Utilization of computer vision and multispectral imaging techniques for classification of cowpea (Vigna unguiculata) seeds View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Gamal ElMasry, Nasser Mandour, Marie-Hélène Wagner, Didier Demilly, Jerome Verdier, Etienne Belin, David Rousseau

ABSTRACT

Background: The traditional methods for evaluating seeds are usually performed through destructive sampling followed by physical, physiological, biochemical and molecular determinations. Whilst proven to be effective, these approaches can be criticized as being destructive, time consuming, labor intensive and requiring experienced seed analysts. Thus, the objective of this study was to investigate the potential of computer vision and multispectral imaging systems supported with multivariate analysis for high-throughput classification of cowpea (Vigna unguiculata) seeds. An automated computer-vision germination system was utilized for uninterrupted monitoring of seeds during imbibition and germination to identify different categories of all individual seeds. By using spectral signatures of single cowpea seeds extracted from multispectral images, different multivariate analysis models based on linear discriminant analysis (LDA) were developed for classifying the seeds into different categories according to ageing, viability, seedling condition and speed of germination. Results: The results revealed that the LDA models had good accuracy in distinguishing 'Aged' and 'Non-aged' seeds with an overall correct classification (OCC) of 97.51, 96.76 and 97%, 'Germinated' and 'Non-germinated' seeds with OCC of 81.80, 79.05 and 81.0%, 'Early germinated', 'Medium germinated' and 'Dead' seeds with OCC of 77.21, 74.93 and 68.00% and among seeds that give 'Normal' and 'Abnormal' seedlings with OCC of 68.08, 64.34 and 62.00% in training, cross-validation and independent validation data sets, respectively. Image processing routines were also developed to exploit the full power of the multispectral imaging system in visualizing the difference among seed categories by applying the discriminant model in a pixel-wise manner. Conclusion: The results demonstrated the capability of the multispectral imaging system in the ultraviolet, visible and shortwave near infrared range to provide the required information necessary for the discrimination of individual cowpea seeds to different classes. Considering the short time of image acquisition and limited sample preparation, this stat-of-the art multispectral imaging method and chemometric analysis in classifying seeds could be a valuable tool for on-line classification protocols in cost-effective real-time sorting and grading processes as it provides not only morphological and physical features but also chemical information for the seeds being examined. Implementing image processing algorithms specific for seed quality assessment along with the declining cost and increasing power of computer hardware is very efficient to make the development of such computer-integrated systems more attractive in automatic inspection of seed quality. More... »

PAGES

24

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13007-019-0411-2

DOI

http://dx.doi.org/10.1186/s13007-019-0411-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112739153

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30911323


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Suez Canal University", 
          "id": "https://www.grid.ac/institutes/grid.33003.33", 
          "name": [
            "Agricultural Engineering Department, Faculty of Agriculture, Suez Canal University, P.O Box 41522, Ismailia, Egypt", 
            "INRA, UMR1345 Institut de Recherche en Horticulture et Semences, 49071, Beaucouz\u00e9, Angers, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "ElMasry", 
        "givenName": "Gamal", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Suez Canal University", 
          "id": "https://www.grid.ac/institutes/grid.33003.33", 
          "name": [
            "Agricultural Engineering Department, Faculty of Agriculture, Suez Canal University, P.O Box 41522, Ismailia, Egypt"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mandour", 
        "givenName": "Nasser", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "GEVES, Station Nationale d\u2019Essais de Semences (SNES), 49071, Beaucouz\u00e9, Angers, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wagner", 
        "givenName": "Marie-H\u00e9l\u00e8ne", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "GEVES, Station Nationale d\u2019Essais de Semences (SNES), 49071, Beaucouz\u00e9, Angers, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Demilly", 
        "givenName": "Didier", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "INRA, UMR1345 Institut de Recherche en Horticulture et Semences, 49071, Beaucouz\u00e9, Angers, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Verdier", 
        "givenName": "Jerome", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Angers", 
          "id": "https://www.grid.ac/institutes/grid.7252.2", 
          "name": [
            "Laboratoire Angevin de Recherche en Ing\u00e9nierie des Syst\u00e8mes (LARIS), Universit\u00e9 d\u2019Angers, Angers, France", 
            "INRA, UMR1345 Institut de Recherche en Horticulture et Semences, 49071, Beaucouz\u00e9, Angers, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Belin", 
        "givenName": "Etienne", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Angers", 
          "id": "https://www.grid.ac/institutes/grid.7252.2", 
          "name": [
            "Laboratoire Angevin de Recherche en Ing\u00e9nierie des Syst\u00e8mes (LARIS), Universit\u00e9 d\u2019Angers, Angers, France", 
            "INRA, UMR1345 Institut de Recherche en Horticulture et Semences, 49071, Beaucouz\u00e9, Angers, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rousseau", 
        "givenName": "David", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.foodchem.2013.11.166", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000025631"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.talanta.2015.05.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003951308"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patcog.2007.11.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004523680"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.15258/sst.2006.34.3.15", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006251222"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.15258/sst.2011.39.1.12", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008218393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.snb.2016.01.032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009906377"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cem.1415", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013481462"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/s150204592", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014718494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.foodres.2011.05.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017984413"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0152011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018390542"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0152011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018390542"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1201/b17441-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022153252"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12161-014-0038-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022610197", 
          "https://doi.org/10.1007/s12161-014-0038-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/s150204496", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023736868"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcs.2016.02.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025203551"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10408398.2010.543495", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025858080"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.15258/sst.2007.35.3.01", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026369182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1590/s1806-66902014000200014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028388244"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.snb.2016.02.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028840877"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13007-015-0098-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031091365", 
          "https://doi.org/10.1186/s13007-015-0098-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5307/jbe.2013.38.4.312", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042944403"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10942912.2016.1210163", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043471163"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jxb/49.326.1455", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046363982"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcs.2011.11.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047546607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1079/asc20055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058251673"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1079/asc20055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058251673"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1255/jnirs.928", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064521673"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1255/jnirs.928", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064521673"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1255/jnirs.966", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064521710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1255/jnirs.966", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064521710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1255/jsi.2016.a1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064521754"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/pbr.12445", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074204923"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compag.2017.09.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091876099"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.foodchem.2017.09.133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091972147"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13007-018-0272-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100464339", 
          "https://doi.org/10.1186/s13007-018-0272-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biombioe.2018.01.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100899107"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.saa.2018.05.123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104285051"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13197-018-3268-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104993194", 
          "https://doi.org/10.1007/s13197-018-3268-x"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "Background: The traditional methods for evaluating seeds are usually performed through destructive sampling followed by physical, physiological, biochemical and molecular determinations. Whilst proven to be effective, these approaches can be criticized as being destructive, time consuming, labor intensive and requiring experienced seed analysts. Thus, the objective of this study was to investigate the potential of computer vision and multispectral imaging systems supported with multivariate analysis for high-throughput classification of cowpea (Vigna unguiculata) seeds. An automated computer-vision germination system was utilized for uninterrupted monitoring of seeds during imbibition and germination to identify different categories of all individual seeds. By using spectral signatures of single cowpea seeds extracted from multispectral images, different multivariate analysis models based on linear discriminant analysis (LDA) were developed for classifying the seeds into different categories according to ageing, viability, seedling condition and speed of germination.\nResults: The results revealed that the LDA models had good accuracy in distinguishing 'Aged' and 'Non-aged' seeds with an overall correct classification (OCC) of 97.51, 96.76 and 97%, 'Germinated' and 'Non-germinated' seeds with OCC of 81.80, 79.05 and 81.0%, 'Early germinated', 'Medium germinated' and 'Dead' seeds with OCC of 77.21, 74.93 and 68.00% and among seeds that give 'Normal' and 'Abnormal' seedlings with OCC of 68.08, 64.34 and 62.00% in training, cross-validation and independent validation data sets, respectively. Image processing routines were also developed to exploit the full power of the multispectral imaging system in visualizing the difference among seed categories by applying the discriminant model in a pixel-wise manner.\nConclusion: The results demonstrated the capability of the multispectral imaging system in the ultraviolet, visible and shortwave near infrared range to provide the required information necessary for the discrimination of individual cowpea seeds to different classes. Considering the short time of image acquisition and limited sample preparation, this stat-of-the art multispectral imaging method and chemometric analysis in classifying seeds could be a valuable tool for on-line classification protocols in cost-effective real-time sorting and grading processes as it provides not only morphological and physical features but also chemical information for the seeds being examined. Implementing image processing algorithms specific for seed quality assessment along with the declining cost and increasing power of computer hardware is very efficient to make the development of such computer-integrated systems more attractive in automatic inspection of seed quality.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s13007-019-0411-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3791590", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1035309", 
        "issn": [
          "1746-4811"
        ], 
        "name": "Plant Methods", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "15"
      }
    ], 
    "name": "Utilization of computer vision and multispectral imaging techniques for classification of cowpea (Vigna unguiculata) seeds", 
    "pagination": "24", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "24accf2de8eb0f09eded4cd8e79159184326ea75f0f1b44015307f1252e094fa"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30911323"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101245798"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13007-019-0411-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112739153"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13007-019-0411-2", 
      "https://app.dimensions.ai/details/publication/pub.1112739153"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:49", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130793_00000006.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs13007-019-0411-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13007-019-0411-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13007-019-0411-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13007-019-0411-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13007-019-0411-2'


 

This table displays all metadata directly associated to this object as RDF triples.

222 TRIPLES      21 PREDICATES      63 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13007-019-0411-2 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N5d1aec9e61b945dab6fc19a94fed8bb1
4 schema:citation sg:pub.10.1007/s12161-014-0038-x
5 sg:pub.10.1007/s13197-018-3268-x
6 sg:pub.10.1186/s13007-015-0098-y
7 sg:pub.10.1186/s13007-018-0272-0
8 https://doi.org/10.1002/cem.1415
9 https://doi.org/10.1016/j.biombioe.2018.01.017
10 https://doi.org/10.1016/j.compag.2017.09.004
11 https://doi.org/10.1016/j.foodchem.2013.11.166
12 https://doi.org/10.1016/j.foodchem.2017.09.133
13 https://doi.org/10.1016/j.foodres.2011.05.001
14 https://doi.org/10.1016/j.jcs.2011.11.002
15 https://doi.org/10.1016/j.jcs.2016.02.018
16 https://doi.org/10.1016/j.patcog.2007.11.008
17 https://doi.org/10.1016/j.saa.2018.05.123
18 https://doi.org/10.1016/j.snb.2016.01.032
19 https://doi.org/10.1016/j.snb.2016.02.015
20 https://doi.org/10.1016/j.talanta.2015.05.031
21 https://doi.org/10.1079/asc20055
22 https://doi.org/10.1080/10408398.2010.543495
23 https://doi.org/10.1080/10942912.2016.1210163
24 https://doi.org/10.1093/jxb/49.326.1455
25 https://doi.org/10.1111/pbr.12445
26 https://doi.org/10.1201/b17441-8
27 https://doi.org/10.1255/jnirs.928
28 https://doi.org/10.1255/jnirs.966
29 https://doi.org/10.1255/jsi.2016.a1
30 https://doi.org/10.1371/journal.pone.0152011
31 https://doi.org/10.15258/sst.2006.34.3.15
32 https://doi.org/10.15258/sst.2007.35.3.01
33 https://doi.org/10.15258/sst.2011.39.1.12
34 https://doi.org/10.1590/s1806-66902014000200014
35 https://doi.org/10.3390/s150204496
36 https://doi.org/10.3390/s150204592
37 https://doi.org/10.5307/jbe.2013.38.4.312
38 schema:datePublished 2019-12
39 schema:datePublishedReg 2019-12-01
40 schema:description Background: The traditional methods for evaluating seeds are usually performed through destructive sampling followed by physical, physiological, biochemical and molecular determinations. Whilst proven to be effective, these approaches can be criticized as being destructive, time consuming, labor intensive and requiring experienced seed analysts. Thus, the objective of this study was to investigate the potential of computer vision and multispectral imaging systems supported with multivariate analysis for high-throughput classification of cowpea (Vigna unguiculata) seeds. An automated computer-vision germination system was utilized for uninterrupted monitoring of seeds during imbibition and germination to identify different categories of all individual seeds. By using spectral signatures of single cowpea seeds extracted from multispectral images, different multivariate analysis models based on linear discriminant analysis (LDA) were developed for classifying the seeds into different categories according to ageing, viability, seedling condition and speed of germination. Results: The results revealed that the LDA models had good accuracy in distinguishing 'Aged' and 'Non-aged' seeds with an overall correct classification (OCC) of 97.51, 96.76 and 97%, 'Germinated' and 'Non-germinated' seeds with OCC of 81.80, 79.05 and 81.0%, 'Early germinated', 'Medium germinated' and 'Dead' seeds with OCC of 77.21, 74.93 and 68.00% and among seeds that give 'Normal' and 'Abnormal' seedlings with OCC of 68.08, 64.34 and 62.00% in training, cross-validation and independent validation data sets, respectively. Image processing routines were also developed to exploit the full power of the multispectral imaging system in visualizing the difference among seed categories by applying the discriminant model in a pixel-wise manner. Conclusion: The results demonstrated the capability of the multispectral imaging system in the ultraviolet, visible and shortwave near infrared range to provide the required information necessary for the discrimination of individual cowpea seeds to different classes. Considering the short time of image acquisition and limited sample preparation, this stat-of-the art multispectral imaging method and chemometric analysis in classifying seeds could be a valuable tool for on-line classification protocols in cost-effective real-time sorting and grading processes as it provides not only morphological and physical features but also chemical information for the seeds being examined. Implementing image processing algorithms specific for seed quality assessment along with the declining cost and increasing power of computer hardware is very efficient to make the development of such computer-integrated systems more attractive in automatic inspection of seed quality.
41 schema:genre research_article
42 schema:inLanguage en
43 schema:isAccessibleForFree true
44 schema:isPartOf N3d538f266e61436e854bb8c50d85cd7b
45 Nc3e44d9a7a8c4ef9901479b8d4d124dd
46 sg:journal.1035309
47 schema:name Utilization of computer vision and multispectral imaging techniques for classification of cowpea (Vigna unguiculata) seeds
48 schema:pagination 24
49 schema:productId N2bcc260b3b5245f08f9f2d7d7da02430
50 N4194ced684e940389a74df4aaae6fc3b
51 N7b9dcc8c834a4061992dbc8037202b6b
52 Nb423b5e6600b415494e1c63d59c56f1c
53 Ne68406635b954d739e1dffcee29452b0
54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112739153
55 https://doi.org/10.1186/s13007-019-0411-2
56 schema:sdDatePublished 2019-04-11T13:49
57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
58 schema:sdPublisher N7b78485ac9e54f9d9589be8b5f1380ee
59 schema:url https://link.springer.com/10.1186%2Fs13007-019-0411-2
60 sgo:license sg:explorer/license/
61 sgo:sdDataset articles
62 rdf:type schema:ScholarlyArticle
63 N10a458c321f24d04be9ccb09aa244b9b schema:affiliation https://www.grid.ac/institutes/grid.33003.33
64 schema:familyName ElMasry
65 schema:givenName Gamal
66 rdf:type schema:Person
67 N157d9f4f0ed5468a8e0e390eb731fa75 schema:affiliation N3936e249582a40a68cbf490a0420c4b7
68 schema:familyName Wagner
69 schema:givenName Marie-Hélène
70 rdf:type schema:Person
71 N1c9290068a124b82bfebb0731ddbb0d2 rdf:first N25500c2b08ce4481b75e094cf2bf02f3
72 rdf:rest N1f8bbf89b3c04732b90be8fd1a0c0ee8
73 N1f8bbf89b3c04732b90be8fd1a0c0ee8 rdf:first Ndb654f43f9424365b702f127c8b690e8
74 rdf:rest Nacac7005d8c042158a6c39c356d348b6
75 N25500c2b08ce4481b75e094cf2bf02f3 schema:affiliation N8148872e4d304bb58ed5edbe505ae99e
76 schema:familyName Demilly
77 schema:givenName Didier
78 rdf:type schema:Person
79 N2bcc260b3b5245f08f9f2d7d7da02430 schema:name nlm_unique_id
80 schema:value 101245798
81 rdf:type schema:PropertyValue
82 N364cdfb0c3b847a1b9b3ce0ca9834357 schema:affiliation https://www.grid.ac/institutes/grid.7252.2
83 schema:familyName Belin
84 schema:givenName Etienne
85 rdf:type schema:Person
86 N3936e249582a40a68cbf490a0420c4b7 schema:name GEVES, Station Nationale d’Essais de Semences (SNES), 49071, Beaucouzé, Angers, France
87 rdf:type schema:Organization
88 N3d538f266e61436e854bb8c50d85cd7b schema:volumeNumber 15
89 rdf:type schema:PublicationVolume
90 N4194ced684e940389a74df4aaae6fc3b schema:name readcube_id
91 schema:value 24accf2de8eb0f09eded4cd8e79159184326ea75f0f1b44015307f1252e094fa
92 rdf:type schema:PropertyValue
93 N486d6a03bdc8444482e7c69fdb45f1e1 rdf:first N157d9f4f0ed5468a8e0e390eb731fa75
94 rdf:rest N1c9290068a124b82bfebb0731ddbb0d2
95 N5d1aec9e61b945dab6fc19a94fed8bb1 rdf:first N10a458c321f24d04be9ccb09aa244b9b
96 rdf:rest Nf5ce34f092a245298e8e40b3868c5259
97 N67a1dcb781544122b7565285395cc19d schema:affiliation https://www.grid.ac/institutes/grid.7252.2
98 schema:familyName Rousseau
99 schema:givenName David
100 rdf:type schema:Person
101 N7b78485ac9e54f9d9589be8b5f1380ee schema:name Springer Nature - SN SciGraph project
102 rdf:type schema:Organization
103 N7b9dcc8c834a4061992dbc8037202b6b schema:name pubmed_id
104 schema:value 30911323
105 rdf:type schema:PropertyValue
106 N8148872e4d304bb58ed5edbe505ae99e schema:name GEVES, Station Nationale d’Essais de Semences (SNES), 49071, Beaucouzé, Angers, France
107 rdf:type schema:Organization
108 N9a891143f6564cf0b753d30cf3bc00e8 schema:affiliation https://www.grid.ac/institutes/grid.33003.33
109 schema:familyName Mandour
110 schema:givenName Nasser
111 rdf:type schema:Person
112 N9b8a96f2a3214a098e1090fe3a8bdc7b rdf:first N67a1dcb781544122b7565285395cc19d
113 rdf:rest rdf:nil
114 Nacac7005d8c042158a6c39c356d348b6 rdf:first N364cdfb0c3b847a1b9b3ce0ca9834357
115 rdf:rest N9b8a96f2a3214a098e1090fe3a8bdc7b
116 Nb423b5e6600b415494e1c63d59c56f1c schema:name dimensions_id
117 schema:value pub.1112739153
118 rdf:type schema:PropertyValue
119 Nc3e44d9a7a8c4ef9901479b8d4d124dd schema:issueNumber 1
120 rdf:type schema:PublicationIssue
121 Nc98c0abf50c0481b8862f986ab9f00b7 schema:name INRA, UMR1345 Institut de Recherche en Horticulture et Semences, 49071, Beaucouzé, Angers, France
122 rdf:type schema:Organization
123 Ndb654f43f9424365b702f127c8b690e8 schema:affiliation Nc98c0abf50c0481b8862f986ab9f00b7
124 schema:familyName Verdier
125 schema:givenName Jerome
126 rdf:type schema:Person
127 Ne68406635b954d739e1dffcee29452b0 schema:name doi
128 schema:value 10.1186/s13007-019-0411-2
129 rdf:type schema:PropertyValue
130 Nf5ce34f092a245298e8e40b3868c5259 rdf:first N9a891143f6564cf0b753d30cf3bc00e8
131 rdf:rest N486d6a03bdc8444482e7c69fdb45f1e1
132 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
133 schema:name Information and Computing Sciences
134 rdf:type schema:DefinedTerm
135 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
136 schema:name Artificial Intelligence and Image Processing
137 rdf:type schema:DefinedTerm
138 sg:grant.3791590 http://pending.schema.org/fundedItem sg:pub.10.1186/s13007-019-0411-2
139 rdf:type schema:MonetaryGrant
140 sg:journal.1035309 schema:issn 1746-4811
141 schema:name Plant Methods
142 rdf:type schema:Periodical
143 sg:pub.10.1007/s12161-014-0038-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1022610197
144 https://doi.org/10.1007/s12161-014-0038-x
145 rdf:type schema:CreativeWork
146 sg:pub.10.1007/s13197-018-3268-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1104993194
147 https://doi.org/10.1007/s13197-018-3268-x
148 rdf:type schema:CreativeWork
149 sg:pub.10.1186/s13007-015-0098-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1031091365
150 https://doi.org/10.1186/s13007-015-0098-y
151 rdf:type schema:CreativeWork
152 sg:pub.10.1186/s13007-018-0272-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100464339
153 https://doi.org/10.1186/s13007-018-0272-0
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1002/cem.1415 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013481462
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.biombioe.2018.01.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100899107
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.compag.2017.09.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091876099
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/j.foodchem.2013.11.166 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000025631
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/j.foodchem.2017.09.133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091972147
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/j.foodres.2011.05.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017984413
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/j.jcs.2011.11.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047546607
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/j.jcs.2016.02.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025203551
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/j.patcog.2007.11.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004523680
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/j.saa.2018.05.123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104285051
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/j.snb.2016.01.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009906377
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/j.snb.2016.02.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028840877
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/j.talanta.2015.05.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003951308
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1079/asc20055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058251673
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1080/10408398.2010.543495 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025858080
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1080/10942912.2016.1210163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043471163
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1093/jxb/49.326.1455 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046363982
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1111/pbr.12445 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074204923
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1201/b17441-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022153252
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1255/jnirs.928 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064521673
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1255/jnirs.966 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064521710
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1255/jsi.2016.a1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064521754
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1371/journal.pone.0152011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018390542
200 rdf:type schema:CreativeWork
201 https://doi.org/10.15258/sst.2006.34.3.15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006251222
202 rdf:type schema:CreativeWork
203 https://doi.org/10.15258/sst.2007.35.3.01 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026369182
204 rdf:type schema:CreativeWork
205 https://doi.org/10.15258/sst.2011.39.1.12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008218393
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1590/s1806-66902014000200014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028388244
208 rdf:type schema:CreativeWork
209 https://doi.org/10.3390/s150204496 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023736868
210 rdf:type schema:CreativeWork
211 https://doi.org/10.3390/s150204592 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014718494
212 rdf:type schema:CreativeWork
213 https://doi.org/10.5307/jbe.2013.38.4.312 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042944403
214 rdf:type schema:CreativeWork
215 https://www.grid.ac/institutes/grid.33003.33 schema:alternateName Suez Canal University
216 schema:name Agricultural Engineering Department, Faculty of Agriculture, Suez Canal University, P.O Box 41522, Ismailia, Egypt
217 INRA, UMR1345 Institut de Recherche en Horticulture et Semences, 49071, Beaucouzé, Angers, France
218 rdf:type schema:Organization
219 https://www.grid.ac/institutes/grid.7252.2 schema:alternateName University of Angers
220 schema:name INRA, UMR1345 Institut de Recherche en Horticulture et Semences, 49071, Beaucouzé, Angers, France
221 Laboratoire Angevin de Recherche en Ingénierie des Systèmes (LARIS), Université d’Angers, Angers, France
222 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...