Evaluation of target dose inhomogeneity in breast cancer treatment due to tissue elemental differences View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

A. Fogliata, F. De Rose, A. Stravato, G. Reggiori, S. Tomatis, M. Scorsetti, L. Cozzi

ABSTRACT

BACKGROUND: Monte Carlo simulations were run to estimate the dose variations generated by thedifference arising from the chemical composition of the tissues. METHODS: CT datasets of five breast cancer patients were selected. Mammary gland was delineated as clinical target volume CTV, as well as CTV_lob and CTV_fat, being the lobular and fat fractions of the entire mammary gland. Patients were planned for volumetric modulated arc therapy technique, optimized in the Varian Eclipse treatment planning system. CT, structures and plans were imported in PRIMO, based on Monte Carlo code Penelope, to run three simulations: AdiMus, where the adipose and muscle tissues were automatically assigned to fat and lobular fractions of the breast; Adi and Mus, where adipose and muscle, respectively were assigned to the whole mammary gland. The specific tissue density was kept identical from the CT dataset. Differences in mean doses in the CTV_lob and CTV_fat structures were evaluated for the different tissue assignments. Differences generated by the tissue composition and estimated by Acuros dose calculations in Eclipse were also analysed. RESULTS: From Monte Carlo simulations, the dose in the lobular fraction of the breast, when adipose tissue is assigned in place of muscle, is overestimated by 1.25 ± 0.45%; the dose in the fat fraction of the breast with muscle tissue assignment is underestimated by 1.14 ± 0.51%. Acuros showed an overestimation of 0.98 ± 0.06% and an underestimation of 0.21 ± 0.14% in the lobular and fat portions, respectively. Reason of this dissimilarity resides in the fact that the two calculations, Monte Carlo and Acuros, differently manage the range of CT numbers and the material assignments, having Acuros an overlapping range, where two tissues are both present in defined proportions. CONCLUSION: Although not clinically significant, the dose deposition difference in the lobular and connective fat fraction of the breast tissue lead to an improved knowledge of the possible dose distribution and homogeneity in the breast radiation treatment. More... »

PAGES

92

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13014-018-1022-1

DOI

http://dx.doi.org/10.1186/s13014-018-1022-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1104000173

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29764450


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adipose Tissue", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bone and Bones", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Breast Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lung", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Monte Carlo Method", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Muscle, Skeletal", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Organs at Risk", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiotherapy Dosage", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiotherapy Planning, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiotherapy, Intensity-Modulated", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Humanitas Research Hospital and Cancer Center, Radiotherapy and Radiosurgery Dept, Via Manzoni 56, 20089, Milan, Rozzano, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fogliata", 
        "givenName": "A.", 
        "id": "sg:person.01072253541.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01072253541.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Humanitas Research Hospital and Cancer Center, Radiotherapy and Radiosurgery Dept, Via Manzoni 56, 20089, Milan, Rozzano, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "De Rose", 
        "givenName": "F.", 
        "id": "sg:person.01052627217.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01052627217.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Humanitas Research Hospital and Cancer Center, Radiotherapy and Radiosurgery Dept, Via Manzoni 56, 20089, Milan, Rozzano, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stravato", 
        "givenName": "A.", 
        "id": "sg:person.0733456004.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0733456004.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Humanitas Research Hospital and Cancer Center, Radiotherapy and Radiosurgery Dept, Via Manzoni 56, 20089, Milan, Rozzano, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Reggiori", 
        "givenName": "G.", 
        "id": "sg:person.01204624360.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01204624360.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Humanitas Research Hospital and Cancer Center, Radiotherapy and Radiosurgery Dept, Via Manzoni 56, 20089, Milan, Rozzano, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tomatis", 
        "givenName": "S.", 
        "id": "sg:person.0757442521.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0757442521.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Humanitas University", 
          "id": "https://www.grid.ac/institutes/grid.452490.e", 
          "name": [
            "Humanitas Research Hospital and Cancer Center, Radiotherapy and Radiosurgery Dept, Via Manzoni 56, 20089, Milan, Rozzano, Italy", 
            "Humanitas University, Biomedical Science Faculty, Milan, Rozzano, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Scorsetti", 
        "givenName": "M.", 
        "id": "sg:person.01100401653.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01100401653.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Humanitas University", 
          "id": "https://www.grid.ac/institutes/grid.452490.e", 
          "name": [
            "Humanitas Research Hospital and Cancer Center, Radiotherapy and Radiosurgery Dept, Via Manzoni 56, 20089, Milan, Rozzano, Italy", 
            "Humanitas University, Biomedical Science Faculty, Milan, Rozzano, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cozzi", 
        "givenName": "L.", 
        "id": "sg:person.01024140341.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01024140341.27"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0140-6736(11)60993-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005912207"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.3598439", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007381609"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0168-583x(95)00349-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014571607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00066-013-0415-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014598067", 
          "https://doi.org/10.1007/s00066-013-0415-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(11)61629-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019167359"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.598248", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024691600"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1470-2045(13)70386-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027003800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0360-3016(02)03746-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031828054"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0360-3016(02)03746-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031828054"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.3643029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031964702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1120/jacmp.v15i2.4662", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033607409"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1120/jacmp.v15i2.4662", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033607409"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1120/jacmp.v15i2.4662", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033607409"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa0906260", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037968047"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0168-583x(97)00414-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039409155"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijrobp.2014.03.036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042647961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1748-717x-6-103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043079761", 
          "https://doi.org/10.1186/1748-717x-6-103"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijrobp.2014.05.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052956782"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12282-016-0694-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053342533", 
          "https://doi.org/10.1007/s12282-016-0694-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-9155/45/8/315", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059024077"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-9155/53/14/008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059027191"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-9155/55/3/002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059028505"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-9155/55/3/002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059028505"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12032-017-1020-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090955384", 
          "https://doi.org/10.1007/s12032-017-1020-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12032-017-1020-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090955384", 
          "https://doi.org/10.1007/s12032-017-1020-4"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "BACKGROUND: Monte Carlo simulations were run to estimate the dose variations generated by thedifference arising from the chemical composition of the tissues.\nMETHODS: CT datasets of five breast cancer patients were selected. Mammary gland was delineated as clinical target volume CTV, as well as CTV_lob and CTV_fat, being the lobular and fat fractions of the entire mammary gland. Patients were planned for volumetric modulated arc therapy technique, optimized in the Varian Eclipse treatment planning system. CT, structures and plans were imported in PRIMO, based on Monte Carlo code Penelope, to run three simulations: AdiMus, where the adipose and muscle tissues were automatically assigned to fat and lobular fractions of the breast; Adi and Mus, where adipose and muscle, respectively were assigned to the whole mammary gland. The specific tissue density was kept identical from the CT dataset. Differences in mean doses in the CTV_lob and CTV_fat structures were evaluated for the different tissue assignments. Differences generated by the tissue composition and estimated by Acuros dose calculations in Eclipse were also analysed.\nRESULTS: From Monte Carlo simulations, the dose in the lobular fraction of the breast, when adipose tissue is assigned in place of muscle, is overestimated by 1.25\u2009\u00b1\u20090.45%; the dose in the fat fraction of the breast with muscle tissue assignment is underestimated by 1.14\u2009\u00b1\u20090.51%. Acuros showed an overestimation of 0.98\u2009\u00b1\u20090.06% and an underestimation of 0.21\u2009\u00b1\u20090.14% in the lobular and fat portions, respectively. Reason of this dissimilarity resides in the fact that the two calculations, Monte Carlo and Acuros, differently manage the range of CT numbers and the material assignments, having Acuros an overlapping range, where two tissues are both present in defined proportions.\nCONCLUSION: Although not clinically significant, the dose deposition difference in the lobular and connective fat fraction of the breast tissue lead to an improved knowledge of the possible dose distribution and homogeneity in the breast radiation treatment.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s13014-018-1022-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1036451", 
        "issn": [
          "1748-717X"
        ], 
        "name": "Radiation Oncology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "13"
      }
    ], 
    "name": "Evaluation of target dose inhomogeneity in breast cancer treatment due to tissue elemental differences", 
    "pagination": "92", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "867274b5130005cc7ff63471c3ee8280991f43b316fa590e9af4438fdc2c9cb9"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29764450"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101265111"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13014-018-1022-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1104000173"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13014-018-1022-1", 
      "https://app.dimensions.ai/details/publication/pub.1104000173"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:26", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000571.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs13014-018-1022-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13014-018-1022-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13014-018-1022-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13014-018-1022-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13014-018-1022-1'


 

This table displays all metadata directly associated to this object as RDF triples.

237 TRIPLES      21 PREDICATES      62 URIs      34 LITERALS      22 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13014-018-1022-1 schema:about N28e1d5b30c524dabb28e12e9b7c5ffb8
2 N2b0d7a81b36d4e89a813ad9b3f5dd1ea
3 N4649f9a2bef04243bdaf28aea01943bc
4 N4b583b3b89284b18b65b40f4c871fdfe
5 N67201d3734ea4130a369bdc2fde0136f
6 N7be415f3519046eba5ba30edd9d5541b
7 N86d2a0ecd8784856a4923ed2c391f198
8 N8f6537d739eb4196b44389eb7df9fb20
9 Na1b6e15885ca4a04998877a1c3cc4b6c
10 Nb9c223932c764ca79091a340933a0a1c
11 Nbf00a2716c234f9ca500848d381c49ed
12 Nc5b93ec2bd9f443eb11721a5ceccde60
13 Nd3c64713f7d84a3aa4ad178b7e870096
14 anzsrc-for:11
15 anzsrc-for:1112
16 schema:author N74851c480cbc45749691601f60f82cfc
17 schema:citation sg:pub.10.1007/s00066-013-0415-1
18 sg:pub.10.1007/s12032-017-1020-4
19 sg:pub.10.1007/s12282-016-0694-3
20 sg:pub.10.1186/1748-717x-6-103
21 https://doi.org/10.1016/0168-583x(95)00349-5
22 https://doi.org/10.1016/j.ijrobp.2014.03.036
23 https://doi.org/10.1016/j.ijrobp.2014.05.021
24 https://doi.org/10.1016/s0140-6736(11)60993-8
25 https://doi.org/10.1016/s0140-6736(11)61629-2
26 https://doi.org/10.1016/s0168-583x(97)00414-x
27 https://doi.org/10.1016/s0360-3016(02)03746-x
28 https://doi.org/10.1016/s1470-2045(13)70386-3
29 https://doi.org/10.1056/nejmoa0906260
30 https://doi.org/10.1088/0031-9155/45/8/315
31 https://doi.org/10.1088/0031-9155/53/14/008
32 https://doi.org/10.1088/0031-9155/55/3/002
33 https://doi.org/10.1118/1.3598439
34 https://doi.org/10.1118/1.3643029
35 https://doi.org/10.1118/1.598248
36 https://doi.org/10.1120/jacmp.v15i2.4662
37 schema:datePublished 2018-12
38 schema:datePublishedReg 2018-12-01
39 schema:description BACKGROUND: Monte Carlo simulations were run to estimate the dose variations generated by thedifference arising from the chemical composition of the tissues. METHODS: CT datasets of five breast cancer patients were selected. Mammary gland was delineated as clinical target volume CTV, as well as CTV_lob and CTV_fat, being the lobular and fat fractions of the entire mammary gland. Patients were planned for volumetric modulated arc therapy technique, optimized in the Varian Eclipse treatment planning system. CT, structures and plans were imported in PRIMO, based on Monte Carlo code Penelope, to run three simulations: AdiMus, where the adipose and muscle tissues were automatically assigned to fat and lobular fractions of the breast; Adi and Mus, where adipose and muscle, respectively were assigned to the whole mammary gland. The specific tissue density was kept identical from the CT dataset. Differences in mean doses in the CTV_lob and CTV_fat structures were evaluated for the different tissue assignments. Differences generated by the tissue composition and estimated by Acuros dose calculations in Eclipse were also analysed. RESULTS: From Monte Carlo simulations, the dose in the lobular fraction of the breast, when adipose tissue is assigned in place of muscle, is overestimated by 1.25 ± 0.45%; the dose in the fat fraction of the breast with muscle tissue assignment is underestimated by 1.14 ± 0.51%. Acuros showed an overestimation of 0.98 ± 0.06% and an underestimation of 0.21 ± 0.14% in the lobular and fat portions, respectively. Reason of this dissimilarity resides in the fact that the two calculations, Monte Carlo and Acuros, differently manage the range of CT numbers and the material assignments, having Acuros an overlapping range, where two tissues are both present in defined proportions. CONCLUSION: Although not clinically significant, the dose deposition difference in the lobular and connective fat fraction of the breast tissue lead to an improved knowledge of the possible dose distribution and homogeneity in the breast radiation treatment.
40 schema:genre research_article
41 schema:inLanguage en
42 schema:isAccessibleForFree true
43 schema:isPartOf N16d0060601954df783b95c7eeab6201c
44 N2099854bbece4498ad240372fa6fc079
45 sg:journal.1036451
46 schema:name Evaluation of target dose inhomogeneity in breast cancer treatment due to tissue elemental differences
47 schema:pagination 92
48 schema:productId N0785d241e149421585e1379060546d2d
49 N30f53d504a0a482f84bb67b4c064bf6e
50 N314b2d2b05854483a793a3b735643ab0
51 N8dfc90855f1b4a789bd53ed55b9884f5
52 Nedfbe6f437684dfdb32e1994e65a7de5
53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104000173
54 https://doi.org/10.1186/s13014-018-1022-1
55 schema:sdDatePublished 2019-04-11T00:26
56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
57 schema:sdPublisher Nd44e27d789504d35a8d3203e6ea4cb3f
58 schema:url https://link.springer.com/10.1186%2Fs13014-018-1022-1
59 sgo:license sg:explorer/license/
60 sgo:sdDataset articles
61 rdf:type schema:ScholarlyArticle
62 N0785d241e149421585e1379060546d2d schema:name nlm_unique_id
63 schema:value 101265111
64 rdf:type schema:PropertyValue
65 N0fa17904078547e6ae83f3213abaadbe schema:name Humanitas Research Hospital and Cancer Center, Radiotherapy and Radiosurgery Dept, Via Manzoni 56, 20089, Milan, Rozzano, Italy
66 rdf:type schema:Organization
67 N16d0060601954df783b95c7eeab6201c schema:issueNumber 1
68 rdf:type schema:PublicationIssue
69 N1ee0df8a635e438d9fa1d09e4d72f3aa rdf:first sg:person.01052627217.59
70 rdf:rest Nadbc60a20b7947a4bf71e68cb9699c6e
71 N2099854bbece4498ad240372fa6fc079 schema:volumeNumber 13
72 rdf:type schema:PublicationVolume
73 N28e1d5b30c524dabb28e12e9b7c5ffb8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
74 schema:name Bone and Bones
75 rdf:type schema:DefinedTerm
76 N2b0d7a81b36d4e89a813ad9b3f5dd1ea schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Female
78 rdf:type schema:DefinedTerm
79 N30f53d504a0a482f84bb67b4c064bf6e schema:name readcube_id
80 schema:value 867274b5130005cc7ff63471c3ee8280991f43b316fa590e9af4438fdc2c9cb9
81 rdf:type schema:PropertyValue
82 N314b2d2b05854483a793a3b735643ab0 schema:name pubmed_id
83 schema:value 29764450
84 rdf:type schema:PropertyValue
85 N4649f9a2bef04243bdaf28aea01943bc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Humans
87 rdf:type schema:DefinedTerm
88 N4b583b3b89284b18b65b40f4c871fdfe schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Organs at Risk
90 rdf:type schema:DefinedTerm
91 N54eb15cf8bd1432bbac168d7f82c0107 rdf:first sg:person.0757442521.41
92 rdf:rest Nf5c437827aa642fe9b44af9d8e65cacb
93 N67201d3734ea4130a369bdc2fde0136f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Radiotherapy, Intensity-Modulated
95 rdf:type schema:DefinedTerm
96 N74851c480cbc45749691601f60f82cfc rdf:first sg:person.01072253541.17
97 rdf:rest N1ee0df8a635e438d9fa1d09e4d72f3aa
98 N7be415f3519046eba5ba30edd9d5541b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Breast Neoplasms
100 rdf:type schema:DefinedTerm
101 N7fa8509c44d049ce9d77652bf657a15d schema:name Humanitas Research Hospital and Cancer Center, Radiotherapy and Radiosurgery Dept, Via Manzoni 56, 20089, Milan, Rozzano, Italy
102 rdf:type schema:Organization
103 N8489e998906549fabfa5e620c7243516 rdf:first sg:person.01204624360.40
104 rdf:rest N54eb15cf8bd1432bbac168d7f82c0107
105 N86d2a0ecd8784856a4923ed2c391f198 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Radiotherapy Dosage
107 rdf:type schema:DefinedTerm
108 N8c03d3240dd64a219fc28f20109a3248 schema:name Humanitas Research Hospital and Cancer Center, Radiotherapy and Radiosurgery Dept, Via Manzoni 56, 20089, Milan, Rozzano, Italy
109 rdf:type schema:Organization
110 N8dfc90855f1b4a789bd53ed55b9884f5 schema:name dimensions_id
111 schema:value pub.1104000173
112 rdf:type schema:PropertyValue
113 N8f6537d739eb4196b44389eb7df9fb20 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Algorithms
115 rdf:type schema:DefinedTerm
116 N960f6bb679df4a5498f8cce8a70cab15 schema:name Humanitas Research Hospital and Cancer Center, Radiotherapy and Radiosurgery Dept, Via Manzoni 56, 20089, Milan, Rozzano, Italy
117 rdf:type schema:Organization
118 Na1b6e15885ca4a04998877a1c3cc4b6c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Monte Carlo Method
120 rdf:type schema:DefinedTerm
121 Nadbc60a20b7947a4bf71e68cb9699c6e rdf:first sg:person.0733456004.43
122 rdf:rest N8489e998906549fabfa5e620c7243516
123 Nb9c223932c764ca79091a340933a0a1c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Radiotherapy Planning, Computer-Assisted
125 rdf:type schema:DefinedTerm
126 Nbf00a2716c234f9ca500848d381c49ed schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Muscle, Skeletal
128 rdf:type schema:DefinedTerm
129 Nc5b93ec2bd9f443eb11721a5ceccde60 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Lung
131 rdf:type schema:DefinedTerm
132 Nd3c64713f7d84a3aa4ad178b7e870096 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Adipose Tissue
134 rdf:type schema:DefinedTerm
135 Nd44e27d789504d35a8d3203e6ea4cb3f schema:name Springer Nature - SN SciGraph project
136 rdf:type schema:Organization
137 Ne9a58d96655d44f5b8e4ced0be97a659 rdf:first sg:person.01024140341.27
138 rdf:rest rdf:nil
139 Nedfbe6f437684dfdb32e1994e65a7de5 schema:name doi
140 schema:value 10.1186/s13014-018-1022-1
141 rdf:type schema:PropertyValue
142 Nf138767cff024ef4b7c79543d7bdbd82 schema:name Humanitas Research Hospital and Cancer Center, Radiotherapy and Radiosurgery Dept, Via Manzoni 56, 20089, Milan, Rozzano, Italy
143 rdf:type schema:Organization
144 Nf5c437827aa642fe9b44af9d8e65cacb rdf:first sg:person.01100401653.00
145 rdf:rest Ne9a58d96655d44f5b8e4ced0be97a659
146 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
147 schema:name Medical and Health Sciences
148 rdf:type schema:DefinedTerm
149 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
150 schema:name Oncology and Carcinogenesis
151 rdf:type schema:DefinedTerm
152 sg:journal.1036451 schema:issn 1748-717X
153 schema:name Radiation Oncology
154 rdf:type schema:Periodical
155 sg:person.01024140341.27 schema:affiliation https://www.grid.ac/institutes/grid.452490.e
156 schema:familyName Cozzi
157 schema:givenName L.
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01024140341.27
159 rdf:type schema:Person
160 sg:person.01052627217.59 schema:affiliation Nf138767cff024ef4b7c79543d7bdbd82
161 schema:familyName De Rose
162 schema:givenName F.
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01052627217.59
164 rdf:type schema:Person
165 sg:person.01072253541.17 schema:affiliation N7fa8509c44d049ce9d77652bf657a15d
166 schema:familyName Fogliata
167 schema:givenName A.
168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01072253541.17
169 rdf:type schema:Person
170 sg:person.01100401653.00 schema:affiliation https://www.grid.ac/institutes/grid.452490.e
171 schema:familyName Scorsetti
172 schema:givenName M.
173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01100401653.00
174 rdf:type schema:Person
175 sg:person.01204624360.40 schema:affiliation N0fa17904078547e6ae83f3213abaadbe
176 schema:familyName Reggiori
177 schema:givenName G.
178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01204624360.40
179 rdf:type schema:Person
180 sg:person.0733456004.43 schema:affiliation N8c03d3240dd64a219fc28f20109a3248
181 schema:familyName Stravato
182 schema:givenName A.
183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0733456004.43
184 rdf:type schema:Person
185 sg:person.0757442521.41 schema:affiliation N960f6bb679df4a5498f8cce8a70cab15
186 schema:familyName Tomatis
187 schema:givenName S.
188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0757442521.41
189 rdf:type schema:Person
190 sg:pub.10.1007/s00066-013-0415-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014598067
191 https://doi.org/10.1007/s00066-013-0415-1
192 rdf:type schema:CreativeWork
193 sg:pub.10.1007/s12032-017-1020-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090955384
194 https://doi.org/10.1007/s12032-017-1020-4
195 rdf:type schema:CreativeWork
196 sg:pub.10.1007/s12282-016-0694-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053342533
197 https://doi.org/10.1007/s12282-016-0694-3
198 rdf:type schema:CreativeWork
199 sg:pub.10.1186/1748-717x-6-103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043079761
200 https://doi.org/10.1186/1748-717x-6-103
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1016/0168-583x(95)00349-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014571607
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1016/j.ijrobp.2014.03.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042647961
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1016/j.ijrobp.2014.05.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052956782
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1016/s0140-6736(11)60993-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005912207
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1016/s0140-6736(11)61629-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019167359
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1016/s0168-583x(97)00414-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1039409155
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1016/s0360-3016(02)03746-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1031828054
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1016/s1470-2045(13)70386-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027003800
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1056/nejmoa0906260 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037968047
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1088/0031-9155/45/8/315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059024077
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1088/0031-9155/53/14/008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059027191
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1088/0031-9155/55/3/002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059028505
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1118/1.3598439 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007381609
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1118/1.3643029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031964702
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1118/1.598248 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024691600
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1120/jacmp.v15i2.4662 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033607409
233 rdf:type schema:CreativeWork
234 https://www.grid.ac/institutes/grid.452490.e schema:alternateName Humanitas University
235 schema:name Humanitas Research Hospital and Cancer Center, Radiotherapy and Radiosurgery Dept, Via Manzoni 56, 20089, Milan, Rozzano, Italy
236 Humanitas University, Biomedical Science Faculty, Milan, Rozzano, Italy
237 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...