Development of an innovative and sustainable one-step method for rapid plant DNA isolation for targeted PCR using magnetic ionic liquids View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Arianna Marengo, Cecilia Cagliero, Barbara Sgorbini, Jared L. Anderson, Miranda N. Emaus, Carlo Bicchi, Cinzia M. Bertea, Patrizia Rubiolo

ABSTRACT

Background: Nowadays, there is an increasing demand for fast and reliable plant biomolecular analyses. Conventional methods for the isolation of nucleic acids are time-consuming and require multiple and often non-automatable steps to remove cellular interferences, with consequence that sample preparation is the major bottleneck in the bioanalytical workflow. New opportunities have been created by the use of magnetic ionic liquids (MILs) thanks to their affinity for nucleic acids. Results: In the present study, a MIL-based magnet-assisted dispersive liquid-liquid microextraction (maDLLME) method was optimized for the extraction of genomic DNA from Arabidopsis thaliana (L.) Heynh leaves. MILs containing different metal centers were tested and the extraction method was optimized in terms of MIL volume and extraction time for purified DNA and crude lysates. The proposed approach yielded good extraction efficiency and is compatible with both quantitative analysis through fluorimetric-based detection and qualitative analysis as PCR amplification of multi and single locus genes. The protocol was successfully applied to a set of plant species and tissues. Conclusions: The developed MIL-based maDLLME approach exhibits good enrichment of nucleic acids for extraction of template suitable for targeted PCR; it is very fast, sustainable and potentially automatable thereby representing a powerful tool for screening plants rapidly using DNA-based methods. More... »

PAGES

23

References to SciGraph publications

  • 2018-06. Biological and nanotechnological applications using interactions between ionic liquids and nucleic acids in BIOPHYSICAL REVIEWS
  • 2017-12. Comparison of three genomic DNA extraction methods to obtain high DNA quality from maize in PLANT METHODS
  • 2017-12. Reproducible genomic DNA preparation from diverse crop species for molecular genetic applications in PLANT METHODS
  • 2018-07. Preconcentration of DNA using magnetic ionic liquids that are compatible with real-time PCR for rapid nucleic acid quantification in ANALYTICAL AND BIOANALYTICAL CHEMISTRY
  • 2015-12. Direct Contact – Sorptive Tape Extraction coupled with Gas Chromatography – Mass Spectrometry to reveal volatile topographical dynamics of lima bean (Phaseolus lunatus L.) upon herbivory by Spodoptera littoralis Boisd. in BMC PLANT BIOLOGY
  • 2018-07. Advances in the analysis of biological samples using ionic liquids in ANALYTICAL AND BIOANALYTICAL CHEMISTRY
  • 2010-12. Identification of shared single copy nuclear genes in Arabidopsis, Populus, Vitis and Oryzaand their phylogenetic utility across various taxonomic levels in BMC EVOLUTIONARY BIOLOGY
  • 2014-12. Direct extraction of genomic DNA from maize with aqueous ionic liquid buffer systems for applications in genetically modified organisms analysis in ANALYTICAL AND BIOANALYTICAL CHEMISTRY
  • 2017-12. Improved method for genomic DNA extraction for Opuntia Mill. (Cactaceae) in PLANT METHODS
  • 2017-08. Rapid preconcentration of viable bacteria using magnetic ionic liquids for PCR amplification and culture-based diagnostics in ANALYTICAL AND BIOANALYTICAL CHEMISTRY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s13007-019-0408-x

    DOI

    http://dx.doi.org/10.1186/s13007-019-0408-x

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1112672883

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30899320


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Turin", 
              "id": "https://www.grid.ac/institutes/grid.7605.4", 
              "name": [
                "Dipartimento di Scienza e Tecnologia del Farmaco, Universit\u00e0 di Torino, Via P. Giuria 9, 10125, Turin, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Marengo", 
            "givenName": "Arianna", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Turin", 
              "id": "https://www.grid.ac/institutes/grid.7605.4", 
              "name": [
                "Dipartimento di Scienza e Tecnologia del Farmaco, Universit\u00e0 di Torino, Via P. Giuria 9, 10125, Turin, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cagliero", 
            "givenName": "Cecilia", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Turin", 
              "id": "https://www.grid.ac/institutes/grid.7605.4", 
              "name": [
                "Dipartimento di Scienza e Tecnologia del Farmaco, Universit\u00e0 di Torino, Via P. Giuria 9, 10125, Turin, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sgorbini", 
            "givenName": "Barbara", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Iowa State University", 
              "id": "https://www.grid.ac/institutes/grid.34421.30", 
              "name": [
                "Department of Chemistry, Iowa State University, 50011, Ames, IA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Anderson", 
            "givenName": "Jared L.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Iowa State University", 
              "id": "https://www.grid.ac/institutes/grid.34421.30", 
              "name": [
                "Department of Chemistry, Iowa State University, 50011, Ames, IA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Emaus", 
            "givenName": "Miranda N.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Turin", 
              "id": "https://www.grid.ac/institutes/grid.7605.4", 
              "name": [
                "Dipartimento di Scienza e Tecnologia del Farmaco, Universit\u00e0 di Torino, Via P. Giuria 9, 10125, Turin, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bicchi", 
            "givenName": "Carlo", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Turin", 
              "id": "https://www.grid.ac/institutes/grid.7605.4", 
              "name": [
                "Dipartimento di Scienze della Vita e Biologia dei Sistemi, Unit\u00e0 di Fisiologia Vegetale, Universit\u00e0 di Torino, via Quarello 15/A, 10135, Turin, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bertea", 
            "givenName": "Cinzia M.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Turin", 
              "id": "https://www.grid.ac/institutes/grid.7605.4", 
              "name": [
                "Dipartimento di Scienza e Tecnologia del Farmaco, Universit\u00e0 di Torino, Via P. Giuria 9, 10125, Turin, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rubiolo", 
            "givenName": "Patrizia", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/b978-0-12-372180-8.50042-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004812051"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12870-015-0487-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017731045", 
              "https://doi.org/10.1186/s12870-015-0487-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12870-015-0487-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017731045", 
              "https://doi.org/10.1186/s12870-015-0487-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2148-10-61", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022446017", 
              "https://doi.org/10.1186/1471-2148-10-61"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/c6ra05932e", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026937832"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.foodres.2012.09.036", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029306445"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1098/rspb.2002.2218", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030057572"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ac504260t", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030433110"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00216-014-8204-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033119720", 
              "https://doi.org/10.1007/s00216-014-8204-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.aca.2016.06.011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035770071"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/c5cc07253k", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037696417"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13007-016-0152-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040969139", 
              "https://doi.org/10.1186/s13007-016-0152-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13007-016-0152-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040969139", 
              "https://doi.org/10.1186/s13007-016-0152-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/17429140600831581", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050075798"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/4117844", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1070570885"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/anie.201703299", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085103097"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/anie.201703299", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085103097"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/c7nj00206h", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085579331"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00216-017-0439-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086111858", 
              "https://doi.org/10.1007/s00216-017-0439-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00216-017-0439-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086111858", 
              "https://doi.org/10.1007/s00216-017-0439-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.foodres.2017.07.071", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090953135"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.foodres.2017.07.071", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090953135"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/jssc.201700864", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091849094"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/14786419.2017.1378211", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091930817"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13007-017-0234-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092173581", 
              "https://doi.org/10.1186/s13007-017-0234-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13007-017-0255-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093138528", 
              "https://doi.org/10.1186/s13007-017-0255-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00216-018-0898-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100984549", 
              "https://doi.org/10.1007/s00216-018-0898-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/mec.14695", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103468772"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12551-018-0422-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103599324", 
              "https://doi.org/10.1007/s12551-018-0422-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00216-018-1092-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103671095", 
              "https://doi.org/10.1007/s00216-018-1092-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/bem.22123", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103681559"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/acs.jpcb.8b05580", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105556706"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/c8cc05954c", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106126776"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-12", 
        "datePublishedReg": "2019-12-01", 
        "description": "Background: Nowadays, there is an increasing demand for fast and reliable plant biomolecular analyses. Conventional methods for the isolation of nucleic acids are time-consuming and require multiple and often non-automatable steps to remove cellular interferences, with consequence that sample preparation is the major bottleneck in the bioanalytical workflow. New opportunities have been created by the use of magnetic ionic liquids (MILs) thanks to their affinity for nucleic acids.\nResults: In the present study, a MIL-based magnet-assisted dispersive liquid-liquid microextraction (maDLLME) method was optimized for the extraction of genomic DNA from Arabidopsis thaliana (L.) Heynh leaves. MILs containing different metal centers were tested and the extraction method was optimized in terms of MIL volume and extraction time for purified DNA and crude lysates. The proposed approach yielded good extraction efficiency and is compatible with both quantitative analysis through fluorimetric-based detection and qualitative analysis as PCR amplification of multi and single locus genes. The protocol was successfully applied to a set of plant species and tissues.\nConclusions: The developed MIL-based maDLLME approach exhibits good enrichment of nucleic acids for extraction of template suitable for targeted PCR; it is very fast, sustainable and potentially automatable thereby representing a powerful tool for screening plants rapidly using DNA-based methods.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1186/s13007-019-0408-x", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.6935987", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1035309", 
            "issn": [
              "1746-4811"
            ], 
            "name": "Plant Methods", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "15"
          }
        ], 
        "name": "Development of an innovative and sustainable one-step method for rapid plant DNA isolation for targeted PCR using magnetic ionic liquids", 
        "pagination": "23", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "7cda8f3f11d69265c25e6a36739d8e13046bd29709631e4d8bcd33021c3b1389"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30899320"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101245798"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s13007-019-0408-x"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1112672883"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s13007-019-0408-x", 
          "https://app.dimensions.ai/details/publication/pub.1112672883"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:19", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78959_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1186%2Fs13007-019-0408-x"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13007-019-0408-x'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13007-019-0408-x'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13007-019-0408-x'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13007-019-0408-x'


     

    This table displays all metadata directly associated to this object as RDF triples.

    209 TRIPLES      21 PREDICATES      57 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s13007-019-0408-x schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author Ne0253ffe5cc244718ce0b37c4f446bb9
    4 schema:citation sg:pub.10.1007/s00216-014-8204-y
    5 sg:pub.10.1007/s00216-017-0439-y
    6 sg:pub.10.1007/s00216-018-0898-9
    7 sg:pub.10.1007/s00216-018-1092-9
    8 sg:pub.10.1007/s12551-018-0422-7
    9 sg:pub.10.1186/1471-2148-10-61
    10 sg:pub.10.1186/s12870-015-0487-4
    11 sg:pub.10.1186/s13007-016-0152-4
    12 sg:pub.10.1186/s13007-017-0234-y
    13 sg:pub.10.1186/s13007-017-0255-6
    14 https://doi.org/10.1002/anie.201703299
    15 https://doi.org/10.1002/bem.22123
    16 https://doi.org/10.1002/jssc.201700864
    17 https://doi.org/10.1016/b978-0-12-372180-8.50042-1
    18 https://doi.org/10.1016/j.aca.2016.06.011
    19 https://doi.org/10.1016/j.foodres.2012.09.036
    20 https://doi.org/10.1016/j.foodres.2017.07.071
    21 https://doi.org/10.1021/ac504260t
    22 https://doi.org/10.1021/acs.jpcb.8b05580
    23 https://doi.org/10.1039/c5cc07253k
    24 https://doi.org/10.1039/c6ra05932e
    25 https://doi.org/10.1039/c7nj00206h
    26 https://doi.org/10.1039/c8cc05954c
    27 https://doi.org/10.1080/14786419.2017.1378211
    28 https://doi.org/10.1080/17429140600831581
    29 https://doi.org/10.1098/rspb.2002.2218
    30 https://doi.org/10.1111/mec.14695
    31 https://doi.org/10.2307/4117844
    32 schema:datePublished 2019-12
    33 schema:datePublishedReg 2019-12-01
    34 schema:description Background: Nowadays, there is an increasing demand for fast and reliable plant biomolecular analyses. Conventional methods for the isolation of nucleic acids are time-consuming and require multiple and often non-automatable steps to remove cellular interferences, with consequence that sample preparation is the major bottleneck in the bioanalytical workflow. New opportunities have been created by the use of magnetic ionic liquids (MILs) thanks to their affinity for nucleic acids. Results: In the present study, a MIL-based magnet-assisted dispersive liquid-liquid microextraction (maDLLME) method was optimized for the extraction of genomic DNA from Arabidopsis thaliana (L.) Heynh leaves. MILs containing different metal centers were tested and the extraction method was optimized in terms of MIL volume and extraction time for purified DNA and crude lysates. The proposed approach yielded good extraction efficiency and is compatible with both quantitative analysis through fluorimetric-based detection and qualitative analysis as PCR amplification of multi and single locus genes. The protocol was successfully applied to a set of plant species and tissues. Conclusions: The developed MIL-based maDLLME approach exhibits good enrichment of nucleic acids for extraction of template suitable for targeted PCR; it is very fast, sustainable and potentially automatable thereby representing a powerful tool for screening plants rapidly using DNA-based methods.
    35 schema:genre research_article
    36 schema:inLanguage en
    37 schema:isAccessibleForFree true
    38 schema:isPartOf N0a462fa71a3b4809b7e71683ad90fad0
    39 N8a32e52525cc4e8fb68e267d2dbf1a29
    40 sg:journal.1035309
    41 schema:name Development of an innovative and sustainable one-step method for rapid plant DNA isolation for targeted PCR using magnetic ionic liquids
    42 schema:pagination 23
    43 schema:productId N369ae19dd6e14287bccc012103a67992
    44 N404c04a96a4e49c3afce436a491e6b5e
    45 N9898d8f2636b46efac2a999a76da655a
    46 N9d8c8e5514f54adf9a23ff79cab128ef
    47 Nfc28848089564fd181c864d5ac40c218
    48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112672883
    49 https://doi.org/10.1186/s13007-019-0408-x
    50 schema:sdDatePublished 2019-04-11T13:19
    51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    52 schema:sdPublisher Na9e6955a6a3e404cb2a348b3df1450b1
    53 schema:url https://link.springer.com/10.1186%2Fs13007-019-0408-x
    54 sgo:license sg:explorer/license/
    55 sgo:sdDataset articles
    56 rdf:type schema:ScholarlyArticle
    57 N0452f286ef75487ba9b85ba980af94f2 rdf:first Nacc9c03b148b4c1498a92dc77f89db95
    58 rdf:rest Nf64fe8f9a5924fba814dd206517298c9
    59 N0a462fa71a3b4809b7e71683ad90fad0 schema:issueNumber 1
    60 rdf:type schema:PublicationIssue
    61 N369ae19dd6e14287bccc012103a67992 schema:name readcube_id
    62 schema:value 7cda8f3f11d69265c25e6a36739d8e13046bd29709631e4d8bcd33021c3b1389
    63 rdf:type schema:PropertyValue
    64 N36d0c393e5644269bad9c17d2e9cc46e rdf:first N55444e63008747b095441a235c3cf5da
    65 rdf:rest N0452f286ef75487ba9b85ba980af94f2
    66 N3a88c2f9638d497a8fa54a265ae0cac8 schema:affiliation https://www.grid.ac/institutes/grid.7605.4
    67 schema:familyName Bicchi
    68 schema:givenName Carlo
    69 rdf:type schema:Person
    70 N3aaa03e2b26a4ad595fa9d61f8bcc2da rdf:first N3a88c2f9638d497a8fa54a265ae0cac8
    71 rdf:rest N508427c8e06b4763b93018e7995d7823
    72 N404c04a96a4e49c3afce436a491e6b5e schema:name nlm_unique_id
    73 schema:value 101245798
    74 rdf:type schema:PropertyValue
    75 N508427c8e06b4763b93018e7995d7823 rdf:first N5252fdd1f9314793b2b184824d2a16e9
    76 rdf:rest Nf711f32c3b4147198795672d078af6e7
    77 N5252fdd1f9314793b2b184824d2a16e9 schema:affiliation https://www.grid.ac/institutes/grid.7605.4
    78 schema:familyName Bertea
    79 schema:givenName Cinzia M.
    80 rdf:type schema:Person
    81 N55444e63008747b095441a235c3cf5da schema:affiliation https://www.grid.ac/institutes/grid.7605.4
    82 schema:familyName Cagliero
    83 schema:givenName Cecilia
    84 rdf:type schema:Person
    85 N8a32e52525cc4e8fb68e267d2dbf1a29 schema:volumeNumber 15
    86 rdf:type schema:PublicationVolume
    87 N8f485dc91fbc421ba4d864c6cda16e45 rdf:first Nde05ecbb00624839b3be8affb682599c
    88 rdf:rest N3aaa03e2b26a4ad595fa9d61f8bcc2da
    89 N9898d8f2636b46efac2a999a76da655a schema:name dimensions_id
    90 schema:value pub.1112672883
    91 rdf:type schema:PropertyValue
    92 N99c1d93bd925417aab8af27462de7010 schema:affiliation https://www.grid.ac/institutes/grid.7605.4
    93 schema:familyName Marengo
    94 schema:givenName Arianna
    95 rdf:type schema:Person
    96 N9d8c8e5514f54adf9a23ff79cab128ef schema:name doi
    97 schema:value 10.1186/s13007-019-0408-x
    98 rdf:type schema:PropertyValue
    99 Na9e6955a6a3e404cb2a348b3df1450b1 schema:name Springer Nature - SN SciGraph project
    100 rdf:type schema:Organization
    101 Nacc9c03b148b4c1498a92dc77f89db95 schema:affiliation https://www.grid.ac/institutes/grid.7605.4
    102 schema:familyName Sgorbini
    103 schema:givenName Barbara
    104 rdf:type schema:Person
    105 Nde05ecbb00624839b3be8affb682599c schema:affiliation https://www.grid.ac/institutes/grid.34421.30
    106 schema:familyName Emaus
    107 schema:givenName Miranda N.
    108 rdf:type schema:Person
    109 Ne0253ffe5cc244718ce0b37c4f446bb9 rdf:first N99c1d93bd925417aab8af27462de7010
    110 rdf:rest N36d0c393e5644269bad9c17d2e9cc46e
    111 Nf64fe8f9a5924fba814dd206517298c9 rdf:first Nf99a2e31f2f746f19dcf2f3df77dbcaa
    112 rdf:rest N8f485dc91fbc421ba4d864c6cda16e45
    113 Nf711f32c3b4147198795672d078af6e7 rdf:first Nfb1cf9f10b884c8daca5426a8f22a774
    114 rdf:rest rdf:nil
    115 Nf99a2e31f2f746f19dcf2f3df77dbcaa schema:affiliation https://www.grid.ac/institutes/grid.34421.30
    116 schema:familyName Anderson
    117 schema:givenName Jared L.
    118 rdf:type schema:Person
    119 Nfb1cf9f10b884c8daca5426a8f22a774 schema:affiliation https://www.grid.ac/institutes/grid.7605.4
    120 schema:familyName Rubiolo
    121 schema:givenName Patrizia
    122 rdf:type schema:Person
    123 Nfc28848089564fd181c864d5ac40c218 schema:name pubmed_id
    124 schema:value 30899320
    125 rdf:type schema:PropertyValue
    126 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    127 schema:name Information and Computing Sciences
    128 rdf:type schema:DefinedTerm
    129 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    130 schema:name Artificial Intelligence and Image Processing
    131 rdf:type schema:DefinedTerm
    132 sg:grant.6935987 http://pending.schema.org/fundedItem sg:pub.10.1186/s13007-019-0408-x
    133 rdf:type schema:MonetaryGrant
    134 sg:journal.1035309 schema:issn 1746-4811
    135 schema:name Plant Methods
    136 rdf:type schema:Periodical
    137 sg:pub.10.1007/s00216-014-8204-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1033119720
    138 https://doi.org/10.1007/s00216-014-8204-y
    139 rdf:type schema:CreativeWork
    140 sg:pub.10.1007/s00216-017-0439-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1086111858
    141 https://doi.org/10.1007/s00216-017-0439-y
    142 rdf:type schema:CreativeWork
    143 sg:pub.10.1007/s00216-018-0898-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100984549
    144 https://doi.org/10.1007/s00216-018-0898-9
    145 rdf:type schema:CreativeWork
    146 sg:pub.10.1007/s00216-018-1092-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103671095
    147 https://doi.org/10.1007/s00216-018-1092-9
    148 rdf:type schema:CreativeWork
    149 sg:pub.10.1007/s12551-018-0422-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103599324
    150 https://doi.org/10.1007/s12551-018-0422-7
    151 rdf:type schema:CreativeWork
    152 sg:pub.10.1186/1471-2148-10-61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022446017
    153 https://doi.org/10.1186/1471-2148-10-61
    154 rdf:type schema:CreativeWork
    155 sg:pub.10.1186/s12870-015-0487-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017731045
    156 https://doi.org/10.1186/s12870-015-0487-4
    157 rdf:type schema:CreativeWork
    158 sg:pub.10.1186/s13007-016-0152-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040969139
    159 https://doi.org/10.1186/s13007-016-0152-4
    160 rdf:type schema:CreativeWork
    161 sg:pub.10.1186/s13007-017-0234-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1092173581
    162 https://doi.org/10.1186/s13007-017-0234-y
    163 rdf:type schema:CreativeWork
    164 sg:pub.10.1186/s13007-017-0255-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093138528
    165 https://doi.org/10.1186/s13007-017-0255-6
    166 rdf:type schema:CreativeWork
    167 https://doi.org/10.1002/anie.201703299 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085103097
    168 rdf:type schema:CreativeWork
    169 https://doi.org/10.1002/bem.22123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103681559
    170 rdf:type schema:CreativeWork
    171 https://doi.org/10.1002/jssc.201700864 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091849094
    172 rdf:type schema:CreativeWork
    173 https://doi.org/10.1016/b978-0-12-372180-8.50042-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004812051
    174 rdf:type schema:CreativeWork
    175 https://doi.org/10.1016/j.aca.2016.06.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035770071
    176 rdf:type schema:CreativeWork
    177 https://doi.org/10.1016/j.foodres.2012.09.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029306445
    178 rdf:type schema:CreativeWork
    179 https://doi.org/10.1016/j.foodres.2017.07.071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090953135
    180 rdf:type schema:CreativeWork
    181 https://doi.org/10.1021/ac504260t schema:sameAs https://app.dimensions.ai/details/publication/pub.1030433110
    182 rdf:type schema:CreativeWork
    183 https://doi.org/10.1021/acs.jpcb.8b05580 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105556706
    184 rdf:type schema:CreativeWork
    185 https://doi.org/10.1039/c5cc07253k schema:sameAs https://app.dimensions.ai/details/publication/pub.1037696417
    186 rdf:type schema:CreativeWork
    187 https://doi.org/10.1039/c6ra05932e schema:sameAs https://app.dimensions.ai/details/publication/pub.1026937832
    188 rdf:type schema:CreativeWork
    189 https://doi.org/10.1039/c7nj00206h schema:sameAs https://app.dimensions.ai/details/publication/pub.1085579331
    190 rdf:type schema:CreativeWork
    191 https://doi.org/10.1039/c8cc05954c schema:sameAs https://app.dimensions.ai/details/publication/pub.1106126776
    192 rdf:type schema:CreativeWork
    193 https://doi.org/10.1080/14786419.2017.1378211 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091930817
    194 rdf:type schema:CreativeWork
    195 https://doi.org/10.1080/17429140600831581 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050075798
    196 rdf:type schema:CreativeWork
    197 https://doi.org/10.1098/rspb.2002.2218 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030057572
    198 rdf:type schema:CreativeWork
    199 https://doi.org/10.1111/mec.14695 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103468772
    200 rdf:type schema:CreativeWork
    201 https://doi.org/10.2307/4117844 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070570885
    202 rdf:type schema:CreativeWork
    203 https://www.grid.ac/institutes/grid.34421.30 schema:alternateName Iowa State University
    204 schema:name Department of Chemistry, Iowa State University, 50011, Ames, IA, USA
    205 rdf:type schema:Organization
    206 https://www.grid.ac/institutes/grid.7605.4 schema:alternateName University of Turin
    207 schema:name Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, Via P. Giuria 9, 10125, Turin, Italy
    208 Dipartimento di Scienze della Vita e Biologia dei Sistemi, Unità di Fisiologia Vegetale, Università di Torino, via Quarello 15/A, 10135, Turin, Italy
    209 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...