Development of support vector machine-based model and comparative analysis with artificial neural network for modeling the plant tissue culture procedures: ... View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2020-08-13

AUTHORS

Mohsen Hesami, Roohangiz Naderi, Masoud Tohidfar, Mohsen Yoosefzadeh-Najafabadi

ABSTRACT

BackgroundOptimizing the somatic embryogenesis protocol can be considered as the first and foremost step in successful gene transformation studies. However, it is usually difficult to achieve an optimized embryogenesis protocol due to the cost and time-consuming as well as the complexity of this process. Therefore, it is necessary to use a novel computational approach, such as machine learning algorithms for this aim. In the present study, two machine learning algorithms, including Multilayer Perceptron (MLP) as an artificial neural network (ANN) and support vector regression (SVR), were employed to model somatic embryogenesis of chrysanthemum, as a case study, and compare their prediction accuracy.ResultsThe results showed that SVR (R2 > 0.92) had better performance accuracy than MLP (R2 > 0.82). Moreover, the Non-dominated Sorting Genetic Algorithm-II (NSGA-II) was also applied for the optimization of the somatic embryogenesis and the results showed that the highest embryogenesis rate (99.09%) and the maximum number of somatic embryos per explant (56.24) can be obtained from a medium containing 9.10 μM 2,4-dichlorophenoxyacetic acid (2,4-D), 4.70 μM kinetin (KIN), and 18.73 μM sodium nitroprusside (SNP). According to our results, SVR-NSGA-II was able to optimize the chrysanthemum’s somatic embryogenesis accurately.ConclusionsSVR-NSGA-II can be employed as a reliable and applicable computational methodology in future plant tissue culture studies. More... »

PAGES

112

References to SciGraph publications

  • 2018-09-19. Creation of culture media for efficient duckweeds micropropagation (Wolffia arrhiza and Lemna minor) using artificial mathematical optimization models in PLANT CELL, TISSUE AND ORGAN CULTURE (PCTOC)
  • 2019-05-04. Modeling callus induction and regeneration in an anther culture of tomato (Lycopersicon esculentum L.) using image processing and artificial neural network method in PROTOPLASMA
  • 2004-01-10. Nitric oxide plays a central role in determining lateral root development in tomato in PLANTA
  • 2020-01-06. Analysis of macro nutrient related growth responses using multivariate adaptive regression splines in PLANT CELL, TISSUE AND ORGAN CULTURE (PCTOC)
  • 2019-12-03. Modeling and Optimizing Medium Composition for Shoot Regeneration of Chrysanthemum via Radial Basis Function-Non-dominated Sorting Genetic Algorithm-II (RBF-NSGAII) in SCIENTIFIC REPORTS
  • 2019-07-05. Computer-based tools provide new insight into the key factors that cause physiological disorders of pistachio rootstocks cultured in vitro in SCIENTIFIC REPORTS
  • 2012-10-21. Primary and secondary somatic embryogenesis in Chrysanthemum cv. Euro in PLANT CELL, TISSUE AND ORGAN CULTURE (PCTOC)
  • 2018-01-09. Image Processing and Artificial Neural Network-Based Models to Measure and Predict Physical Properties of Embryogenic Callus and Number of Somatic Embryos in Ajowan (Trachyspermum ammi (L.) Sprague) in IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY - PLANT
  • 2020-02-29. Data driven models for compressive strength prediction of concrete at high temperatures in FRONTIERS OF STRUCTURAL AND CIVIL ENGINEERING
  • 2018-06-07. Development of a Hybrid Data Driven Model for Hydrological Estimation in WATER RESOURCES MANAGEMENT
  • 2019-11-18. Combining gene expression programming and genetic algorithm as a powerful hybrid modeling approach for pear rootstocks tissue culture media formulation in PLANT METHODS
  • 2017-05-18. Intelligent image analysis (IIA) using artificial neural network (ANN) for non-invasive estimation of chlorophyll content in micropropagated plants of potato in IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY - PLANT
  • 2019-02-20. Use of multiple regression analysis and artificial neural networks to model the effect of nitrogen in the organogenesis of Pinus taeda L. in PLANT CELL, TISSUE AND ORGAN CULTURE (PCTOC)
  • 2012-07-04. Somatic embryogenesis and plant regeneration in chrysanthemum (Yuukou) in PLANT CELL, TISSUE AND ORGAN CULTURE (PCTOC)
  • 1999-01. A neural network based pattern recognition system for somatic embryos of Douglas fir in PLANT CELL, TISSUE AND ORGAN CULTURE (PCTOC)
  • 2000-10. Somatic embryogenesis and plant regeneration in chrysanthemum (Dendranthema grandiflorum (Ramat.) Kitamura) in PLANT CELL REPORTS
  • 2020-04-15. Evaluating the Sensitivity of Projected Reservoir Reliability to the Choice of Climate Projection: A Case Study of Bull Run Watershed, Portland, Oregon in WATER RESOURCES MANAGEMENT
  • 2018-04-17. An efficient in vitro shoot regeneration through direct organogenesis from seedling-derived petiole and leaf segments and acclimatization of Ficus religiosa in JOURNAL OF FORESTRY RESEARCH
  • 2008-10-14. Sodium nitroprusside promotes multiplication and regeneration of Malus hupehensis in vitro plantlets in PLANT CELL, TISSUE AND ORGAN CULTURE (PCTOC)
  • 2018-06-26. Indirect Organogenesis through Seedling-Derived Leaf Segments of Ficus Religiosa - a Multipurpose Woody Medicinal Plant in JOURNAL OF CROP SCIENCE AND BIOTECHNOLOGY
  • 1995. The Nature of Statistical Learning Theory in NONE
  • 2012-11-11. Efficiency of neural network-based combinatorial model predicting optimal culture conditions for maximum biomass yields in hairy root cultures in PLANT CELL REPORTS
  • 2016-10-20. Use of RSM and CHAID data mining algorithm for predicting mineral nutrition of hazelnut in PLANT CELL, TISSUE AND ORGAN CULTURE (PCTOC)
  • 2020-03-31. Protoplast isolation and shoot regeneration from protoplast-derived calli of Chrysanthemum cv. White ND in PLANT CELL, TISSUE AND ORGAN CULTURE (PCTOC)
  • 2018-07-02. Modeling and Optimizing a New Culture Medium for In Vitro Rooting of G×N15 Prunus Rootstock using Artificial Neural Network-Genetic Algorithm in SCIENTIFIC REPORTS
  • 2018-11-29. Effects of sodium nitroprusside on callus browning of Ficus religiosa: an important medicinal plant in JOURNAL OF FORESTRY RESEARCH
  • 2016-11-29. Effect of the NO donor “sodium nitroprusside” (SNP), the ethylene inhibitor “cobalt chloride” (CoCl2) and the antioxidant vitamin E “α-tocopherol” on in vitro shoot proliferation of Sideritis raeseri Boiss. & Heldr. subsp. raeseri in PLANT CELL, TISSUE AND ORGAN CULTURE (PCTOC)
  • 2017-11-22. Predicting minor nutrient requirements of hazelnut shoot cultures using regression trees in PLANT CELL, TISSUE AND ORGAN CULTURE (PCTOC)
  • 2005-03. Direct somatic embryogenesis and plant regeneration from ray florets of chrysanthemum in BIOLOGIA PLANTARUM
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s13007-020-00655-9

    DOI

    http://dx.doi.org/10.1186/s13007-020-00655-9

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1130099291

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/32817755


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Technology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biochemistry and Cell Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0607", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Plant Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1001", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Agricultural Biotechnology", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada", 
              "id": "http://www.grid.ac/institutes/grid.34429.38", 
              "name": [
                "Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hesami", 
            "givenName": "Mohsen", 
            "id": "sg:person.010152317512.72", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010152317512.72"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Horticultural Science, Faculty of Agriculture, University of Tehran, Karaj, Iran", 
              "id": "http://www.grid.ac/institutes/grid.46072.37", 
              "name": [
                "Department of Horticultural Science, Faculty of Agriculture, University of Tehran, Karaj, Iran"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Naderi", 
            "givenName": "Roohangiz", 
            "id": "sg:person.01153604677.50", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01153604677.50"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Plant Biotechnology, Faculty of Science and Biotechnology, Shahid Beheshti University, G.C., Tehran, Iran", 
              "id": "http://www.grid.ac/institutes/grid.412502.0", 
              "name": [
                "Department of Plant Biotechnology, Faculty of Science and Biotechnology, Shahid Beheshti University, G.C., Tehran, Iran"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tohidfar", 
            "givenName": "Masoud", 
            "id": "sg:person.01126177703.58", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01126177703.58"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada", 
              "id": "http://www.grid.ac/institutes/grid.34429.38", 
              "name": [
                "Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yoosefzadeh-Najafabadi", 
            "givenName": "Mohsen", 
            "id": "sg:person.013140221512.97", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013140221512.97"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s11240-019-01763-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1123831336", 
              "https://doi.org/10.1007/s11240-019-01763-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11240-012-0201-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026245179", 
              "https://doi.org/10.1007/s11240-012-0201-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11627-017-9877-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100272485", 
              "https://doi.org/10.1007/s11627-017-9877-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11269-018-2016-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104465763", 
              "https://doi.org/10.1007/s11269-018-2016-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-019-46155-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1117798577", 
              "https://doi.org/10.1038/s41598-019-46155-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11240-018-1494-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107105916", 
              "https://doi.org/10.1007/s11240-018-1494-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11240-012-0243-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042058282", 
              "https://doi.org/10.1007/s11240-012-0243-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11709-019-0593-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1125164604", 
              "https://doi.org/10.1007/s11709-019-0593-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10535-005-0033-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041995307", 
              "https://doi.org/10.1007/s10535-005-0033-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11676-018-0647-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103399790", 
              "https://doi.org/10.1007/s11676-018-0647-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-019-54257-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1123087671", 
              "https://doi.org/10.1038/s41598-019-54257-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11240-019-01581-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1112262098", 
              "https://doi.org/10.1007/s11240-019-01581-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1006287917534", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045500829", 
              "https://doi.org/10.1023/a:1006287917534"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12892-018-0024-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105137322", 
              "https://doi.org/10.1007/s12892-018-0024-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13007-019-0520-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1122683488", 
              "https://doi.org/10.1186/s13007-019-0520-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11240-017-1353-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092896390", 
              "https://doi.org/10.1007/s11240-017-1353-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11240-020-01816-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1126006481", 
              "https://doi.org/10.1007/s11240-020-01816-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s002990000225", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049931768", 
              "https://doi.org/10.1007/s002990000225"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4757-2440-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027312764", 
              "https://doi.org/10.1007/978-1-4757-2440-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11240-016-1110-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009723451", 
              "https://doi.org/10.1007/s11240-016-1110-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00299-012-1364-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004860668", 
              "https://doi.org/10.1007/s00299-012-1364-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11269-020-02542-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1126681269", 
              "https://doi.org/10.1007/s11269-020-02542-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00709-019-01379-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1113928399", 
              "https://doi.org/10.1007/s00709-019-01379-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11240-016-1139-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007924145", 
              "https://doi.org/10.1007/s11240-016-1139-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11676-018-0860-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1110264621", 
              "https://doi.org/10.1007/s11676-018-0860-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11240-008-9456-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046396407", 
              "https://doi.org/10.1007/s11240-008-9456-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00425-003-1172-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045420621", 
              "https://doi.org/10.1007/s00425-003-1172-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-018-27858-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105156445", 
              "https://doi.org/10.1038/s41598-018-27858-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11627-017-9825-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085440965", 
              "https://doi.org/10.1007/s11627-017-9825-6"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2020-08-13", 
        "datePublishedReg": "2020-08-13", 
        "description": "BackgroundOptimizing the somatic embryogenesis protocol can be considered as the first and foremost step in successful gene transformation studies. However, it is usually difficult to achieve an optimized embryogenesis protocol due to the cost and time-consuming as well as the complexity of this process. Therefore, it is necessary to use a novel computational approach, such as machine learning algorithms for this aim. In the present study, two machine learning algorithms, including Multilayer Perceptron (MLP) as an artificial neural network (ANN) and support vector regression (SVR), were employed to model somatic embryogenesis of chrysanthemum, as a case study, and compare their prediction accuracy.ResultsThe results showed that SVR (R2\u2009>\u20090.92) had better performance accuracy than MLP (R2\u2009>\u20090.82). Moreover, the Non-dominated Sorting Genetic Algorithm-II (NSGA-II) was also applied for the optimization of the somatic embryogenesis and the results showed that the highest embryogenesis rate (99.09%) and the maximum number of somatic embryos per explant (56.24) can be obtained from a medium containing 9.10\u00a0\u03bcM 2,4-dichlorophenoxyacetic acid (2,4-D), 4.70\u00a0\u03bcM kinetin (KIN), and 18.73\u00a0\u03bcM sodium nitroprusside (SNP). According to our results, SVR-NSGA-II was able to optimize the chrysanthemum\u2019s somatic embryogenesis accurately.ConclusionsSVR-NSGA-II can be employed as a reliable and applicable computational methodology in future plant tissue culture studies.", 
        "genre": "article", 
        "id": "sg:pub.10.1186/s13007-020-00655-9", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1035309", 
            "issn": [
              "1746-4811"
            ], 
            "name": "Plant Methods", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "16"
          }
        ], 
        "keywords": [
          "artificial neural network", 
          "multilayer perceptron", 
          "Non-dominated Sorting Genetic Algorithm II", 
          "neural network", 
          "support vector machine-based model", 
          "vector machine-based model", 
          "machine-based model", 
          "better performance accuracy", 
          "Sorting Genetic Algorithm II", 
          "genetic algorithm II", 
          "vector regression", 
          "prediction accuracy", 
          "novel computational approach", 
          "foremost step", 
          "algorithm II", 
          "performance accuracy", 
          "case study", 
          "machine", 
          "algorithm", 
          "highest embryogenesis rate", 
          "network", 
          "plant tissue culture procedures", 
          "computational methodology", 
          "computational approach", 
          "accuracy", 
          "perceptron", 
          "protocol", 
          "maximum number", 
          "complexity", 
          "SVR", 
          "optimization", 
          "comparative analysis", 
          "plant tissue culture studies", 
          "cost", 
          "methodology", 
          "results", 
          "step", 
          "model", 
          "number", 
          "process", 
          "development", 
          "regression", 
          "analysis", 
          "procedure", 
          "ResultsThe results", 
          "study", 
          "medium", 
          "embryogenesis rate", 
          "aim", 
          "rate", 
          "somatic embryogenesis protocol", 
          "effect", 
          "tissue culture procedures", 
          "regulator", 
          "transformation studies", 
          "present study", 
          "chrysanthemum", 
          "approach", 
          "embryos", 
          "embryogenesis", 
          "tissue culture studies", 
          "somatic embryos", 
          "culture procedures", 
          "culture studies", 
          "somatic embryogenesis", 
          "plant growth regulators", 
          "dichlorophenoxyacetic acid", 
          "sodium nitroprusside", 
          "acid", 
          "growth regulators", 
          "nitroprusside", 
          "kinetin", 
          "explants", 
          "\u03bcM"
        ], 
        "name": "Development of support vector machine-based model and comparative analysis with artificial neural network for modeling the plant tissue culture procedures: effect of plant growth regulators on somatic embryogenesis of chrysanthemum, as a case study", 
        "pagination": "112", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1130099291"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s13007-020-00655-9"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "32817755"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s13007-020-00655-9", 
          "https://app.dimensions.ai/details/publication/pub.1130099291"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:40", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_835.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1186/s13007-020-00655-9"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13007-020-00655-9'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13007-020-00655-9'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13007-020-00655-9'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13007-020-00655-9'


     

    This table displays all metadata directly associated to this object as RDF triples.

    289 TRIPLES      21 PREDICATES      131 URIs      91 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s13007-020-00655-9 schema:about anzsrc-for:06
    2 anzsrc-for:0601
    3 anzsrc-for:0607
    4 anzsrc-for:10
    5 anzsrc-for:1001
    6 schema:author Na33e72a8ef55467e9404661c6025ca99
    7 schema:citation sg:pub.10.1007/978-1-4757-2440-0
    8 sg:pub.10.1007/s00299-012-1364-3
    9 sg:pub.10.1007/s002990000225
    10 sg:pub.10.1007/s00425-003-1172-7
    11 sg:pub.10.1007/s00709-019-01379-x
    12 sg:pub.10.1007/s10535-005-0033-6
    13 sg:pub.10.1007/s11240-008-9456-z
    14 sg:pub.10.1007/s11240-012-0201-2
    15 sg:pub.10.1007/s11240-012-0243-5
    16 sg:pub.10.1007/s11240-016-1110-6
    17 sg:pub.10.1007/s11240-016-1139-6
    18 sg:pub.10.1007/s11240-017-1353-x
    19 sg:pub.10.1007/s11240-018-1494-6
    20 sg:pub.10.1007/s11240-019-01581-y
    21 sg:pub.10.1007/s11240-019-01763-8
    22 sg:pub.10.1007/s11240-020-01816-3
    23 sg:pub.10.1007/s11269-018-2016-3
    24 sg:pub.10.1007/s11269-020-02542-3
    25 sg:pub.10.1007/s11627-017-9825-6
    26 sg:pub.10.1007/s11627-017-9877-7
    27 sg:pub.10.1007/s11676-018-0647-0
    28 sg:pub.10.1007/s11676-018-0860-x
    29 sg:pub.10.1007/s11709-019-0593-8
    30 sg:pub.10.1007/s12892-018-0024-0
    31 sg:pub.10.1023/a:1006287917534
    32 sg:pub.10.1038/s41598-018-27858-4
    33 sg:pub.10.1038/s41598-019-46155-2
    34 sg:pub.10.1038/s41598-019-54257-0
    35 sg:pub.10.1186/s13007-019-0520-y
    36 schema:datePublished 2020-08-13
    37 schema:datePublishedReg 2020-08-13
    38 schema:description BackgroundOptimizing the somatic embryogenesis protocol can be considered as the first and foremost step in successful gene transformation studies. However, it is usually difficult to achieve an optimized embryogenesis protocol due to the cost and time-consuming as well as the complexity of this process. Therefore, it is necessary to use a novel computational approach, such as machine learning algorithms for this aim. In the present study, two machine learning algorithms, including Multilayer Perceptron (MLP) as an artificial neural network (ANN) and support vector regression (SVR), were employed to model somatic embryogenesis of chrysanthemum, as a case study, and compare their prediction accuracy.ResultsThe results showed that SVR (R2 > 0.92) had better performance accuracy than MLP (R2 > 0.82). Moreover, the Non-dominated Sorting Genetic Algorithm-II (NSGA-II) was also applied for the optimization of the somatic embryogenesis and the results showed that the highest embryogenesis rate (99.09%) and the maximum number of somatic embryos per explant (56.24) can be obtained from a medium containing 9.10 μM 2,4-dichlorophenoxyacetic acid (2,4-D), 4.70 μM kinetin (KIN), and 18.73 μM sodium nitroprusside (SNP). According to our results, SVR-NSGA-II was able to optimize the chrysanthemum’s somatic embryogenesis accurately.ConclusionsSVR-NSGA-II can be employed as a reliable and applicable computational methodology in future plant tissue culture studies.
    39 schema:genre article
    40 schema:isAccessibleForFree true
    41 schema:isPartOf N7241b9d6b0f54f98b6a7f31b235c3368
    42 Nce832373c143476fa7ef1ef21a5f6f0d
    43 sg:journal.1035309
    44 schema:keywords Non-dominated Sorting Genetic Algorithm II
    45 ResultsThe results
    46 SVR
    47 Sorting Genetic Algorithm II
    48 accuracy
    49 acid
    50 aim
    51 algorithm
    52 algorithm II
    53 analysis
    54 approach
    55 artificial neural network
    56 better performance accuracy
    57 case study
    58 chrysanthemum
    59 comparative analysis
    60 complexity
    61 computational approach
    62 computational methodology
    63 cost
    64 culture procedures
    65 culture studies
    66 development
    67 dichlorophenoxyacetic acid
    68 effect
    69 embryogenesis
    70 embryogenesis rate
    71 embryos
    72 explants
    73 foremost step
    74 genetic algorithm II
    75 growth regulators
    76 highest embryogenesis rate
    77 kinetin
    78 machine
    79 machine-based model
    80 maximum number
    81 medium
    82 methodology
    83 model
    84 multilayer perceptron
    85 network
    86 neural network
    87 nitroprusside
    88 novel computational approach
    89 number
    90 optimization
    91 perceptron
    92 performance accuracy
    93 plant growth regulators
    94 plant tissue culture procedures
    95 plant tissue culture studies
    96 prediction accuracy
    97 present study
    98 procedure
    99 process
    100 protocol
    101 rate
    102 regression
    103 regulator
    104 results
    105 sodium nitroprusside
    106 somatic embryogenesis
    107 somatic embryogenesis protocol
    108 somatic embryos
    109 step
    110 study
    111 support vector machine-based model
    112 tissue culture procedures
    113 tissue culture studies
    114 transformation studies
    115 vector machine-based model
    116 vector regression
    117 μM
    118 schema:name Development of support vector machine-based model and comparative analysis with artificial neural network for modeling the plant tissue culture procedures: effect of plant growth regulators on somatic embryogenesis of chrysanthemum, as a case study
    119 schema:pagination 112
    120 schema:productId N0c9861cf48a1408fa40a15e48361ee83
    121 N66270c820f24440da032795672f2937b
    122 Ndd821ca6e76f4c35a920b54c0951f2b3
    123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1130099291
    124 https://doi.org/10.1186/s13007-020-00655-9
    125 schema:sdDatePublished 2022-12-01T06:40
    126 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    127 schema:sdPublisher Nc09125577b91463bbbc02506cb40d5f2
    128 schema:url https://doi.org/10.1186/s13007-020-00655-9
    129 sgo:license sg:explorer/license/
    130 sgo:sdDataset articles
    131 rdf:type schema:ScholarlyArticle
    132 N084bfb49e9534ac0b809406330b4e565 rdf:first sg:person.01153604677.50
    133 rdf:rest Ncbb56824b3bc4ceea3cd8e4b4b0c0669
    134 N0c9861cf48a1408fa40a15e48361ee83 schema:name dimensions_id
    135 schema:value pub.1130099291
    136 rdf:type schema:PropertyValue
    137 N66270c820f24440da032795672f2937b schema:name pubmed_id
    138 schema:value 32817755
    139 rdf:type schema:PropertyValue
    140 N7241b9d6b0f54f98b6a7f31b235c3368 schema:volumeNumber 16
    141 rdf:type schema:PublicationVolume
    142 N990e74c3aa8041f1ae8e3a1b3726002b rdf:first sg:person.013140221512.97
    143 rdf:rest rdf:nil
    144 Na33e72a8ef55467e9404661c6025ca99 rdf:first sg:person.010152317512.72
    145 rdf:rest N084bfb49e9534ac0b809406330b4e565
    146 Nc09125577b91463bbbc02506cb40d5f2 schema:name Springer Nature - SN SciGraph project
    147 rdf:type schema:Organization
    148 Ncbb56824b3bc4ceea3cd8e4b4b0c0669 rdf:first sg:person.01126177703.58
    149 rdf:rest N990e74c3aa8041f1ae8e3a1b3726002b
    150 Nce832373c143476fa7ef1ef21a5f6f0d schema:issueNumber 1
    151 rdf:type schema:PublicationIssue
    152 Ndd821ca6e76f4c35a920b54c0951f2b3 schema:name doi
    153 schema:value 10.1186/s13007-020-00655-9
    154 rdf:type schema:PropertyValue
    155 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    156 schema:name Biological Sciences
    157 rdf:type schema:DefinedTerm
    158 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
    159 schema:name Biochemistry and Cell Biology
    160 rdf:type schema:DefinedTerm
    161 anzsrc-for:0607 schema:inDefinedTermSet anzsrc-for:
    162 schema:name Plant Biology
    163 rdf:type schema:DefinedTerm
    164 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
    165 schema:name Technology
    166 rdf:type schema:DefinedTerm
    167 anzsrc-for:1001 schema:inDefinedTermSet anzsrc-for:
    168 schema:name Agricultural Biotechnology
    169 rdf:type schema:DefinedTerm
    170 sg:journal.1035309 schema:issn 1746-4811
    171 schema:name Plant Methods
    172 schema:publisher Springer Nature
    173 rdf:type schema:Periodical
    174 sg:person.010152317512.72 schema:affiliation grid-institutes:grid.34429.38
    175 schema:familyName Hesami
    176 schema:givenName Mohsen
    177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010152317512.72
    178 rdf:type schema:Person
    179 sg:person.01126177703.58 schema:affiliation grid-institutes:grid.412502.0
    180 schema:familyName Tohidfar
    181 schema:givenName Masoud
    182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01126177703.58
    183 rdf:type schema:Person
    184 sg:person.01153604677.50 schema:affiliation grid-institutes:grid.46072.37
    185 schema:familyName Naderi
    186 schema:givenName Roohangiz
    187 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01153604677.50
    188 rdf:type schema:Person
    189 sg:person.013140221512.97 schema:affiliation grid-institutes:grid.34429.38
    190 schema:familyName Yoosefzadeh-Najafabadi
    191 schema:givenName Mohsen
    192 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013140221512.97
    193 rdf:type schema:Person
    194 sg:pub.10.1007/978-1-4757-2440-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027312764
    195 https://doi.org/10.1007/978-1-4757-2440-0
    196 rdf:type schema:CreativeWork
    197 sg:pub.10.1007/s00299-012-1364-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004860668
    198 https://doi.org/10.1007/s00299-012-1364-3
    199 rdf:type schema:CreativeWork
    200 sg:pub.10.1007/s002990000225 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049931768
    201 https://doi.org/10.1007/s002990000225
    202 rdf:type schema:CreativeWork
    203 sg:pub.10.1007/s00425-003-1172-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045420621
    204 https://doi.org/10.1007/s00425-003-1172-7
    205 rdf:type schema:CreativeWork
    206 sg:pub.10.1007/s00709-019-01379-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1113928399
    207 https://doi.org/10.1007/s00709-019-01379-x
    208 rdf:type schema:CreativeWork
    209 sg:pub.10.1007/s10535-005-0033-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041995307
    210 https://doi.org/10.1007/s10535-005-0033-6
    211 rdf:type schema:CreativeWork
    212 sg:pub.10.1007/s11240-008-9456-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1046396407
    213 https://doi.org/10.1007/s11240-008-9456-z
    214 rdf:type schema:CreativeWork
    215 sg:pub.10.1007/s11240-012-0201-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026245179
    216 https://doi.org/10.1007/s11240-012-0201-2
    217 rdf:type schema:CreativeWork
    218 sg:pub.10.1007/s11240-012-0243-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042058282
    219 https://doi.org/10.1007/s11240-012-0243-5
    220 rdf:type schema:CreativeWork
    221 sg:pub.10.1007/s11240-016-1110-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009723451
    222 https://doi.org/10.1007/s11240-016-1110-6
    223 rdf:type schema:CreativeWork
    224 sg:pub.10.1007/s11240-016-1139-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007924145
    225 https://doi.org/10.1007/s11240-016-1139-6
    226 rdf:type schema:CreativeWork
    227 sg:pub.10.1007/s11240-017-1353-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1092896390
    228 https://doi.org/10.1007/s11240-017-1353-x
    229 rdf:type schema:CreativeWork
    230 sg:pub.10.1007/s11240-018-1494-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107105916
    231 https://doi.org/10.1007/s11240-018-1494-6
    232 rdf:type schema:CreativeWork
    233 sg:pub.10.1007/s11240-019-01581-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1112262098
    234 https://doi.org/10.1007/s11240-019-01581-y
    235 rdf:type schema:CreativeWork
    236 sg:pub.10.1007/s11240-019-01763-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1123831336
    237 https://doi.org/10.1007/s11240-019-01763-8
    238 rdf:type schema:CreativeWork
    239 sg:pub.10.1007/s11240-020-01816-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1126006481
    240 https://doi.org/10.1007/s11240-020-01816-3
    241 rdf:type schema:CreativeWork
    242 sg:pub.10.1007/s11269-018-2016-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104465763
    243 https://doi.org/10.1007/s11269-018-2016-3
    244 rdf:type schema:CreativeWork
    245 sg:pub.10.1007/s11269-020-02542-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1126681269
    246 https://doi.org/10.1007/s11269-020-02542-3
    247 rdf:type schema:CreativeWork
    248 sg:pub.10.1007/s11627-017-9825-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085440965
    249 https://doi.org/10.1007/s11627-017-9825-6
    250 rdf:type schema:CreativeWork
    251 sg:pub.10.1007/s11627-017-9877-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100272485
    252 https://doi.org/10.1007/s11627-017-9877-7
    253 rdf:type schema:CreativeWork
    254 sg:pub.10.1007/s11676-018-0647-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103399790
    255 https://doi.org/10.1007/s11676-018-0647-0
    256 rdf:type schema:CreativeWork
    257 sg:pub.10.1007/s11676-018-0860-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1110264621
    258 https://doi.org/10.1007/s11676-018-0860-x
    259 rdf:type schema:CreativeWork
    260 sg:pub.10.1007/s11709-019-0593-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1125164604
    261 https://doi.org/10.1007/s11709-019-0593-8
    262 rdf:type schema:CreativeWork
    263 sg:pub.10.1007/s12892-018-0024-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105137322
    264 https://doi.org/10.1007/s12892-018-0024-0
    265 rdf:type schema:CreativeWork
    266 sg:pub.10.1023/a:1006287917534 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045500829
    267 https://doi.org/10.1023/a:1006287917534
    268 rdf:type schema:CreativeWork
    269 sg:pub.10.1038/s41598-018-27858-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105156445
    270 https://doi.org/10.1038/s41598-018-27858-4
    271 rdf:type schema:CreativeWork
    272 sg:pub.10.1038/s41598-019-46155-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1117798577
    273 https://doi.org/10.1038/s41598-019-46155-2
    274 rdf:type schema:CreativeWork
    275 sg:pub.10.1038/s41598-019-54257-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1123087671
    276 https://doi.org/10.1038/s41598-019-54257-0
    277 rdf:type schema:CreativeWork
    278 sg:pub.10.1186/s13007-019-0520-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1122683488
    279 https://doi.org/10.1186/s13007-019-0520-y
    280 rdf:type schema:CreativeWork
    281 grid-institutes:grid.34429.38 schema:alternateName Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
    282 schema:name Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
    283 rdf:type schema:Organization
    284 grid-institutes:grid.412502.0 schema:alternateName Department of Plant Biotechnology, Faculty of Science and Biotechnology, Shahid Beheshti University, G.C., Tehran, Iran
    285 schema:name Department of Plant Biotechnology, Faculty of Science and Biotechnology, Shahid Beheshti University, G.C., Tehran, Iran
    286 rdf:type schema:Organization
    287 grid-institutes:grid.46072.37 schema:alternateName Department of Horticultural Science, Faculty of Agriculture, University of Tehran, Karaj, Iran
    288 schema:name Department of Horticultural Science, Faculty of Agriculture, University of Tehran, Karaj, Iran
    289 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...