Development of an innovative and sustainable one-step method for rapid plant DNA isolation for targeted PCR using magnetic ionic liquids View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Arianna Marengo, Cecilia Cagliero, Barbara Sgorbini, Jared L. Anderson, Miranda N. Emaus, Carlo Bicchi, Cinzia M. Bertea, Patrizia Rubiolo

ABSTRACT

Background: Nowadays, there is an increasing demand for fast and reliable plant biomolecular analyses. Conventional methods for the isolation of nucleic acids are time-consuming and require multiple and often non-automatable steps to remove cellular interferences, with consequence that sample preparation is the major bottleneck in the bioanalytical workflow. New opportunities have been created by the use of magnetic ionic liquids (MILs) thanks to their affinity for nucleic acids. Results: In the present study, a MIL-based magnet-assisted dispersive liquid-liquid microextraction (maDLLME) method was optimized for the extraction of genomic DNA from Arabidopsis thaliana (L.) Heynh leaves. MILs containing different metal centers were tested and the extraction method was optimized in terms of MIL volume and extraction time for purified DNA and crude lysates. The proposed approach yielded good extraction efficiency and is compatible with both quantitative analysis through fluorimetric-based detection and qualitative analysis as PCR amplification of multi and single locus genes. The protocol was successfully applied to a set of plant species and tissues. Conclusions: The developed MIL-based maDLLME approach exhibits good enrichment of nucleic acids for extraction of template suitable for targeted PCR; it is very fast, sustainable and potentially automatable thereby representing a powerful tool for screening plants rapidly using DNA-based methods. More... »

PAGES

23

References to SciGraph publications

  • 2018-06. Biological and nanotechnological applications using interactions between ionic liquids and nucleic acids in BIOPHYSICAL REVIEWS
  • 2017-12. Comparison of three genomic DNA extraction methods to obtain high DNA quality from maize in PLANT METHODS
  • 2017-12. Reproducible genomic DNA preparation from diverse crop species for molecular genetic applications in PLANT METHODS
  • 2018-07. Preconcentration of DNA using magnetic ionic liquids that are compatible with real-time PCR for rapid nucleic acid quantification in ANALYTICAL AND BIOANALYTICAL CHEMISTRY
  • 2015-12. Direct Contact – Sorptive Tape Extraction coupled with Gas Chromatography – Mass Spectrometry to reveal volatile topographical dynamics of lima bean (Phaseolus lunatus L.) upon herbivory by Spodoptera littoralis Boisd. in BMC PLANT BIOLOGY
  • 2018-07. Advances in the analysis of biological samples using ionic liquids in ANALYTICAL AND BIOANALYTICAL CHEMISTRY
  • 2010-12. Identification of shared single copy nuclear genes in Arabidopsis, Populus, Vitis and Oryzaand their phylogenetic utility across various taxonomic levels in BMC EVOLUTIONARY BIOLOGY
  • 2014-12. Direct extraction of genomic DNA from maize with aqueous ionic liquid buffer systems for applications in genetically modified organisms analysis in ANALYTICAL AND BIOANALYTICAL CHEMISTRY
  • 2017-12. Improved method for genomic DNA extraction for Opuntia Mill. (Cactaceae) in PLANT METHODS
  • 2017-08. Rapid preconcentration of viable bacteria using magnetic ionic liquids for PCR amplification and culture-based diagnostics in ANALYTICAL AND BIOANALYTICAL CHEMISTRY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s13007-019-0408-x

    DOI

    http://dx.doi.org/10.1186/s13007-019-0408-x

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1112672883

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30899320


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Turin", 
              "id": "https://www.grid.ac/institutes/grid.7605.4", 
              "name": [
                "Dipartimento di Scienza e Tecnologia del Farmaco, Universit\u00e0 di Torino, Via P. Giuria 9, 10125, Turin, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Marengo", 
            "givenName": "Arianna", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Turin", 
              "id": "https://www.grid.ac/institutes/grid.7605.4", 
              "name": [
                "Dipartimento di Scienza e Tecnologia del Farmaco, Universit\u00e0 di Torino, Via P. Giuria 9, 10125, Turin, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cagliero", 
            "givenName": "Cecilia", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Turin", 
              "id": "https://www.grid.ac/institutes/grid.7605.4", 
              "name": [
                "Dipartimento di Scienza e Tecnologia del Farmaco, Universit\u00e0 di Torino, Via P. Giuria 9, 10125, Turin, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sgorbini", 
            "givenName": "Barbara", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Iowa State University", 
              "id": "https://www.grid.ac/institutes/grid.34421.30", 
              "name": [
                "Department of Chemistry, Iowa State University, 50011, Ames, IA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Anderson", 
            "givenName": "Jared L.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Iowa State University", 
              "id": "https://www.grid.ac/institutes/grid.34421.30", 
              "name": [
                "Department of Chemistry, Iowa State University, 50011, Ames, IA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Emaus", 
            "givenName": "Miranda N.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Turin", 
              "id": "https://www.grid.ac/institutes/grid.7605.4", 
              "name": [
                "Dipartimento di Scienza e Tecnologia del Farmaco, Universit\u00e0 di Torino, Via P. Giuria 9, 10125, Turin, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bicchi", 
            "givenName": "Carlo", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Turin", 
              "id": "https://www.grid.ac/institutes/grid.7605.4", 
              "name": [
                "Dipartimento di Scienze della Vita e Biologia dei Sistemi, Unit\u00e0 di Fisiologia Vegetale, Universit\u00e0 di Torino, via Quarello 15/A, 10135, Turin, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bertea", 
            "givenName": "Cinzia M.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Turin", 
              "id": "https://www.grid.ac/institutes/grid.7605.4", 
              "name": [
                "Dipartimento di Scienza e Tecnologia del Farmaco, Universit\u00e0 di Torino, Via P. Giuria 9, 10125, Turin, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rubiolo", 
            "givenName": "Patrizia", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/b978-0-12-372180-8.50042-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004812051"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12870-015-0487-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017731045", 
              "https://doi.org/10.1186/s12870-015-0487-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12870-015-0487-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017731045", 
              "https://doi.org/10.1186/s12870-015-0487-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2148-10-61", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022446017", 
              "https://doi.org/10.1186/1471-2148-10-61"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/c6ra05932e", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026937832"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.foodres.2012.09.036", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029306445"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1098/rspb.2002.2218", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030057572"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ac504260t", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030433110"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00216-014-8204-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033119720", 
              "https://doi.org/10.1007/s00216-014-8204-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.aca.2016.06.011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035770071"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/c5cc07253k", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037696417"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13007-016-0152-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040969139", 
              "https://doi.org/10.1186/s13007-016-0152-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13007-016-0152-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040969139", 
              "https://doi.org/10.1186/s13007-016-0152-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/17429140600831581", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050075798"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/4117844", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1070570885"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/anie.201703299", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085103097"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/anie.201703299", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085103097"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/c7nj00206h", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085579331"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00216-017-0439-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086111858", 
              "https://doi.org/10.1007/s00216-017-0439-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00216-017-0439-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086111858", 
              "https://doi.org/10.1007/s00216-017-0439-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.foodres.2017.07.071", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090953135"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.foodres.2017.07.071", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090953135"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/jssc.201700864", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091849094"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/14786419.2017.1378211", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091930817"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13007-017-0234-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092173581", 
              "https://doi.org/10.1186/s13007-017-0234-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13007-017-0255-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093138528", 
              "https://doi.org/10.1186/s13007-017-0255-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00216-018-0898-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100984549", 
              "https://doi.org/10.1007/s00216-018-0898-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/mec.14695", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103468772"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12551-018-0422-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103599324", 
              "https://doi.org/10.1007/s12551-018-0422-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00216-018-1092-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103671095", 
              "https://doi.org/10.1007/s00216-018-1092-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/bem.22123", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103681559"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/acs.jpcb.8b05580", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105556706"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/c8cc05954c", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106126776"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-12", 
        "datePublishedReg": "2019-12-01", 
        "description": "Background: Nowadays, there is an increasing demand for fast and reliable plant biomolecular analyses. Conventional methods for the isolation of nucleic acids are time-consuming and require multiple and often non-automatable steps to remove cellular interferences, with consequence that sample preparation is the major bottleneck in the bioanalytical workflow. New opportunities have been created by the use of magnetic ionic liquids (MILs) thanks to their affinity for nucleic acids.\nResults: In the present study, a MIL-based magnet-assisted dispersive liquid-liquid microextraction (maDLLME) method was optimized for the extraction of genomic DNA from Arabidopsis thaliana (L.) Heynh leaves. MILs containing different metal centers were tested and the extraction method was optimized in terms of MIL volume and extraction time for purified DNA and crude lysates. The proposed approach yielded good extraction efficiency and is compatible with both quantitative analysis through fluorimetric-based detection and qualitative analysis as PCR amplification of multi and single locus genes. The protocol was successfully applied to a set of plant species and tissues.\nConclusions: The developed MIL-based maDLLME approach exhibits good enrichment of nucleic acids for extraction of template suitable for targeted PCR; it is very fast, sustainable and potentially automatable thereby representing a powerful tool for screening plants rapidly using DNA-based methods.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1186/s13007-019-0408-x", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.6935987", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1035309", 
            "issn": [
              "1746-4811"
            ], 
            "name": "Plant Methods", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "15"
          }
        ], 
        "name": "Development of an innovative and sustainable one-step method for rapid plant DNA isolation for targeted PCR using magnetic ionic liquids", 
        "pagination": "23", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "7cda8f3f11d69265c25e6a36739d8e13046bd29709631e4d8bcd33021c3b1389"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30899320"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101245798"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s13007-019-0408-x"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1112672883"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s13007-019-0408-x", 
          "https://app.dimensions.ai/details/publication/pub.1112672883"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:19", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78959_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1186%2Fs13007-019-0408-x"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13007-019-0408-x'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13007-019-0408-x'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13007-019-0408-x'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13007-019-0408-x'


     

    This table displays all metadata directly associated to this object as RDF triples.

    209 TRIPLES      21 PREDICATES      57 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s13007-019-0408-x schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N808b6ff23a924ecc8ddef411a4d450da
    4 schema:citation sg:pub.10.1007/s00216-014-8204-y
    5 sg:pub.10.1007/s00216-017-0439-y
    6 sg:pub.10.1007/s00216-018-0898-9
    7 sg:pub.10.1007/s00216-018-1092-9
    8 sg:pub.10.1007/s12551-018-0422-7
    9 sg:pub.10.1186/1471-2148-10-61
    10 sg:pub.10.1186/s12870-015-0487-4
    11 sg:pub.10.1186/s13007-016-0152-4
    12 sg:pub.10.1186/s13007-017-0234-y
    13 sg:pub.10.1186/s13007-017-0255-6
    14 https://doi.org/10.1002/anie.201703299
    15 https://doi.org/10.1002/bem.22123
    16 https://doi.org/10.1002/jssc.201700864
    17 https://doi.org/10.1016/b978-0-12-372180-8.50042-1
    18 https://doi.org/10.1016/j.aca.2016.06.011
    19 https://doi.org/10.1016/j.foodres.2012.09.036
    20 https://doi.org/10.1016/j.foodres.2017.07.071
    21 https://doi.org/10.1021/ac504260t
    22 https://doi.org/10.1021/acs.jpcb.8b05580
    23 https://doi.org/10.1039/c5cc07253k
    24 https://doi.org/10.1039/c6ra05932e
    25 https://doi.org/10.1039/c7nj00206h
    26 https://doi.org/10.1039/c8cc05954c
    27 https://doi.org/10.1080/14786419.2017.1378211
    28 https://doi.org/10.1080/17429140600831581
    29 https://doi.org/10.1098/rspb.2002.2218
    30 https://doi.org/10.1111/mec.14695
    31 https://doi.org/10.2307/4117844
    32 schema:datePublished 2019-12
    33 schema:datePublishedReg 2019-12-01
    34 schema:description Background: Nowadays, there is an increasing demand for fast and reliable plant biomolecular analyses. Conventional methods for the isolation of nucleic acids are time-consuming and require multiple and often non-automatable steps to remove cellular interferences, with consequence that sample preparation is the major bottleneck in the bioanalytical workflow. New opportunities have been created by the use of magnetic ionic liquids (MILs) thanks to their affinity for nucleic acids. Results: In the present study, a MIL-based magnet-assisted dispersive liquid-liquid microextraction (maDLLME) method was optimized for the extraction of genomic DNA from Arabidopsis thaliana (L.) Heynh leaves. MILs containing different metal centers were tested and the extraction method was optimized in terms of MIL volume and extraction time for purified DNA and crude lysates. The proposed approach yielded good extraction efficiency and is compatible with both quantitative analysis through fluorimetric-based detection and qualitative analysis as PCR amplification of multi and single locus genes. The protocol was successfully applied to a set of plant species and tissues. Conclusions: The developed MIL-based maDLLME approach exhibits good enrichment of nucleic acids for extraction of template suitable for targeted PCR; it is very fast, sustainable and potentially automatable thereby representing a powerful tool for screening plants rapidly using DNA-based methods.
    35 schema:genre research_article
    36 schema:inLanguage en
    37 schema:isAccessibleForFree true
    38 schema:isPartOf N6a2a27962c924ccb869be3763c3347c9
    39 Ndf668557bbc84ec6af7e2a1a707efd38
    40 sg:journal.1035309
    41 schema:name Development of an innovative and sustainable one-step method for rapid plant DNA isolation for targeted PCR using magnetic ionic liquids
    42 schema:pagination 23
    43 schema:productId N3152ddf52df74af0aad2145177225630
    44 N356a4a745d0f48bfa978c567b021c5ee
    45 N90b8d0a03a034944ad33a6c6f2a09198
    46 Nd7ab0bf31b17480ba69732dce3a71441
    47 Nf46242f0e0a048ff9705a765401deb3a
    48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112672883
    49 https://doi.org/10.1186/s13007-019-0408-x
    50 schema:sdDatePublished 2019-04-11T13:19
    51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    52 schema:sdPublisher Na02fa7ec231142209a482833991fbe1c
    53 schema:url https://link.springer.com/10.1186%2Fs13007-019-0408-x
    54 sgo:license sg:explorer/license/
    55 sgo:sdDataset articles
    56 rdf:type schema:ScholarlyArticle
    57 N0dc93f753172444fab1ec81bc692bad2 rdf:first N750cadc21341402aa506e04f8e4f427b
    58 rdf:rest rdf:nil
    59 N3152ddf52df74af0aad2145177225630 schema:name readcube_id
    60 schema:value 7cda8f3f11d69265c25e6a36739d8e13046bd29709631e4d8bcd33021c3b1389
    61 rdf:type schema:PropertyValue
    62 N356a4a745d0f48bfa978c567b021c5ee schema:name pubmed_id
    63 schema:value 30899320
    64 rdf:type schema:PropertyValue
    65 N4e6f49c1ed19438eac16fcc1cdcebed6 rdf:first Nac00042d3f1a479293f970c627381bda
    66 rdf:rest Nfef57f52824242279d94bd845d0c354a
    67 N6a2a27962c924ccb869be3763c3347c9 schema:volumeNumber 15
    68 rdf:type schema:PublicationVolume
    69 N6ada2ec4918b46c583ae8ac7d6fc2c08 rdf:first Na84b6308b70b402e86413e879e9674f5
    70 rdf:rest Nef8fb946875641ef976103192695b8ac
    71 N750cadc21341402aa506e04f8e4f427b schema:affiliation https://www.grid.ac/institutes/grid.7605.4
    72 schema:familyName Rubiolo
    73 schema:givenName Patrizia
    74 rdf:type schema:Person
    75 N808b6ff23a924ecc8ddef411a4d450da rdf:first Neb1858bc8df546208af9825c3e9bbf50
    76 rdf:rest N4e6f49c1ed19438eac16fcc1cdcebed6
    77 N886b999b37c04d228992017486a6bb84 rdf:first Nadff7addfeee442e8bc3f808d3831911
    78 rdf:rest N6ada2ec4918b46c583ae8ac7d6fc2c08
    79 N90b8d0a03a034944ad33a6c6f2a09198 schema:name dimensions_id
    80 schema:value pub.1112672883
    81 rdf:type schema:PropertyValue
    82 N911c9b5f689d43429166761954d17c45 schema:affiliation https://www.grid.ac/institutes/grid.34421.30
    83 schema:familyName Anderson
    84 schema:givenName Jared L.
    85 rdf:type schema:Person
    86 Na02fa7ec231142209a482833991fbe1c schema:name Springer Nature - SN SciGraph project
    87 rdf:type schema:Organization
    88 Na84b6308b70b402e86413e879e9674f5 schema:affiliation https://www.grid.ac/institutes/grid.7605.4
    89 schema:familyName Bicchi
    90 schema:givenName Carlo
    91 rdf:type schema:Person
    92 Nac00042d3f1a479293f970c627381bda schema:affiliation https://www.grid.ac/institutes/grid.7605.4
    93 schema:familyName Cagliero
    94 schema:givenName Cecilia
    95 rdf:type schema:Person
    96 Nadff7addfeee442e8bc3f808d3831911 schema:affiliation https://www.grid.ac/institutes/grid.34421.30
    97 schema:familyName Emaus
    98 schema:givenName Miranda N.
    99 rdf:type schema:Person
    100 Naebd3029669e42b48de0992ea5ad6979 rdf:first N911c9b5f689d43429166761954d17c45
    101 rdf:rest N886b999b37c04d228992017486a6bb84
    102 Nd7ab0bf31b17480ba69732dce3a71441 schema:name doi
    103 schema:value 10.1186/s13007-019-0408-x
    104 rdf:type schema:PropertyValue
    105 Nd99468e51e964b32b47fdaf417d7dc77 schema:affiliation https://www.grid.ac/institutes/grid.7605.4
    106 schema:familyName Bertea
    107 schema:givenName Cinzia M.
    108 rdf:type schema:Person
    109 Ndbbd7eb164d74276a174d0162f74193f schema:affiliation https://www.grid.ac/institutes/grid.7605.4
    110 schema:familyName Sgorbini
    111 schema:givenName Barbara
    112 rdf:type schema:Person
    113 Ndf668557bbc84ec6af7e2a1a707efd38 schema:issueNumber 1
    114 rdf:type schema:PublicationIssue
    115 Neb1858bc8df546208af9825c3e9bbf50 schema:affiliation https://www.grid.ac/institutes/grid.7605.4
    116 schema:familyName Marengo
    117 schema:givenName Arianna
    118 rdf:type schema:Person
    119 Nef8fb946875641ef976103192695b8ac rdf:first Nd99468e51e964b32b47fdaf417d7dc77
    120 rdf:rest N0dc93f753172444fab1ec81bc692bad2
    121 Nf46242f0e0a048ff9705a765401deb3a schema:name nlm_unique_id
    122 schema:value 101245798
    123 rdf:type schema:PropertyValue
    124 Nfef57f52824242279d94bd845d0c354a rdf:first Ndbbd7eb164d74276a174d0162f74193f
    125 rdf:rest Naebd3029669e42b48de0992ea5ad6979
    126 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    127 schema:name Information and Computing Sciences
    128 rdf:type schema:DefinedTerm
    129 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    130 schema:name Artificial Intelligence and Image Processing
    131 rdf:type schema:DefinedTerm
    132 sg:grant.6935987 http://pending.schema.org/fundedItem sg:pub.10.1186/s13007-019-0408-x
    133 rdf:type schema:MonetaryGrant
    134 sg:journal.1035309 schema:issn 1746-4811
    135 schema:name Plant Methods
    136 rdf:type schema:Periodical
    137 sg:pub.10.1007/s00216-014-8204-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1033119720
    138 https://doi.org/10.1007/s00216-014-8204-y
    139 rdf:type schema:CreativeWork
    140 sg:pub.10.1007/s00216-017-0439-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1086111858
    141 https://doi.org/10.1007/s00216-017-0439-y
    142 rdf:type schema:CreativeWork
    143 sg:pub.10.1007/s00216-018-0898-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100984549
    144 https://doi.org/10.1007/s00216-018-0898-9
    145 rdf:type schema:CreativeWork
    146 sg:pub.10.1007/s00216-018-1092-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103671095
    147 https://doi.org/10.1007/s00216-018-1092-9
    148 rdf:type schema:CreativeWork
    149 sg:pub.10.1007/s12551-018-0422-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103599324
    150 https://doi.org/10.1007/s12551-018-0422-7
    151 rdf:type schema:CreativeWork
    152 sg:pub.10.1186/1471-2148-10-61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022446017
    153 https://doi.org/10.1186/1471-2148-10-61
    154 rdf:type schema:CreativeWork
    155 sg:pub.10.1186/s12870-015-0487-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017731045
    156 https://doi.org/10.1186/s12870-015-0487-4
    157 rdf:type schema:CreativeWork
    158 sg:pub.10.1186/s13007-016-0152-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040969139
    159 https://doi.org/10.1186/s13007-016-0152-4
    160 rdf:type schema:CreativeWork
    161 sg:pub.10.1186/s13007-017-0234-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1092173581
    162 https://doi.org/10.1186/s13007-017-0234-y
    163 rdf:type schema:CreativeWork
    164 sg:pub.10.1186/s13007-017-0255-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093138528
    165 https://doi.org/10.1186/s13007-017-0255-6
    166 rdf:type schema:CreativeWork
    167 https://doi.org/10.1002/anie.201703299 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085103097
    168 rdf:type schema:CreativeWork
    169 https://doi.org/10.1002/bem.22123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103681559
    170 rdf:type schema:CreativeWork
    171 https://doi.org/10.1002/jssc.201700864 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091849094
    172 rdf:type schema:CreativeWork
    173 https://doi.org/10.1016/b978-0-12-372180-8.50042-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004812051
    174 rdf:type schema:CreativeWork
    175 https://doi.org/10.1016/j.aca.2016.06.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035770071
    176 rdf:type schema:CreativeWork
    177 https://doi.org/10.1016/j.foodres.2012.09.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029306445
    178 rdf:type schema:CreativeWork
    179 https://doi.org/10.1016/j.foodres.2017.07.071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090953135
    180 rdf:type schema:CreativeWork
    181 https://doi.org/10.1021/ac504260t schema:sameAs https://app.dimensions.ai/details/publication/pub.1030433110
    182 rdf:type schema:CreativeWork
    183 https://doi.org/10.1021/acs.jpcb.8b05580 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105556706
    184 rdf:type schema:CreativeWork
    185 https://doi.org/10.1039/c5cc07253k schema:sameAs https://app.dimensions.ai/details/publication/pub.1037696417
    186 rdf:type schema:CreativeWork
    187 https://doi.org/10.1039/c6ra05932e schema:sameAs https://app.dimensions.ai/details/publication/pub.1026937832
    188 rdf:type schema:CreativeWork
    189 https://doi.org/10.1039/c7nj00206h schema:sameAs https://app.dimensions.ai/details/publication/pub.1085579331
    190 rdf:type schema:CreativeWork
    191 https://doi.org/10.1039/c8cc05954c schema:sameAs https://app.dimensions.ai/details/publication/pub.1106126776
    192 rdf:type schema:CreativeWork
    193 https://doi.org/10.1080/14786419.2017.1378211 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091930817
    194 rdf:type schema:CreativeWork
    195 https://doi.org/10.1080/17429140600831581 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050075798
    196 rdf:type schema:CreativeWork
    197 https://doi.org/10.1098/rspb.2002.2218 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030057572
    198 rdf:type schema:CreativeWork
    199 https://doi.org/10.1111/mec.14695 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103468772
    200 rdf:type schema:CreativeWork
    201 https://doi.org/10.2307/4117844 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070570885
    202 rdf:type schema:CreativeWork
    203 https://www.grid.ac/institutes/grid.34421.30 schema:alternateName Iowa State University
    204 schema:name Department of Chemistry, Iowa State University, 50011, Ames, IA, USA
    205 rdf:type schema:Organization
    206 https://www.grid.ac/institutes/grid.7605.4 schema:alternateName University of Turin
    207 schema:name Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, Via P. Giuria 9, 10125, Turin, Italy
    208 Dipartimento di Scienze della Vita e Biologia dei Sistemi, Unità di Fisiologia Vegetale, Università di Torino, via Quarello 15/A, 10135, Turin, Italy
    209 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...