Investigating rectal toxicity associated dosimetric features with deformable accumulated rectal surface dose maps for cervical cancer radiotherapy View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Jiawei Chen, Haibin Chen, Zichun Zhong, Zhuoyu Wang, Brian Hrycushko, Linghong Zhou, Steve Jiang, Kevin Albuquerque, Xuejun Gu, Xin Zhen

ABSTRACT

BACKGROUND: Better knowledge of the dose-toxicity relationship is essential for safe dose escalation to improve local control in cervical cancer radiotherapy. The conventional dose-toxicity model is based on the dose volume histogram, which is the parameter lacking spatial dose information. To overcome this limit, we explore a comprehensive rectal dose-toxicity model based on both dose volume histogram and dose map features for accurate radiation toxicity prediction. METHODS: Forty-two cervical cancer patients treated with combined external beam radiotherapy (EBRT) and brachytherapy (BT) were retrospectively studied, including 12 with Grade ≥ 2 rectum toxicity and 30 patients with Grade 0-1 toxicity (non-toxicity patients). The cumulative equivalent 2-Gy rectal surface dose was deformably summed using the deformation vector fields obtained through a recent developed local topology preserved non-rigid point matching algorithm. The cumulative three-dimensional (3D) dose was flattened and mapped to a two-dimensional (2D) plane to obtain the rectum surface dose map (RSDM). The dose volume parameters (DVPs) were calculated from the 3D rectum surface, while the texture features and the dose geometric parameters (DGPs) were extracted from the 2D RSDM. Representative features further computed from DVPs, textures and DGPs by principle component analysis (PCA) and statistical analysis were respectively fed into a support vector machine equipped with a sequential feature selection procedure. The predictive powers of the representative features were compared with the GEC-ESTRO dosimetric parameters D0.1/1/2cm3. RESULTS: Satisfactory predictive accuracy of sensitivity 74.75 and 84.75%, specificity 72.67 and 79.87%, and area under the receiver operating characteristic curve (AUC) 0.82 and 0.91 were respectively achieved by the PCA features and statistical significant features, which were superior to the D0.1/1/2cm3 (AUC 0.71). The relative area in dose levels of 64Gy, 67Gy, 68Gy, 87Gy, 88Gy and 89Gy, perimeters in dose levels of 89Gy, as well as two texture features were ranked as the important factors that were closely correlated with rectal toxicity. CONCLUSIONS: Our extensive experimental results have demonstrated the feasibility of the proposed scheme. A future large patient cohort study is still needed for model validation. More... »

PAGES

125

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13014-018-1068-0

DOI

http://dx.doi.org/10.1186/s13014-018-1068-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1105336356

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29980214


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Area Under Curve", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Brachytherapy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Organs at Risk", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Principal Component Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiation Injuries", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiometry", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiotherapy Dosage", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiotherapy, Intensity-Modulated", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Rectum", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Retrospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Uterine Cervical Neoplasms", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Southern Medical University", 
          "id": "https://www.grid.ac/institutes/grid.284723.8", 
          "name": [
            "School of Biomedical Engineering, Southern Medical University, 510515, Guangzhou, Guangdong, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Jiawei", 
        "id": "sg:person.014530352203.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014530352203.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Southern Medical University", 
          "id": "https://www.grid.ac/institutes/grid.284723.8", 
          "name": [
            "School of Biomedical Engineering, Southern Medical University, 510515, Guangzhou, Guangdong, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Haibin", 
        "id": "sg:person.01077667202.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01077667202.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wayne State University", 
          "id": "https://www.grid.ac/institutes/grid.254444.7", 
          "name": [
            "Department of Computer Science, Wayne State University, 48202, Detroit, MI, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhong", 
        "givenName": "Zichun", 
        "id": "sg:person.01177527443.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01177527443.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "McGill University", 
          "id": "https://www.grid.ac/institutes/grid.14709.3b", 
          "name": [
            "Department of Epidemiology, Biostatistics and Occupational Health, McGill University, 805 Sherbrooke Street West, H3A 0G4, Montreal, Quebec, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Zhuoyu", 
        "id": "sg:person.011731763547.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011731763547.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Southwestern Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.416214.4", 
          "name": [
            "Department of Radiation Oncology, The University of Texas, Southwestern Medical Center, 75390, Dallas, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hrycushko", 
        "givenName": "Brian", 
        "id": "sg:person.01070135517.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01070135517.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Southern Medical University", 
          "id": "https://www.grid.ac/institutes/grid.284723.8", 
          "name": [
            "School of Biomedical Engineering, Southern Medical University, 510515, Guangzhou, Guangdong, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhou", 
        "givenName": "Linghong", 
        "id": "sg:person.01161671020.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01161671020.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Southwestern Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.416214.4", 
          "name": [
            "Department of Radiation Oncology, The University of Texas, Southwestern Medical Center, 75390, Dallas, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jiang", 
        "givenName": "Steve", 
        "id": "sg:person.01065511521.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01065511521.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Southwestern Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.416214.4", 
          "name": [
            "Department of Radiation Oncology, The University of Texas, Southwestern Medical Center, 75390, Dallas, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Albuquerque", 
        "givenName": "Kevin", 
        "id": "sg:person.01031332740.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01031332740.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Southwestern Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.416214.4", 
          "name": [
            "Department of Radiation Oncology, The University of Texas, Southwestern Medical Center, 75390, Dallas, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gu", 
        "givenName": "Xuejun", 
        "id": "sg:person.0576344012.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0576344012.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Southern Medical University", 
          "id": "https://www.grid.ac/institutes/grid.284723.8", 
          "name": [
            "School of Biomedical Engineering, Southern Medical University, 510515, Guangzhou, Guangdong, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhen", 
        "givenName": "Xin", 
        "id": "sg:person.01323520527.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01323520527.67"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1200/jco.2007.10.8324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002798669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijrobp.2005.02.040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005138102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.2907707", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007080464"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.radonc.2012.03.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007392008"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.radonc.2016.05.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008891301"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijrobp.2014.11.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010720986"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.radonc.2005.11.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010923019"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0360-3016(99)00270-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011163756"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijrobp.2009.03.078", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012582076"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijrobp.2014.04.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013274494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.radonc.2016.04.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013284675"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijrobp.2016.10.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014504325"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1748-717x-8-28", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015949002", 
          "https://doi.org/10.1186/1748-717x-8-28"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.radonc.2016.04.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017650602"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-24574-4_28", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017774818", 
          "https://doi.org/10.1007/978-3-319-24574-4_28"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.brachy.2016.10.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022977914"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.radonc.2015.10.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025106782"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00994018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025150743", 
          "https://doi.org/10.1007/bf00994018"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.radonc.2016.04.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025699280"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1120/jacmp.v16i2.5324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028114830"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijrobp.2005.11.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028361740"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1472-6947-11-51", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029251036", 
          "https://doi.org/10.1186/1472-6947-11-51"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.radonc.2013.01.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029416348"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijrobp.2005.10.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034639702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.3367013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035060617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.radonc.2015.12.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035245334"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-41083-3_16", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038825938", 
          "https://doi.org/10.1007/978-3-642-41083-3_16"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijrobp.2004.07.724", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041063022"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.semradonc.2009.11.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042320710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.4903300", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042514308"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.radonc.2016.06.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044104557"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.radonc.2011.08.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046559440"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2461912.2461946", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046787855"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.4852955", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049573528"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.radonc.2012.10.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049741191"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13014-016-0719-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050757057", 
          "https://doi.org/10.1186/s13014-016-0719-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13014-016-0719-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050757057", 
          "https://doi.org/10.1186/s13014-016-0719-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.radonc.2016.02.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051445016"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/02841860802282794", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051973365"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-9155/54/21/006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059027885"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-9155/54/21/006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059027885"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-9155/56/7/013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059029111"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-9155/57/24/8297", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059029557"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-9155/61/3/1217", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059031722"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1361-6560/61/24/8736", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059133806"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jicru/ndw027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059796370"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/34.574797", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061156543"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1361-6560/aa663d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085285925"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/0284186x.2017.1351624", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091617872"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/embc.2017.8036899", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092356224"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/3dv.2016.79", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093838265"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ijcnn.2008.4633969", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094491390"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1613/jair.953", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105579550"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "BACKGROUND: Better knowledge of the dose-toxicity relationship is essential for safe dose escalation to improve local control in cervical cancer radiotherapy. The conventional dose-toxicity model is based on the dose volume histogram, which is the parameter lacking spatial dose information. To overcome this limit, we explore a comprehensive rectal dose-toxicity model based on both dose volume histogram and dose map features for accurate radiation toxicity prediction.\nMETHODS: Forty-two cervical cancer patients treated with combined external beam radiotherapy (EBRT) and brachytherapy (BT) were retrospectively studied, including 12 with Grade\u2009\u2265\u20092 rectum toxicity and 30 patients with Grade 0-1 toxicity (non-toxicity patients). The cumulative equivalent 2-Gy rectal surface dose was deformably summed using the deformation vector fields obtained through a recent developed local topology preserved non-rigid point matching algorithm. The cumulative three-dimensional (3D) dose was flattened and mapped to a two-dimensional (2D) plane to obtain the rectum surface dose map (RSDM). The dose volume parameters (DVPs) were calculated from the 3D rectum surface, while the texture features and the dose geometric parameters (DGPs) were extracted from the 2D RSDM. Representative features further computed from DVPs, textures and DGPs by principle component analysis (PCA) and statistical analysis were respectively fed into a support vector machine equipped with a sequential feature selection procedure. The predictive powers of the representative features were compared with the GEC-ESTRO dosimetric parameters D0.1/1/2cm3.\nRESULTS: Satisfactory predictive accuracy of sensitivity 74.75 and 84.75%, specificity 72.67 and 79.87%, and area under the receiver operating characteristic curve (AUC) 0.82 and 0.91 were respectively achieved by the PCA features and statistical significant features, which were superior to the D0.1/1/2cm3 (AUC 0.71). The relative area in dose levels of 64Gy, 67Gy, 68Gy, 87Gy, 88Gy and 89Gy, perimeters in dose levels of 89Gy, as well as two texture features were ranked as the important factors that were closely correlated with rectal toxicity.\nCONCLUSIONS: Our extensive experimental results have demonstrated the feasibility of the proposed scheme. A future large patient cohort study is still needed for model validation.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s13014-018-1068-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6504824", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1036451", 
        "issn": [
          "1748-717X"
        ], 
        "name": "Radiation Oncology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "13"
      }
    ], 
    "name": "Investigating rectal toxicity associated dosimetric features with deformable accumulated rectal surface dose maps for cervical cancer radiotherapy", 
    "pagination": "125", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5308802fde2dd4c809f651fa318d91a766eca2cf02776e220a7353841dfec664"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29980214"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101265111"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13014-018-1068-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1105336356"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13014-018-1068-0", 
      "https://app.dimensions.ai/details/publication/pub.1105336356"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:21", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000604.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs13014-018-1068-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13014-018-1068-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13014-018-1068-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13014-018-1068-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13014-018-1068-0'


 

This table displays all metadata directly associated to this object as RDF triples.

365 TRIPLES      21 PREDICATES      96 URIs      37 LITERALS      25 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13014-018-1068-0 schema:about N041f9eff00384aac908f5019f4d7a478
2 N1207126be5924ee9adaa3238f46665e0
3 N17ac5def3cec4eb8bc8479b2780e146d
4 N1d2934e4b8c14f01ae6ff2dfa1e6066e
5 N2e29324ab3c343849efb811f0ff609b0
6 N30ba887101aa4c19ad9e4b9dcddafa1d
7 N3931e04b6e9b403f97d615f677a7f228
8 N4d47295fc93240ffbd903b24e732ec54
9 N594592ab44fd4874bc69218b3931c542
10 N5c5ac24efa724ddfb33374d1a7624e88
11 N5e8786cc0f3849c4b8f04b026ce6b599
12 N66aac7f4787b4ee286ca476f0498c77b
13 N69f960a653264e26a6de57d72e7ad407
14 N708ae11795b64e5b9a1ada857cd25d5a
15 N99ce365bf0914c6e847ec868bc27de8f
16 Nf5d0b5860dc04a8398eff01a1bf4c513
17 anzsrc-for:11
18 anzsrc-for:1112
19 schema:author N06b2a94319974f56bec7667a60c89816
20 schema:citation sg:pub.10.1007/978-3-319-24574-4_28
21 sg:pub.10.1007/978-3-642-41083-3_16
22 sg:pub.10.1007/bf00994018
23 sg:pub.10.1186/1472-6947-11-51
24 sg:pub.10.1186/1748-717x-8-28
25 sg:pub.10.1186/s13014-016-0719-2
26 https://doi.org/10.1016/j.brachy.2016.10.005
27 https://doi.org/10.1016/j.ijrobp.2004.07.724
28 https://doi.org/10.1016/j.ijrobp.2005.02.040
29 https://doi.org/10.1016/j.ijrobp.2005.10.029
30 https://doi.org/10.1016/j.ijrobp.2005.11.022
31 https://doi.org/10.1016/j.ijrobp.2009.03.078
32 https://doi.org/10.1016/j.ijrobp.2014.04.027
33 https://doi.org/10.1016/j.ijrobp.2014.11.015
34 https://doi.org/10.1016/j.ijrobp.2016.10.024
35 https://doi.org/10.1016/j.radonc.2005.11.014
36 https://doi.org/10.1016/j.radonc.2011.08.016
37 https://doi.org/10.1016/j.radonc.2012.03.002
38 https://doi.org/10.1016/j.radonc.2012.10.006
39 https://doi.org/10.1016/j.radonc.2013.01.011
40 https://doi.org/10.1016/j.radonc.2015.10.020
41 https://doi.org/10.1016/j.radonc.2015.12.025
42 https://doi.org/10.1016/j.radonc.2016.02.025
43 https://doi.org/10.1016/j.radonc.2016.04.005
44 https://doi.org/10.1016/j.radonc.2016.04.023
45 https://doi.org/10.1016/j.radonc.2016.04.029
46 https://doi.org/10.1016/j.radonc.2016.05.014
47 https://doi.org/10.1016/j.radonc.2016.06.006
48 https://doi.org/10.1016/j.semradonc.2009.11.006
49 https://doi.org/10.1016/s0360-3016(99)00270-9
50 https://doi.org/10.1080/02841860802282794
51 https://doi.org/10.1080/0284186x.2017.1351624
52 https://doi.org/10.1088/0031-9155/54/21/006
53 https://doi.org/10.1088/0031-9155/56/7/013
54 https://doi.org/10.1088/0031-9155/57/24/8297
55 https://doi.org/10.1088/0031-9155/61/3/1217
56 https://doi.org/10.1088/1361-6560/61/24/8736
57 https://doi.org/10.1088/1361-6560/aa663d
58 https://doi.org/10.1093/jicru/ndw027
59 https://doi.org/10.1109/34.574797
60 https://doi.org/10.1109/3dv.2016.79
61 https://doi.org/10.1109/embc.2017.8036899
62 https://doi.org/10.1109/ijcnn.2008.4633969
63 https://doi.org/10.1118/1.2907707
64 https://doi.org/10.1118/1.3367013
65 https://doi.org/10.1118/1.4852955
66 https://doi.org/10.1118/1.4903300
67 https://doi.org/10.1120/jacmp.v16i2.5324
68 https://doi.org/10.1145/2461912.2461946
69 https://doi.org/10.1200/jco.2007.10.8324
70 https://doi.org/10.1613/jair.953
71 schema:datePublished 2018-12
72 schema:datePublishedReg 2018-12-01
73 schema:description BACKGROUND: Better knowledge of the dose-toxicity relationship is essential for safe dose escalation to improve local control in cervical cancer radiotherapy. The conventional dose-toxicity model is based on the dose volume histogram, which is the parameter lacking spatial dose information. To overcome this limit, we explore a comprehensive rectal dose-toxicity model based on both dose volume histogram and dose map features for accurate radiation toxicity prediction. METHODS: Forty-two cervical cancer patients treated with combined external beam radiotherapy (EBRT) and brachytherapy (BT) were retrospectively studied, including 12 with Grade ≥ 2 rectum toxicity and 30 patients with Grade 0-1 toxicity (non-toxicity patients). The cumulative equivalent 2-Gy rectal surface dose was deformably summed using the deformation vector fields obtained through a recent developed local topology preserved non-rigid point matching algorithm. The cumulative three-dimensional (3D) dose was flattened and mapped to a two-dimensional (2D) plane to obtain the rectum surface dose map (RSDM). The dose volume parameters (DVPs) were calculated from the 3D rectum surface, while the texture features and the dose geometric parameters (DGPs) were extracted from the 2D RSDM. Representative features further computed from DVPs, textures and DGPs by principle component analysis (PCA) and statistical analysis were respectively fed into a support vector machine equipped with a sequential feature selection procedure. The predictive powers of the representative features were compared with the GEC-ESTRO dosimetric parameters D0.1/1/2cm3. RESULTS: Satisfactory predictive accuracy of sensitivity 74.75 and 84.75%, specificity 72.67 and 79.87%, and area under the receiver operating characteristic curve (AUC) 0.82 and 0.91 were respectively achieved by the PCA features and statistical significant features, which were superior to the D0.1/1/2cm3 (AUC 0.71). The relative area in dose levels of 64Gy, 67Gy, 68Gy, 87Gy, 88Gy and 89Gy, perimeters in dose levels of 89Gy, as well as two texture features were ranked as the important factors that were closely correlated with rectal toxicity. CONCLUSIONS: Our extensive experimental results have demonstrated the feasibility of the proposed scheme. A future large patient cohort study is still needed for model validation.
74 schema:genre research_article
75 schema:inLanguage en
76 schema:isAccessibleForFree true
77 schema:isPartOf N216133c77ebb42fb898692ec85fff8c9
78 Nd2a7548950d943ecba2dd74cf53551d1
79 sg:journal.1036451
80 schema:name Investigating rectal toxicity associated dosimetric features with deformable accumulated rectal surface dose maps for cervical cancer radiotherapy
81 schema:pagination 125
82 schema:productId N51f4bc726fc841afa1dfb0aa24a0d99a
83 N5ea5eeabf6c24e6bb307db05f455ad46
84 N639903fdaa994e4d9257014b0bcf62d2
85 Nf4ae01273a5340f1b63dceddbde41be0
86 Nf7663c75ab1041498bfa4dba227698d9
87 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105336356
88 https://doi.org/10.1186/s13014-018-1068-0
89 schema:sdDatePublished 2019-04-10T19:21
90 schema:sdLicense https://scigraph.springernature.com/explorer/license/
91 schema:sdPublisher Nea20f460a0d546a696f35e439a2c76d2
92 schema:url https://link.springer.com/10.1186%2Fs13014-018-1068-0
93 sgo:license sg:explorer/license/
94 sgo:sdDataset articles
95 rdf:type schema:ScholarlyArticle
96 N041f9eff00384aac908f5019f4d7a478 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Uterine Cervical Neoplasms
98 rdf:type schema:DefinedTerm
99 N06b2a94319974f56bec7667a60c89816 rdf:first sg:person.014530352203.29
100 rdf:rest N0bb3dba3bbd14f20b3e8ed9897b9a2cf
101 N0bb3dba3bbd14f20b3e8ed9897b9a2cf rdf:first sg:person.01077667202.04
102 rdf:rest N14de809971584ac69f2edac06f452527
103 N1207126be5924ee9adaa3238f46665e0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Principal Component Analysis
105 rdf:type schema:DefinedTerm
106 N14de809971584ac69f2edac06f452527 rdf:first sg:person.01177527443.41
107 rdf:rest Nf1a4a60ee5bb4d71b803b7d3e08fdcc8
108 N17ac5def3cec4eb8bc8479b2780e146d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Female
110 rdf:type schema:DefinedTerm
111 N1d2934e4b8c14f01ae6ff2dfa1e6066e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Sensitivity and Specificity
113 rdf:type schema:DefinedTerm
114 N216133c77ebb42fb898692ec85fff8c9 schema:issueNumber 1
115 rdf:type schema:PublicationIssue
116 N2e29324ab3c343849efb811f0ff609b0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Algorithms
118 rdf:type schema:DefinedTerm
119 N30ba887101aa4c19ad9e4b9dcddafa1d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Male
121 rdf:type schema:DefinedTerm
122 N3931e04b6e9b403f97d615f677a7f228 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Radiotherapy, Intensity-Modulated
124 rdf:type schema:DefinedTerm
125 N4d47295fc93240ffbd903b24e732ec54 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Brachytherapy
127 rdf:type schema:DefinedTerm
128 N51f4bc726fc841afa1dfb0aa24a0d99a schema:name dimensions_id
129 schema:value pub.1105336356
130 rdf:type schema:PropertyValue
131 N594592ab44fd4874bc69218b3931c542 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Rectum
133 rdf:type schema:DefinedTerm
134 N5c5ac24efa724ddfb33374d1a7624e88 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Radiometry
136 rdf:type schema:DefinedTerm
137 N5e8786cc0f3849c4b8f04b026ce6b599 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Organs at Risk
139 rdf:type schema:DefinedTerm
140 N5ea5eeabf6c24e6bb307db05f455ad46 schema:name pubmed_id
141 schema:value 29980214
142 rdf:type schema:PropertyValue
143 N639903fdaa994e4d9257014b0bcf62d2 schema:name nlm_unique_id
144 schema:value 101265111
145 rdf:type schema:PropertyValue
146 N66aac7f4787b4ee286ca476f0498c77b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name Humans
148 rdf:type schema:DefinedTerm
149 N69f960a653264e26a6de57d72e7ad407 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
150 schema:name Retrospective Studies
151 rdf:type schema:DefinedTerm
152 N708ae11795b64e5b9a1ada857cd25d5a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
153 schema:name Area Under Curve
154 rdf:type schema:DefinedTerm
155 N71aced2d92a148c89548244a7447f68d rdf:first sg:person.01031332740.45
156 rdf:rest N93db3a34749c4650be4bce79a4d0b468
157 N89519e510ce249c89c2e7f01f8aecb3e rdf:first sg:person.01070135517.97
158 rdf:rest N94027e723e904c768910439c5c44e79c
159 N93db3a34749c4650be4bce79a4d0b468 rdf:first sg:person.0576344012.97
160 rdf:rest Nfed0caec50b8445ab970309f23f7cafb
161 N94027e723e904c768910439c5c44e79c rdf:first sg:person.01161671020.26
162 rdf:rest Nf150022434bb46fcacfa457325b7f2c7
163 N99ce365bf0914c6e847ec868bc27de8f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
164 schema:name Radiation Injuries
165 rdf:type schema:DefinedTerm
166 Nd2a7548950d943ecba2dd74cf53551d1 schema:volumeNumber 13
167 rdf:type schema:PublicationVolume
168 Nea20f460a0d546a696f35e439a2c76d2 schema:name Springer Nature - SN SciGraph project
169 rdf:type schema:Organization
170 Nf150022434bb46fcacfa457325b7f2c7 rdf:first sg:person.01065511521.00
171 rdf:rest N71aced2d92a148c89548244a7447f68d
172 Nf1a4a60ee5bb4d71b803b7d3e08fdcc8 rdf:first sg:person.011731763547.95
173 rdf:rest N89519e510ce249c89c2e7f01f8aecb3e
174 Nf4ae01273a5340f1b63dceddbde41be0 schema:name doi
175 schema:value 10.1186/s13014-018-1068-0
176 rdf:type schema:PropertyValue
177 Nf5d0b5860dc04a8398eff01a1bf4c513 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
178 schema:name Radiotherapy Dosage
179 rdf:type schema:DefinedTerm
180 Nf7663c75ab1041498bfa4dba227698d9 schema:name readcube_id
181 schema:value 5308802fde2dd4c809f651fa318d91a766eca2cf02776e220a7353841dfec664
182 rdf:type schema:PropertyValue
183 Nfed0caec50b8445ab970309f23f7cafb rdf:first sg:person.01323520527.67
184 rdf:rest rdf:nil
185 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
186 schema:name Medical and Health Sciences
187 rdf:type schema:DefinedTerm
188 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
189 schema:name Oncology and Carcinogenesis
190 rdf:type schema:DefinedTerm
191 sg:grant.6504824 http://pending.schema.org/fundedItem sg:pub.10.1186/s13014-018-1068-0
192 rdf:type schema:MonetaryGrant
193 sg:journal.1036451 schema:issn 1748-717X
194 schema:name Radiation Oncology
195 rdf:type schema:Periodical
196 sg:person.01031332740.45 schema:affiliation https://www.grid.ac/institutes/grid.416214.4
197 schema:familyName Albuquerque
198 schema:givenName Kevin
199 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01031332740.45
200 rdf:type schema:Person
201 sg:person.01065511521.00 schema:affiliation https://www.grid.ac/institutes/grid.416214.4
202 schema:familyName Jiang
203 schema:givenName Steve
204 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01065511521.00
205 rdf:type schema:Person
206 sg:person.01070135517.97 schema:affiliation https://www.grid.ac/institutes/grid.416214.4
207 schema:familyName Hrycushko
208 schema:givenName Brian
209 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01070135517.97
210 rdf:type schema:Person
211 sg:person.01077667202.04 schema:affiliation https://www.grid.ac/institutes/grid.284723.8
212 schema:familyName Chen
213 schema:givenName Haibin
214 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01077667202.04
215 rdf:type schema:Person
216 sg:person.01161671020.26 schema:affiliation https://www.grid.ac/institutes/grid.284723.8
217 schema:familyName Zhou
218 schema:givenName Linghong
219 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01161671020.26
220 rdf:type schema:Person
221 sg:person.011731763547.95 schema:affiliation https://www.grid.ac/institutes/grid.14709.3b
222 schema:familyName Wang
223 schema:givenName Zhuoyu
224 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011731763547.95
225 rdf:type schema:Person
226 sg:person.01177527443.41 schema:affiliation https://www.grid.ac/institutes/grid.254444.7
227 schema:familyName Zhong
228 schema:givenName Zichun
229 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01177527443.41
230 rdf:type schema:Person
231 sg:person.01323520527.67 schema:affiliation https://www.grid.ac/institutes/grid.284723.8
232 schema:familyName Zhen
233 schema:givenName Xin
234 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01323520527.67
235 rdf:type schema:Person
236 sg:person.014530352203.29 schema:affiliation https://www.grid.ac/institutes/grid.284723.8
237 schema:familyName Chen
238 schema:givenName Jiawei
239 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014530352203.29
240 rdf:type schema:Person
241 sg:person.0576344012.97 schema:affiliation https://www.grid.ac/institutes/grid.416214.4
242 schema:familyName Gu
243 schema:givenName Xuejun
244 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0576344012.97
245 rdf:type schema:Person
246 sg:pub.10.1007/978-3-319-24574-4_28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017774818
247 https://doi.org/10.1007/978-3-319-24574-4_28
248 rdf:type schema:CreativeWork
249 sg:pub.10.1007/978-3-642-41083-3_16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038825938
250 https://doi.org/10.1007/978-3-642-41083-3_16
251 rdf:type schema:CreativeWork
252 sg:pub.10.1007/bf00994018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025150743
253 https://doi.org/10.1007/bf00994018
254 rdf:type schema:CreativeWork
255 sg:pub.10.1186/1472-6947-11-51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029251036
256 https://doi.org/10.1186/1472-6947-11-51
257 rdf:type schema:CreativeWork
258 sg:pub.10.1186/1748-717x-8-28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015949002
259 https://doi.org/10.1186/1748-717x-8-28
260 rdf:type schema:CreativeWork
261 sg:pub.10.1186/s13014-016-0719-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050757057
262 https://doi.org/10.1186/s13014-016-0719-2
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1016/j.brachy.2016.10.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022977914
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1016/j.ijrobp.2004.07.724 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041063022
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1016/j.ijrobp.2005.02.040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005138102
269 rdf:type schema:CreativeWork
270 https://doi.org/10.1016/j.ijrobp.2005.10.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034639702
271 rdf:type schema:CreativeWork
272 https://doi.org/10.1016/j.ijrobp.2005.11.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028361740
273 rdf:type schema:CreativeWork
274 https://doi.org/10.1016/j.ijrobp.2009.03.078 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012582076
275 rdf:type schema:CreativeWork
276 https://doi.org/10.1016/j.ijrobp.2014.04.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013274494
277 rdf:type schema:CreativeWork
278 https://doi.org/10.1016/j.ijrobp.2014.11.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010720986
279 rdf:type schema:CreativeWork
280 https://doi.org/10.1016/j.ijrobp.2016.10.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014504325
281 rdf:type schema:CreativeWork
282 https://doi.org/10.1016/j.radonc.2005.11.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010923019
283 rdf:type schema:CreativeWork
284 https://doi.org/10.1016/j.radonc.2011.08.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046559440
285 rdf:type schema:CreativeWork
286 https://doi.org/10.1016/j.radonc.2012.03.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007392008
287 rdf:type schema:CreativeWork
288 https://doi.org/10.1016/j.radonc.2012.10.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049741191
289 rdf:type schema:CreativeWork
290 https://doi.org/10.1016/j.radonc.2013.01.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029416348
291 rdf:type schema:CreativeWork
292 https://doi.org/10.1016/j.radonc.2015.10.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025106782
293 rdf:type schema:CreativeWork
294 https://doi.org/10.1016/j.radonc.2015.12.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035245334
295 rdf:type schema:CreativeWork
296 https://doi.org/10.1016/j.radonc.2016.02.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051445016
297 rdf:type schema:CreativeWork
298 https://doi.org/10.1016/j.radonc.2016.04.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025699280
299 rdf:type schema:CreativeWork
300 https://doi.org/10.1016/j.radonc.2016.04.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013284675
301 rdf:type schema:CreativeWork
302 https://doi.org/10.1016/j.radonc.2016.04.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017650602
303 rdf:type schema:CreativeWork
304 https://doi.org/10.1016/j.radonc.2016.05.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008891301
305 rdf:type schema:CreativeWork
306 https://doi.org/10.1016/j.radonc.2016.06.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044104557
307 rdf:type schema:CreativeWork
308 https://doi.org/10.1016/j.semradonc.2009.11.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042320710
309 rdf:type schema:CreativeWork
310 https://doi.org/10.1016/s0360-3016(99)00270-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011163756
311 rdf:type schema:CreativeWork
312 https://doi.org/10.1080/02841860802282794 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051973365
313 rdf:type schema:CreativeWork
314 https://doi.org/10.1080/0284186x.2017.1351624 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091617872
315 rdf:type schema:CreativeWork
316 https://doi.org/10.1088/0031-9155/54/21/006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059027885
317 rdf:type schema:CreativeWork
318 https://doi.org/10.1088/0031-9155/56/7/013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059029111
319 rdf:type schema:CreativeWork
320 https://doi.org/10.1088/0031-9155/57/24/8297 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059029557
321 rdf:type schema:CreativeWork
322 https://doi.org/10.1088/0031-9155/61/3/1217 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059031722
323 rdf:type schema:CreativeWork
324 https://doi.org/10.1088/1361-6560/61/24/8736 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059133806
325 rdf:type schema:CreativeWork
326 https://doi.org/10.1088/1361-6560/aa663d schema:sameAs https://app.dimensions.ai/details/publication/pub.1085285925
327 rdf:type schema:CreativeWork
328 https://doi.org/10.1093/jicru/ndw027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059796370
329 rdf:type schema:CreativeWork
330 https://doi.org/10.1109/34.574797 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061156543
331 rdf:type schema:CreativeWork
332 https://doi.org/10.1109/3dv.2016.79 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093838265
333 rdf:type schema:CreativeWork
334 https://doi.org/10.1109/embc.2017.8036899 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092356224
335 rdf:type schema:CreativeWork
336 https://doi.org/10.1109/ijcnn.2008.4633969 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094491390
337 rdf:type schema:CreativeWork
338 https://doi.org/10.1118/1.2907707 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007080464
339 rdf:type schema:CreativeWork
340 https://doi.org/10.1118/1.3367013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035060617
341 rdf:type schema:CreativeWork
342 https://doi.org/10.1118/1.4852955 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049573528
343 rdf:type schema:CreativeWork
344 https://doi.org/10.1118/1.4903300 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042514308
345 rdf:type schema:CreativeWork
346 https://doi.org/10.1120/jacmp.v16i2.5324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028114830
347 rdf:type schema:CreativeWork
348 https://doi.org/10.1145/2461912.2461946 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046787855
349 rdf:type schema:CreativeWork
350 https://doi.org/10.1200/jco.2007.10.8324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002798669
351 rdf:type schema:CreativeWork
352 https://doi.org/10.1613/jair.953 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105579550
353 rdf:type schema:CreativeWork
354 https://www.grid.ac/institutes/grid.14709.3b schema:alternateName McGill University
355 schema:name Department of Epidemiology, Biostatistics and Occupational Health, McGill University, 805 Sherbrooke Street West, H3A 0G4, Montreal, Quebec, Canada
356 rdf:type schema:Organization
357 https://www.grid.ac/institutes/grid.254444.7 schema:alternateName Wayne State University
358 schema:name Department of Computer Science, Wayne State University, 48202, Detroit, MI, USA
359 rdf:type schema:Organization
360 https://www.grid.ac/institutes/grid.284723.8 schema:alternateName Southern Medical University
361 schema:name School of Biomedical Engineering, Southern Medical University, 510515, Guangzhou, Guangdong, China
362 rdf:type schema:Organization
363 https://www.grid.ac/institutes/grid.416214.4 schema:alternateName Southwestern Medical Center
364 schema:name Department of Radiation Oncology, The University of Texas, Southwestern Medical Center, 75390, Dallas, TX, USA
365 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...