Significance of intra-fractional motion for pancreatic patients treated with charged particles View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Vania Batista, Daniel Richter, Naved Chaudhri, Patrick Naumann, Klaus Herfarth, Oliver Jäkel

ABSTRACT

BACKGROUND: Uncertainties associated with the delivery of treatment to moving organs might compromise the accuracy of treatment. This study explores the impact of intra-fractional anatomical changes in pancreatic patients treated with charged particles delivered using a scanning beam. The aim of this paper is to define the potential source of uncertainties, quantify their effect, and to define clinically feasible strategies to reduce them. METHODS: The study included 14 patients treated at our facility with charged particles (protons or 12C) using intensity modulated particle therapy (IMPT). Treatment plans were optimized using the Treatment Planning System (TPS) Syngo® RT Planning. The pre-treatment dose distribution under motion (4D) was simulated using the TPS TRiP4D and the dose delivered for some of the treatment fractions was reconstructed. The volume receiving at least 95% of the prescribed dose (V95CTV) and the target dose homogeneity were evaluated. The results from the 4D dose calculations were compared with dose distributions in the static case and its variation correlated with the internal motion amplitude and plan modulation, through the Pearson correlation coefficient, as well the significant p-value. The concept of the modulation index (MI) was introduced to assess the degree of modulation of IMPT plans, through the quantification of intensity gradients between neighboring pencil beams. RESULTS: The induced breathing motion together with dynamic beam delivery results in an interplay effect, which affects the homogeneity and target coverage of the dose distribution. This effect is stronger (∆V95CTV > 10%) for patients with tumor motion amplitude above 5 mm and a highly modulated dose distribution between and within fields. The MI combined with the internal motion amplitude is shown to correlate with the target dose degradation and a lack of plan robustness against range and positioning uncertainties. CONCLUSIONS: Under internal motion the use of inhomogeneous plans results in a decrease in the dose homogeneity and target coverage of dose distributions in comparison to the static case. Plan robustness can be improved by using multiple beams and avoiding beam entrance directions susceptible to density changes. 4D dose calculations support the selection of the most suitable plan for the specific patient's anatomy. More... »

PAGES

120

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13014-018-1060-8

DOI

http://dx.doi.org/10.1186/s13014-018-1060-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1105095643

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29941049


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University Hospital Heidelberg", 
          "id": "https://www.grid.ac/institutes/grid.5253.1", 
          "name": [
            "Heidelberg University Hospital, Heidelberg, Germany", 
            "Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), 69120, Heidelberg, Germany", 
            "RadioOnkologie und Strahlentherapie, Universit\u00e4tsklinikum Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Batista", 
        "givenName": "Vania", 
        "id": "sg:person.013224576627.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013224576627.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "GSI Helmholtz Centre for Heavy Ion Research", 
          "id": "https://www.grid.ac/institutes/grid.159791.2", 
          "name": [
            "Erlangen University Hospital, Erlangen, Germany", 
            "GSI Helmholtz Centre for Heavy Ion Research, Darmstadt, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Richter", 
        "givenName": "Daniel", 
        "id": "sg:person.0655731517.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0655731517.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Heidelberger Institut f\u00fcr Radioonkologie", 
          "id": "https://www.grid.ac/institutes/grid.488831.e", 
          "name": [
            "Heidelberg Ion-Beam Therapy Center, Heidelberg, Germany", 
            "Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), 69120, Heidelberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chaudhri", 
        "givenName": "Naved", 
        "id": "sg:person.01120610646.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01120610646.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Heidelberger Institut f\u00fcr Radioonkologie", 
          "id": "https://www.grid.ac/institutes/grid.488831.e", 
          "name": [
            "Heidelberg University Hospital, Heidelberg, Germany", 
            "Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), 69120, Heidelberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Naumann", 
        "givenName": "Patrick", 
        "id": "sg:person.0624222412.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0624222412.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Heidelberger Institut f\u00fcr Radioonkologie", 
          "id": "https://www.grid.ac/institutes/grid.488831.e", 
          "name": [
            "Heidelberg University Hospital, Heidelberg, Germany", 
            "Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), 69120, Heidelberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Herfarth", 
        "givenName": "Klaus", 
        "id": "sg:person.0724642272.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0724642272.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Heidelberger Institut f\u00fcr Radioonkologie", 
          "id": "https://www.grid.ac/institutes/grid.488831.e", 
          "name": [
            "Heidelberg Ion-Beam Therapy Center, Heidelberg, Germany", 
            "German Cancer Research Center, Div. Medical Physics in Radiation Oncology, Heidelberg, Germany", 
            "Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), 69120, Heidelberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "J\u00e4kel", 
        "givenName": "Oliver", 
        "id": "sg:person.01137064231.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01137064231.64"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1120/jacmp.v14i4.4152", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002011738"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mri.2012.05.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003426949"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.radonc.2016.04.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008185577"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijrobp.2009.05.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008277723"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijrobp.2012.04.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014140597"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3322/caac.21387", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014894112"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.radonc.2015.01.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018371460"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ijc.29210", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018963471"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejmp.2016.08.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019485534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1120/jacmp.v17i5.6236", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020956515"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijrobp.2015.12.362", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021921128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijrobp.2016.02.056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024398743"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijrobp.2013.04.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025839987"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijrobp.2014.01.043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034011279"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.radonc.2014.11.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041781678"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2407-13-419", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042429565", 
          "https://doi.org/10.1186/1471-2407-13-419"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13014-016-0740-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044033747", 
          "https://doi.org/10.1186/s13014-016-0740-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13014-016-0740-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044033747", 
          "https://doi.org/10.1186/s13014-016-0740-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.598577", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047538911"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-9155/48/14/301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059024831"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-9155/53/4/015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059027479"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-9155/53/9/003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059027572"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-9155/55/21/001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059028409"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-9155/55/21/001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059028409"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-9155/56/16/r01", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059028844"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-9155/58/22/7905", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059030032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-9155/59/13/3431", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059030332"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.4736310", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062217683"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1269/jrr.48.a55", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064615058"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13014-017-0832-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085930945", 
          "https://doi.org/10.1186/s13014-017-0832-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13014-017-0832-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085930945", 
          "https://doi.org/10.1186/s13014-017-0832-x"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "BACKGROUND: Uncertainties associated with the delivery of treatment to moving organs might compromise the accuracy of treatment. This study explores the impact of intra-fractional anatomical changes in pancreatic patients treated with charged particles delivered using a scanning beam. The aim of this paper is to define the potential source of uncertainties, quantify their effect, and to define clinically feasible strategies to reduce them.\nMETHODS: The study included 14 patients treated at our facility with charged particles (protons or 12C) using intensity modulated particle therapy (IMPT). Treatment plans were optimized using the Treatment Planning System (TPS) Syngo\u00ae RT Planning. The pre-treatment dose distribution under motion (4D) was simulated using the TPS TRiP4D and the dose delivered for some of the treatment fractions was reconstructed. The volume receiving at least 95% of the prescribed dose (V95CTV) and the target dose homogeneity were evaluated. The results from the 4D dose calculations were compared with dose distributions in the static case and its variation correlated with the internal motion amplitude and plan modulation, through the Pearson correlation coefficient, as well the significant p-value. The concept of the modulation index (MI) was introduced to assess the degree of modulation of IMPT plans, through the quantification of intensity gradients between neighboring pencil beams.\nRESULTS: The induced breathing motion together with dynamic beam delivery results in an interplay effect, which affects the homogeneity and target coverage of the dose distribution. This effect is stronger (\u2206V95CTV\u00a0>\u200910%) for patients with tumor motion amplitude above 5\u00a0mm and a highly modulated dose distribution between and within fields. The MI combined with the internal motion amplitude is shown to correlate with the target dose degradation and a lack of plan robustness against range and positioning uncertainties.\nCONCLUSIONS: Under internal motion the use of inhomogeneous plans results in a decrease in the dose homogeneity and target coverage of dose distributions in comparison to the static case. Plan robustness can be improved by using multiple beams and avoiding beam entrance directions susceptible to density changes. 4D dose calculations support the selection of the most suitable plan for the specific patient's anatomy.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s13014-018-1060-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1036451", 
        "issn": [
          "1748-717X"
        ], 
        "name": "Radiation Oncology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "13"
      }
    ], 
    "name": "Significance of intra-fractional motion for pancreatic patients treated with charged particles", 
    "pagination": "120", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2efd1247d8a34d741a2d3b0c68a105b1bb96a49c4ec8d1d45e0f32176c229545"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29941049"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101265111"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13014-018-1060-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1105095643"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13014-018-1060-8", 
      "https://app.dimensions.ai/details/publication/pub.1105095643"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000572.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs13014-018-1060-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13014-018-1060-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13014-018-1060-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13014-018-1060-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13014-018-1060-8'


 

This table displays all metadata directly associated to this object as RDF triples.

202 TRIPLES      21 PREDICATES      57 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13014-018-1060-8 schema:about anzsrc-for:11
2 anzsrc-for:1103
3 schema:author N65971718a020451e810b270610d46ca6
4 schema:citation sg:pub.10.1186/1471-2407-13-419
5 sg:pub.10.1186/s13014-016-0740-5
6 sg:pub.10.1186/s13014-017-0832-x
7 https://doi.org/10.1002/ijc.29210
8 https://doi.org/10.1016/j.ejmp.2016.08.014
9 https://doi.org/10.1016/j.ijrobp.2009.05.026
10 https://doi.org/10.1016/j.ijrobp.2012.04.011
11 https://doi.org/10.1016/j.ijrobp.2013.04.012
12 https://doi.org/10.1016/j.ijrobp.2014.01.043
13 https://doi.org/10.1016/j.ijrobp.2015.12.362
14 https://doi.org/10.1016/j.ijrobp.2016.02.056
15 https://doi.org/10.1016/j.mri.2012.05.001
16 https://doi.org/10.1016/j.radonc.2014.11.020
17 https://doi.org/10.1016/j.radonc.2015.01.017
18 https://doi.org/10.1016/j.radonc.2016.04.026
19 https://doi.org/10.1088/0031-9155/48/14/301
20 https://doi.org/10.1088/0031-9155/53/4/015
21 https://doi.org/10.1088/0031-9155/53/9/003
22 https://doi.org/10.1088/0031-9155/55/21/001
23 https://doi.org/10.1088/0031-9155/56/16/r01
24 https://doi.org/10.1088/0031-9155/58/22/7905
25 https://doi.org/10.1088/0031-9155/59/13/3431
26 https://doi.org/10.1118/1.4736310
27 https://doi.org/10.1118/1.598577
28 https://doi.org/10.1120/jacmp.v14i4.4152
29 https://doi.org/10.1120/jacmp.v17i5.6236
30 https://doi.org/10.1269/jrr.48.a55
31 https://doi.org/10.3322/caac.21387
32 schema:datePublished 2018-12
33 schema:datePublishedReg 2018-12-01
34 schema:description BACKGROUND: Uncertainties associated with the delivery of treatment to moving organs might compromise the accuracy of treatment. This study explores the impact of intra-fractional anatomical changes in pancreatic patients treated with charged particles delivered using a scanning beam. The aim of this paper is to define the potential source of uncertainties, quantify their effect, and to define clinically feasible strategies to reduce them. METHODS: The study included 14 patients treated at our facility with charged particles (protons or 12C) using intensity modulated particle therapy (IMPT). Treatment plans were optimized using the Treatment Planning System (TPS) Syngo® RT Planning. The pre-treatment dose distribution under motion (4D) was simulated using the TPS TRiP4D and the dose delivered for some of the treatment fractions was reconstructed. The volume receiving at least 95% of the prescribed dose (V95CTV) and the target dose homogeneity were evaluated. The results from the 4D dose calculations were compared with dose distributions in the static case and its variation correlated with the internal motion amplitude and plan modulation, through the Pearson correlation coefficient, as well the significant p-value. The concept of the modulation index (MI) was introduced to assess the degree of modulation of IMPT plans, through the quantification of intensity gradients between neighboring pencil beams. RESULTS: The induced breathing motion together with dynamic beam delivery results in an interplay effect, which affects the homogeneity and target coverage of the dose distribution. This effect is stronger (∆V95CTV > 10%) for patients with tumor motion amplitude above 5 mm and a highly modulated dose distribution between and within fields. The MI combined with the internal motion amplitude is shown to correlate with the target dose degradation and a lack of plan robustness against range and positioning uncertainties. CONCLUSIONS: Under internal motion the use of inhomogeneous plans results in a decrease in the dose homogeneity and target coverage of dose distributions in comparison to the static case. Plan robustness can be improved by using multiple beams and avoiding beam entrance directions susceptible to density changes. 4D dose calculations support the selection of the most suitable plan for the specific patient's anatomy.
35 schema:genre research_article
36 schema:inLanguage en
37 schema:isAccessibleForFree true
38 schema:isPartOf N04db6a5de0e2488cb76f2ca237e0a59c
39 N7905ad90aa3b488e94e8aa6805c21616
40 sg:journal.1036451
41 schema:name Significance of intra-fractional motion for pancreatic patients treated with charged particles
42 schema:pagination 120
43 schema:productId N5d397566f1ee48b08105343ac397bc2a
44 N7e8537a572c547ec89e2764761ae20ef
45 N86dd19e8044643339730cca06f938ff7
46 Nbffcb236dcc1421d8a9170f6df5ed37c
47 Ned337b741e86473ea7038c36eb13e9b2
48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105095643
49 https://doi.org/10.1186/s13014-018-1060-8
50 schema:sdDatePublished 2019-04-10T20:55
51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
52 schema:sdPublisher N2325c4b17dc8414387b38e68549ecdad
53 schema:url https://link.springer.com/10.1186%2Fs13014-018-1060-8
54 sgo:license sg:explorer/license/
55 sgo:sdDataset articles
56 rdf:type schema:ScholarlyArticle
57 N04db6a5de0e2488cb76f2ca237e0a59c schema:issueNumber 1
58 rdf:type schema:PublicationIssue
59 N17d68bfcd2ee401b9821665a00de27de rdf:first sg:person.01120610646.41
60 rdf:rest N8c1053e99c4c4189a6230f400b80e862
61 N2325c4b17dc8414387b38e68549ecdad schema:name Springer Nature - SN SciGraph project
62 rdf:type schema:Organization
63 N5d397566f1ee48b08105343ac397bc2a schema:name pubmed_id
64 schema:value 29941049
65 rdf:type schema:PropertyValue
66 N65971718a020451e810b270610d46ca6 rdf:first sg:person.013224576627.19
67 rdf:rest Nb5e97a20c1ad46ea8864894185e61707
68 N7905ad90aa3b488e94e8aa6805c21616 schema:volumeNumber 13
69 rdf:type schema:PublicationVolume
70 N7e8537a572c547ec89e2764761ae20ef schema:name readcube_id
71 schema:value 2efd1247d8a34d741a2d3b0c68a105b1bb96a49c4ec8d1d45e0f32176c229545
72 rdf:type schema:PropertyValue
73 N86dd19e8044643339730cca06f938ff7 schema:name nlm_unique_id
74 schema:value 101265111
75 rdf:type schema:PropertyValue
76 N8c1053e99c4c4189a6230f400b80e862 rdf:first sg:person.0624222412.57
77 rdf:rest Nca3074294f804573936b69dc98d3dbed
78 Nb5e97a20c1ad46ea8864894185e61707 rdf:first sg:person.0655731517.01
79 rdf:rest N17d68bfcd2ee401b9821665a00de27de
80 Nbffcb236dcc1421d8a9170f6df5ed37c schema:name dimensions_id
81 schema:value pub.1105095643
82 rdf:type schema:PropertyValue
83 Nca3074294f804573936b69dc98d3dbed rdf:first sg:person.0724642272.31
84 rdf:rest Nfd5b09633f684455908435b0bd06735e
85 Ned337b741e86473ea7038c36eb13e9b2 schema:name doi
86 schema:value 10.1186/s13014-018-1060-8
87 rdf:type schema:PropertyValue
88 Nfd5b09633f684455908435b0bd06735e rdf:first sg:person.01137064231.64
89 rdf:rest rdf:nil
90 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
91 schema:name Medical and Health Sciences
92 rdf:type schema:DefinedTerm
93 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
94 schema:name Clinical Sciences
95 rdf:type schema:DefinedTerm
96 sg:journal.1036451 schema:issn 1748-717X
97 schema:name Radiation Oncology
98 rdf:type schema:Periodical
99 sg:person.01120610646.41 schema:affiliation https://www.grid.ac/institutes/grid.488831.e
100 schema:familyName Chaudhri
101 schema:givenName Naved
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01120610646.41
103 rdf:type schema:Person
104 sg:person.01137064231.64 schema:affiliation https://www.grid.ac/institutes/grid.488831.e
105 schema:familyName Jäkel
106 schema:givenName Oliver
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01137064231.64
108 rdf:type schema:Person
109 sg:person.013224576627.19 schema:affiliation https://www.grid.ac/institutes/grid.5253.1
110 schema:familyName Batista
111 schema:givenName Vania
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013224576627.19
113 rdf:type schema:Person
114 sg:person.0624222412.57 schema:affiliation https://www.grid.ac/institutes/grid.488831.e
115 schema:familyName Naumann
116 schema:givenName Patrick
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0624222412.57
118 rdf:type schema:Person
119 sg:person.0655731517.01 schema:affiliation https://www.grid.ac/institutes/grid.159791.2
120 schema:familyName Richter
121 schema:givenName Daniel
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0655731517.01
123 rdf:type schema:Person
124 sg:person.0724642272.31 schema:affiliation https://www.grid.ac/institutes/grid.488831.e
125 schema:familyName Herfarth
126 schema:givenName Klaus
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0724642272.31
128 rdf:type schema:Person
129 sg:pub.10.1186/1471-2407-13-419 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042429565
130 https://doi.org/10.1186/1471-2407-13-419
131 rdf:type schema:CreativeWork
132 sg:pub.10.1186/s13014-016-0740-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044033747
133 https://doi.org/10.1186/s13014-016-0740-5
134 rdf:type schema:CreativeWork
135 sg:pub.10.1186/s13014-017-0832-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1085930945
136 https://doi.org/10.1186/s13014-017-0832-x
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1002/ijc.29210 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018963471
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.ejmp.2016.08.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019485534
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.ijrobp.2009.05.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008277723
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.ijrobp.2012.04.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014140597
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.ijrobp.2013.04.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025839987
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/j.ijrobp.2014.01.043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034011279
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/j.ijrobp.2015.12.362 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021921128
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/j.ijrobp.2016.02.056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024398743
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/j.mri.2012.05.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003426949
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/j.radonc.2014.11.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041781678
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/j.radonc.2015.01.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018371460
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/j.radonc.2016.04.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008185577
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1088/0031-9155/48/14/301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059024831
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1088/0031-9155/53/4/015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059027479
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1088/0031-9155/53/9/003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059027572
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1088/0031-9155/55/21/001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059028409
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1088/0031-9155/56/16/r01 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059028844
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1088/0031-9155/58/22/7905 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059030032
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1088/0031-9155/59/13/3431 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059030332
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1118/1.4736310 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062217683
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1118/1.598577 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047538911
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1120/jacmp.v14i4.4152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002011738
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1120/jacmp.v17i5.6236 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020956515
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1269/jrr.48.a55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064615058
185 rdf:type schema:CreativeWork
186 https://doi.org/10.3322/caac.21387 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014894112
187 rdf:type schema:CreativeWork
188 https://www.grid.ac/institutes/grid.159791.2 schema:alternateName GSI Helmholtz Centre for Heavy Ion Research
189 schema:name Erlangen University Hospital, Erlangen, Germany
190 GSI Helmholtz Centre for Heavy Ion Research, Darmstadt, Germany
191 rdf:type schema:Organization
192 https://www.grid.ac/institutes/grid.488831.e schema:alternateName Heidelberger Institut für Radioonkologie
193 schema:name German Cancer Research Center, Div. Medical Physics in Radiation Oncology, Heidelberg, Germany
194 Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), 69120, Heidelberg, Germany
195 Heidelberg Ion-Beam Therapy Center, Heidelberg, Germany
196 Heidelberg University Hospital, Heidelberg, Germany
197 rdf:type schema:Organization
198 https://www.grid.ac/institutes/grid.5253.1 schema:alternateName University Hospital Heidelberg
199 schema:name Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), 69120, Heidelberg, Germany
200 Heidelberg University Hospital, Heidelberg, Germany
201 RadioOnkologie und Strahlentherapie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
202 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...