanical errors. For each VMAT plan, both the global and local gamma analyses were performed with 3%/3\u00a0mm, 2%/2\u00a0mm, 2%/1\u00a0mm, 1%/2\u00a0mm, and 1%/1\u00a0mm. The Pearson correlation coefficients (r) were calculated 1) between the global and the local GPRs, 2) between GPRs with the MapCHECK2 and the ArcCHECK dosimeters, 3) and between GPRs and the mechanical errors during the VMAT delivery.\nRESULTS: For the MapCHECK2 measurements, strong correlations between the global and local GPRs were observed only with 1%/2\u00a0mm and 1%/1\u00a0mm (r\u2009>\u20090.8 with p\u2009<\u20090.001), while weak or no correlations were observed for the ArcCHECK measurement. Between the MapCHECK2 and ArcCHECK measurements, the global GPRs showed no correlations (all with p\u2009>\u20090.05), while the local GPRs showed moderate correlations only with 2%/1\u00a0mm and 1%/1\u00a0mm for TrueBeam STx (r\u2009>\u20090.5 with p\u2009<\u20090.001). Both the global and local GPRs always showed weak or no correlations with the MLC positional errors except for the GPRs of MapCHECK2 with 1%/2\u00a0mm and 1%/1\u00a0mm for TrueBeam STx and the GPR of ArcCHECK with 1%/2\u00a0mm for Trilogy (r\u2009<\u2009-\u20090.5 with p\u2009<\u20090.001).\nCONCLUSIONS: The GPRs varied according to the types of gamma analyses, dosimeters, and linacs. Therefore, each institution should carefully establish their own gamma analysis protocol by determining the type of gamma index analysis and the gamma criterion with their own linac and their own dosimeter.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s13014-018-1123-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1036451", 
        "issn": [
          "1748-717X"
        ], 
        "name": "Radiation Oncology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "13"
      }
    ], 
    "name": "Reliability of the gamma index analysis as a verification method of volumetric modulated arc therapy plans", 
    "pagination": "175", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "7cdbcfb60a9c8a94c0a3b4eba43fcdf6776659482cabf6815f8d0f82a5fd1e00"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30217163"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101265111"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13014-018-1123-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1106947548"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13014-018-1123-x", 
      "https://app.dimensions.ai/details/publication/pub.1106947548"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000358_0000000358/records_127435_00000011.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs13014-018-1123-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13014-018-1123-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13014-018-1123-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13014-018-1123-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13014-018-1123-x'


 

This table displays all metadata directly associated to this object as RDF triples.

234 TRIPLES      21 PREDICATES      66 URIs      30 LITERALS      18 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13014-018-1123-x schema:about N05680cca79604d329fc51d39f05634b9
2 N07f8c95504eb468a85eb4d6b65ac596b
3 N3652ec0cfe6143639fceb48cf136fec7
4 N4c22c3fac07945b6940a231b99982aa8
5 N850b2ef8b0154a12b1f99bf53a17a507
6 N94669d14692d4a188d95b70d1fe1491f
7 N952bf588e6594248bc20b35d1497647a
8 Nb07ad2210a3846a0929bb405b4f550c0
9 Ne769952405b149a6a0de32bccf786c09
10 anzsrc-for:11
11 anzsrc-for:1103
12 schema:author N3ac4f4765e9f47efb3418fc0f3d3a60e
13 schema:citation sg:pub.10.1186/1748-717x-9-167
14 sg:pub.10.1186/s13014-015-0382-z
15 https://doi.org/10.1016/0167-8140(88)90167-3
16 https://doi.org/10.1016/0360-3016(93)90206-b
17 https://doi.org/10.1016/j.ijrobp.2009.03.033
18 https://doi.org/10.1016/j.radonc.2013.08.048
19 https://doi.org/10.1016/j.radonc.2014.03.021
20 https://doi.org/10.1088/0031-9155/60/18/7101
21 https://doi.org/10.1118/1.1591194
22 https://doi.org/10.1118/1.1598711
23 https://doi.org/10.1118/1.2818738
24 https://doi.org/10.1118/1.3190392
25 https://doi.org/10.1118/1.3528214
26 https://doi.org/10.1118/1.3544657
27 https://doi.org/10.1118/1.4788645
28 https://doi.org/10.1118/1.4789580
29 https://doi.org/10.1118/1.4802748
30 https://doi.org/10.1118/1.4810969
31 https://doi.org/10.1118/1.4861821
32 https://doi.org/10.1118/1.4949002
33 https://doi.org/10.1118/1.597316
34 https://doi.org/10.1118/1.598248
35 https://doi.org/10.1118/1.598691
36 https://doi.org/10.1120/jacmp.v15i4.4690
37 https://doi.org/10.1120/jacmp.v17i2.5995
38 https://doi.org/10.1259/bjr.20140577
39 https://doi.org/10.1259/bjr.20140698
40 https://doi.org/10.18632/oncotarget.12279
41 schema:datePublished 2018-12
42 schema:datePublishedReg 2018-12-01
43 schema:description BACKGROUND: We investigate the gamma passing rate (GPR) consistency when applying different types of gamma analyses, linacs, and dosimeters for volumetric modulated arc therapy (VMAT). METHODS: A total of 240 VMAT plans for various treatment sites, which were generated with Trilogy (140 plans) and TrueBeam STx (100 plans), were retrospectively selected. For each VMAT plan, planar dose distributions were measured with both MapCHECK2 and ArcCHECK dosimeters. During the planar dose distribution measurements, the actual multileaf collimator (MLC) positions, gantry angles, and delivered monitor units were recorded and compared to the values in the original VMAT plans to calculate mechanical errors. For each VMAT plan, both the global and local gamma analyses were performed with 3%/3 mm, 2%/2 mm, 2%/1 mm, 1%/2 mm, and 1%/1 mm. The Pearson correlation coefficients (r) were calculated 1) between the global and the local GPRs, 2) between GPRs with the MapCHECK2 and the ArcCHECK dosimeters, 3) and between GPRs and the mechanical errors during the VMAT delivery. RESULTS: For the MapCHECK2 measurements, strong correlations between the global and local GPRs were observed only with 1%/2 mm and 1%/1 mm (r > 0.8 with p < 0.001), while weak or no correlations were observed for the ArcCHECK measurement. Between the MapCHECK2 and ArcCHECK measurements, the global GPRs showed no correlations (all with p > 0.05), while the local GPRs showed moderate correlations only with 2%/1 mm and 1%/1 mm for TrueBeam STx (r > 0.5 with p < 0.001). Both the global and local GPRs always showed weak or no correlations with the MLC positional errors except for the GPRs of MapCHECK2 with 1%/2 mm and 1%/1 mm for TrueBeam STx and the GPR of ArcCHECK with 1%/2 mm for Trilogy (r < - 0.5 with p < 0.001). CONCLUSIONS: The GPRs varied according to the types of gamma analyses, dosimeters, and linacs. Therefore, each institution should carefully establish their own gamma analysis protocol by determining the type of gamma index analysis and the gamma criterion with their own linac and their own dosimeter.
44 schema:genre research_article
45 schema:inLanguage en
46 schema:isAccessibleForFree true
47 schema:isPartOf N2ec4cd3e3af843e0bc8db13a52c5821b
48 N595121b42d394b5eafb16abb39f7404c
49 sg:journal.1036451
50 schema:name Reliability of the gamma index analysis as a verification method of volumetric modulated arc therapy plans
51 schema:pagination 175
52 schema:productId N17859aab4cc448788ea13613da039e90
53 N48b74ffcb09c4c0b91be3e41bc87031c
54 N56ebba9b8e354bd2a8e040d46eda9d89
55 N7b131639ed0240239fb64a6be7e93396
56 Nd2ba9916c81344b3b28767242fae3fa1
57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106947548
58 https://doi.org/10.1186/s13014-018-1123-x
59 schema:sdDatePublished 2019-04-11T11:39
60 schema:sdLicense https://scigraph.springernature.com/explorer/license/
61 schema:sdPublisher Nb658635fced4465bbe5e4c0344b46073
62 schema:url https://link.springer.com/10.1186%2Fs13014-018-1123-x
63 sgo:license sg:explorer/license/
64 sgo:sdDataset articles
65 rdf:type schema:ScholarlyArticle
66 N05680cca79604d329fc51d39f05634b9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
67 schema:name Neoplasms
68 rdf:type schema:DefinedTerm
69 N07f8c95504eb468a85eb4d6b65ac596b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
70 schema:name Radiotherapy, Intensity-Modulated
71 rdf:type schema:DefinedTerm
72 N17859aab4cc448788ea13613da039e90 schema:name pubmed_id
73 schema:value 30217163
74 rdf:type schema:PropertyValue
75 N2ec4cd3e3af843e0bc8db13a52c5821b schema:volumeNumber 13
76 rdf:type schema:PublicationVolume
77 N3652ec0cfe6143639fceb48cf136fec7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
78 schema:name Retrospective Studies
79 rdf:type schema:DefinedTerm
80 N3ac4f4765e9f47efb3418fc0f3d3a60e rdf:first sg:person.01174734266.99
81 rdf:rest Ne33df9ab38ed4b508d9637d47bfda0e0
82 N3e2ee96bc3944d00946a6f9fada34188 rdf:first sg:person.01331420034.06
83 rdf:rest rdf:nil
84 N48b74ffcb09c4c0b91be3e41bc87031c schema:name dimensions_id
85 schema:value pub.1106947548
86 rdf:type schema:PropertyValue
87 N4c22c3fac07945b6940a231b99982aa8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Netherlands
89 rdf:type schema:DefinedTerm
90 N56ebba9b8e354bd2a8e040d46eda9d89 schema:name nlm_unique_id
91 schema:value 101265111
92 rdf:type schema:PropertyValue
93 N595121b42d394b5eafb16abb39f7404c schema:issueNumber 1
94 rdf:type schema:PublicationIssue
95 N7b131639ed0240239fb64a6be7e93396 schema:name doi
96 schema:value 10.1186/s13014-018-1123-x
97 rdf:type schema:PropertyValue
98 N850b2ef8b0154a12b1f99bf53a17a507 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Humans
100 rdf:type schema:DefinedTerm
101 N9093aff341e74e6d9c050394eedfb763 rdf:first sg:person.01022574470.48
102 rdf:rest Nb0f753e7c03949fb83993ccdfa5594db
103 N94669d14692d4a188d95b70d1fe1491f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Radiotherapy Dosage
105 rdf:type schema:DefinedTerm
106 N952bf588e6594248bc20b35d1497647a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Reproducibility of Results
108 rdf:type schema:DefinedTerm
109 Nb07ad2210a3846a0929bb405b4f550c0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Radiotherapy Planning, Computer-Assisted
111 rdf:type schema:DefinedTerm
112 Nb0f753e7c03949fb83993ccdfa5594db rdf:first sg:person.011446441222.60
113 rdf:rest N3e2ee96bc3944d00946a6f9fada34188
114 Nb658635fced4465bbe5e4c0344b46073 schema:name Springer Nature - SN SciGraph project
115 rdf:type schema:Organization
116 Nd2ba9916c81344b3b28767242fae3fa1 schema:name readcube_id
117 schema:value 7cdbcfb60a9c8a94c0a3b4eba43fcdf6776659482cabf6815f8d0f82a5fd1e00
118 rdf:type schema:PropertyValue
119 Nd433fdbfc6b84cea8bd2ab164ce5f4e4 schema:name Department of Radiation Oncology, Veterans Health Service Medical Center, Seoul, South Korea
120 rdf:type schema:Organization
121 Ne33df9ab38ed4b508d9637d47bfda0e0 rdf:first sg:person.01011372453.49
122 rdf:rest N9093aff341e74e6d9c050394eedfb763
123 Ne769952405b149a6a0de32bccf786c09 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Male
125 rdf:type schema:DefinedTerm
126 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
127 schema:name Medical and Health Sciences
128 rdf:type schema:DefinedTerm
129 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
130 schema:name Clinical Sciences
131 rdf:type schema:DefinedTerm
132 sg:journal.1036451 schema:issn 1748-717X
133 schema:name Radiation Oncology
134 rdf:type schema:Periodical
135 sg:person.01011372453.49 schema:affiliation https://www.grid.ac/institutes/grid.412484.f
136 schema:familyName Kim
137 schema:givenName Jung-in
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01011372453.49
139 rdf:type schema:Person
140 sg:person.01022574470.48 schema:affiliation Nd433fdbfc6b84cea8bd2ab164ce5f4e4
141 schema:familyName Park
142 schema:givenName So-Yeon
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01022574470.48
144 rdf:type schema:Person
145 sg:person.011446441222.60 schema:affiliation https://www.grid.ac/institutes/grid.416355.0
146 schema:familyName Oh
147 schema:givenName Do Hoon
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011446441222.60
149 rdf:type schema:Person
150 sg:person.01174734266.99 schema:affiliation https://www.grid.ac/institutes/grid.410897.3
151 schema:familyName Park
152 schema:givenName Jong Min
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01174734266.99
154 rdf:type schema:Person
155 sg:person.01331420034.06 schema:affiliation https://www.grid.ac/institutes/grid.453227.5
156 schema:familyName Kim
157 schema:givenName Sang-Tae
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331420034.06
159 rdf:type schema:Person
160 sg:pub.10.1186/1748-717x-9-167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027374104
161 https://doi.org/10.1186/1748-717x-9-167
162 rdf:type schema:CreativeWork
163 sg:pub.10.1186/s13014-015-0382-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1047427088
164 https://doi.org/10.1186/s13014-015-0382-z
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/0167-8140(88)90167-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048395706
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/0360-3016(93)90206-b schema:sameAs https://app.dimensions.ai/details/publication/pub.1014920548
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/j.ijrobp.2009.03.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036462815
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/j.radonc.2013.08.048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005739086
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/j.radonc.2014.03.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004543732
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1088/0031-9155/60/18/7101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059030965
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1118/1.1591194 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027183073
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1118/1.1598711 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009300821
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1118/1.2818738 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004257810
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1118/1.3190392 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004122028
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1118/1.3528214 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021561379
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1118/1.3544657 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006516811
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1118/1.4788645 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007384545
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1118/1.4789580 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047822672
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1118/1.4802748 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032606714
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1118/1.4810969 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024373930
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1118/1.4861821 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050523211
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1118/1.4949002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023083879
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1118/1.597316 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046763941
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1118/1.598248 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024691600
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1118/1.598691 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023914373
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1120/jacmp.v15i4.4690 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026916527
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1120/jacmp.v17i2.5995 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032070906
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1259/bjr.20140577 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064565447
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1259/bjr.20140698 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064565497
215 rdf:type schema:CreativeWork
216 https://doi.org/10.18632/oncotarget.12279 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023514658
217 rdf:type schema:CreativeWork
218 https://www.grid.ac/institutes/grid.410897.3 schema:alternateName Advanced Institutes of Convergence Technology
219 schema:name Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
220 Department of Radiation Oncology, Seoul National University Hospital, Seoul, South Korea
221 Institute for Smart System, Robotics Research Laboratory for Extreme Environments, Advanced Institutes of Convergence Technology, Suwon, South Korea
222 Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, South Korea
223 rdf:type schema:Organization
224 https://www.grid.ac/institutes/grid.412484.f schema:alternateName Seoul National University Hospital
225 schema:name Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
226 Department of Radiation Oncology, Seoul National University Hospital, Seoul, South Korea
227 Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, South Korea
228 rdf:type schema:Organization
229 https://www.grid.ac/institutes/grid.416355.0 schema:alternateName Myongji Hospital
230 schema:name Department of Radiation Oncology, Myongji Hospital, Goyang, South Korea
231 rdf:type schema:Organization
232 https://www.grid.ac/institutes/grid.453227.5 schema:alternateName Nuclear Safety And Security Commission
233 schema:name Nuclear Emergency Division, Radiation Protection and Emergency Preparedness Bureau, Nuclear Safety and Security Commission, Seoul, South Korea
234 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...