Improved estimation of aboveground biomass in wheat from RGB imagery and point cloud data acquired with a low-cost unmanned aerial ... View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Ning Lu, Jie Zhou, Zixu Han, Dong Li, Qiang Cao, Xia Yao, Yongchao Tian, Yan Zhu, Weixing Cao, Tao Cheng

ABSTRACT

Background: Aboveground biomass (AGB) is a widely used agronomic parameter for characterizing crop growth status and predicting grain yield. The rapid and accurate estimation of AGB in a non-destructive way is useful for making informed decisions on precision crop management. Previous studies have investigated vegetation indices (VIs) and canopy height metrics derived from Unmanned Aerial Vehicle (UAV) data to estimate the AGB of various crops. However, the input variables were derived either from one type of data or from different sensors on board UAVs. Whether the combination of VIs and canopy height metrics derived from a single low-cost UAV system can improve the AGB estimation accuracy remains unclear. This study used a low-cost UAV system to acquire imagery at 30 m flight altitude at critical growth stages of wheat in Rugao of eastern China. The experiments were conducted in 2016 and 2017 and involved 36 field plots representing variations in cultivar, nitrogen fertilization level and sowing density. We evaluated the performance of VIs, canopy height metrics and their combination for AGB estimation in wheat with the stepwise multiple linear regression (SMLR) and three types of machine learning algorithms (support vector regression, SVR; extreme learning machine, ELM; random forest, RF). Results: Our results demonstrated that the combination of VIs and canopy height metrics improved the estimation accuracy for AGB of wheat over the use of VIs or canopy height metrics alone. Specifically, RF performed the best among the SMLR and three machine learning algorithms regardless of using all the original variables or selected variables by the SMLR. The best accuracy (R 2 = 0.78, RMSE = 1.34 t/ha, rRMSE = 28.98%) was obtained when applying RF to the combination of VIs and canopy height metrics. Conclusions: Our findings implied that an inexpensive approach consisting of the RF algorithm and the combination of RGB imagery and point cloud data derived from a low-cost UAV system at the consumer-grade level can be used to improve the accuracy of AGB estimation and have potential in the practical applications in the rapid estimation of other growth parameters. More... »

PAGES

17

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13007-019-0402-3

DOI

http://dx.doi.org/10.1186/s13007-019-0402-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112224689

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30828356


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Nanjing Agricultural University", 
          "id": "https://www.grid.ac/institutes/grid.27871.3b", 
          "name": [
            "National Engineering and Technology Center for Information Agriculture (NETCIA), Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture and Rural Affairs, Jiangsu Key Laboratory for Information Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, One Weigang, 210095, Nanjing, Jiangsu, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lu", 
        "givenName": "Ning", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nanjing Agricultural University", 
          "id": "https://www.grid.ac/institutes/grid.27871.3b", 
          "name": [
            "National Engineering and Technology Center for Information Agriculture (NETCIA), Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture and Rural Affairs, Jiangsu Key Laboratory for Information Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, One Weigang, 210095, Nanjing, Jiangsu, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhou", 
        "givenName": "Jie", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nanjing Agricultural University", 
          "id": "https://www.grid.ac/institutes/grid.27871.3b", 
          "name": [
            "National Engineering and Technology Center for Information Agriculture (NETCIA), Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture and Rural Affairs, Jiangsu Key Laboratory for Information Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, One Weigang, 210095, Nanjing, Jiangsu, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Han", 
        "givenName": "Zixu", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nanjing Agricultural University", 
          "id": "https://www.grid.ac/institutes/grid.27871.3b", 
          "name": [
            "National Engineering and Technology Center for Information Agriculture (NETCIA), Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture and Rural Affairs, Jiangsu Key Laboratory for Information Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, One Weigang, 210095, Nanjing, Jiangsu, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Dong", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nanjing Agricultural University", 
          "id": "https://www.grid.ac/institutes/grid.27871.3b", 
          "name": [
            "National Engineering and Technology Center for Information Agriculture (NETCIA), Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture and Rural Affairs, Jiangsu Key Laboratory for Information Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, One Weigang, 210095, Nanjing, Jiangsu, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cao", 
        "givenName": "Qiang", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nanjing Agricultural University", 
          "id": "https://www.grid.ac/institutes/grid.27871.3b", 
          "name": [
            "National Engineering and Technology Center for Information Agriculture (NETCIA), Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture and Rural Affairs, Jiangsu Key Laboratory for Information Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, One Weigang, 210095, Nanjing, Jiangsu, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yao", 
        "givenName": "Xia", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nanjing Agricultural University", 
          "id": "https://www.grid.ac/institutes/grid.27871.3b", 
          "name": [
            "National Engineering and Technology Center for Information Agriculture (NETCIA), Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture and Rural Affairs, Jiangsu Key Laboratory for Information Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, One Weigang, 210095, Nanjing, Jiangsu, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tian", 
        "givenName": "Yongchao", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nanjing Agricultural University", 
          "id": "https://www.grid.ac/institutes/grid.27871.3b", 
          "name": [
            "National Engineering and Technology Center for Information Agriculture (NETCIA), Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture and Rural Affairs, Jiangsu Key Laboratory for Information Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, One Weigang, 210095, Nanjing, Jiangsu, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhu", 
        "givenName": "Yan", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nanjing Agricultural University", 
          "id": "https://www.grid.ac/institutes/grid.27871.3b", 
          "name": [
            "National Engineering and Technology Center for Information Agriculture (NETCIA), Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture and Rural Affairs, Jiangsu Key Laboratory for Information Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, One Weigang, 210095, Nanjing, Jiangsu, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cao", 
        "givenName": "Weixing", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nanjing Agricultural University", 
          "id": "https://www.grid.ac/institutes/grid.27871.3b", 
          "name": [
            "National Engineering and Technology Center for Information Agriculture (NETCIA), Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture and Rural Affairs, Jiangsu Key Laboratory for Information Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, One Weigang, 210095, Nanjing, Jiangsu, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cheng", 
        "givenName": "Tao", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.eja.2014.01.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002161636"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/rs71114939", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002696989"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11119-005-2324-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004471142", 
          "https://doi.org/10.1007/s11119-005-2324-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11119-005-2324-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004471142", 
          "https://doi.org/10.1007/s11119-005-2324-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.agee.2006.05.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004479201"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsmcb.2011.2168604", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006047450"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/rs61110395", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007471000"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rse.2012.07.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007506205"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/rs2010290", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007702481"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/rs8121031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008804548"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0034-4257(99)00067-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009167378"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/f5081910", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009711963"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0072736", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011375182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jag.2010.03.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012100302"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ecolind.2016.03.036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013955564"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rse.2016.07.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015500465"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compag.2008.03.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015542105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compag.2007.09.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016477629"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0034-4257(01)00289-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017674213"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0034-4257(79)90013-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018726315"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0034-4257(79)90013-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018726315"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/rs70911449", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021995596"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/1.jrs.8.083671", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024334843"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/rs6064927", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024389348"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1010933404324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024739340", 
          "https://doi.org/10.1023/a:1010933404324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-2440-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027312764", 
          "https://doi.org/10.1007/978-1-4757-2440-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-2440-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027312764", 
          "https://doi.org/10.1007/978-1-4757-2440-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/rs71215841", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028599549"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compag.2014.10.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028720869"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jag.2015.02.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031786995"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.isprsjprs.2010.11.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032013526"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0034-4257(03)00131-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032965828"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0034-4257(03)00131-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032965828"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compag.2010.05.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035784819"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jag.2014.05.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036684787"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compag.2013.10.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037501265"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2005.12.126", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038265102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.651781", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040900746"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cj.2016.01.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041298173"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.asr.2012.04.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041401653"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2747/1548-1603.48.1.86", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041805397"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/rs8090706", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042099182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0034-4257(95)00235-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042695960"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compag.2014.02.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043257068"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/rs8120972", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045502417"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jag.2015.03.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045613354"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jag.2012.03.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046409442"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10106040108542184", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049502681"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fcr.2013.06.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050628581"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/anbo.1997.0544", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054485972"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2134/agronj2006.0370c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068995742"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/rs9020111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074238723"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11119-017-9501-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083405913", 
          "https://doi.org/10.1007/s11119-017-9501-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11119-017-9501-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083405913", 
          "https://doi.org/10.1007/s11119-017-9501-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fpls.2017.00421", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084434364"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/rs9040319", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084437132"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2017.04.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084526013"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/rs9070647", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086115933"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.isprsjprs.2017.05.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086119689"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.isprsjprs.2017.10.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092546132"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.isprsjprs.2017.11.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092597876"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fpls.2017.02002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093025787"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.13031/2013.15381", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1097002395"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/rs10010066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100265620"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fcr.2018.02.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101337957"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/rs10040563", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103168332"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/rs10040627", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103466913"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.isprsjprs.2018.04.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103676903"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/rs10050805", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104141558"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/rs10060824", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104266830"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "Background: Aboveground biomass (AGB) is a widely used agronomic parameter for characterizing crop growth status and predicting grain yield. The rapid and accurate estimation of AGB in a non-destructive way is useful for making informed decisions on precision crop management. Previous studies have investigated vegetation indices (VIs) and canopy height metrics derived from Unmanned Aerial Vehicle (UAV) data to estimate the AGB of various crops. However, the input variables were derived either from one type of data or from different sensors on\u00a0board UAVs. Whether the combination of VIs and canopy height metrics derived from a single low-cost UAV system can improve the AGB estimation accuracy remains unclear. This study used a low-cost UAV system to acquire imagery at 30\u00a0m flight altitude at critical growth stages of wheat in Rugao of eastern China. The experiments were conducted in 2016 and 2017 and involved 36 field plots representing variations in cultivar, nitrogen fertilization level and sowing density. We evaluated the performance of VIs, canopy height metrics and their combination for AGB estimation in wheat with the stepwise multiple linear regression (SMLR) and three types of machine learning algorithms (support vector regression, SVR; extreme learning machine, ELM; random forest, RF).\nResults: Our results demonstrated that the combination of VIs and canopy height metrics improved the estimation accuracy for AGB of wheat over the use of VIs or canopy height metrics alone. Specifically, RF performed the best among the SMLR and three machine learning algorithms regardless of using all the original variables or selected variables by the SMLR. The best accuracy (R 2\u2009=\u20090.78, RMSE\u2009=\u20091.34\u00a0t/ha, rRMSE\u2009=\u200928.98%) was obtained when applying RF to the combination of VIs and canopy height metrics.\nConclusions: Our findings implied that an inexpensive approach consisting of the RF algorithm and the combination of RGB imagery and point cloud data derived from a low-cost UAV system at the consumer-grade level can be used to improve the accuracy of AGB estimation and have potential in the practical applications in the rapid estimation of other growth parameters.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s13007-019-0402-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1035309", 
        "issn": [
          "1746-4811"
        ], 
        "name": "Plant Methods", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "15"
      }
    ], 
    "name": "Improved estimation of aboveground biomass in wheat from RGB imagery and point cloud data acquired with a low-cost unmanned aerial vehicle system", 
    "pagination": "17", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "56e39501d2418f5d1f2e3c5d1cd758da8076b8b4059be3b1f88fc9f3b47674c7"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30828356"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101245798"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13007-019-0402-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112224689"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13007-019-0402-3", 
      "https://app.dimensions.ai/details/publication/pub.1112224689"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:17", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000354_0000000354/records_11695_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs13007-019-0402-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13007-019-0402-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13007-019-0402-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13007-019-0402-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13007-019-0402-3'


 

This table displays all metadata directly associated to this object as RDF triples.

320 TRIPLES      21 PREDICATES      94 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13007-019-0402-3 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N1c74201ac6434de7bb7e1cb69174d2aa
4 schema:citation sg:pub.10.1007/978-1-4757-2440-0
5 sg:pub.10.1007/s11119-005-2324-5
6 sg:pub.10.1007/s11119-017-9501-1
7 sg:pub.10.1023/a:1010933404324
8 https://doi.org/10.1006/anbo.1997.0544
9 https://doi.org/10.1016/0034-4257(79)90013-0
10 https://doi.org/10.1016/0034-4257(95)00235-9
11 https://doi.org/10.1016/j.agee.2006.05.024
12 https://doi.org/10.1016/j.asr.2012.04.010
13 https://doi.org/10.1016/j.cj.2016.01.008
14 https://doi.org/10.1016/j.compag.2007.09.013
15 https://doi.org/10.1016/j.compag.2008.03.009
16 https://doi.org/10.1016/j.compag.2010.05.006
17 https://doi.org/10.1016/j.compag.2013.10.010
18 https://doi.org/10.1016/j.compag.2014.02.009
19 https://doi.org/10.1016/j.compag.2014.10.011
20 https://doi.org/10.1016/j.ecolind.2016.03.036
21 https://doi.org/10.1016/j.eja.2014.01.004
22 https://doi.org/10.1016/j.eswa.2017.04.013
23 https://doi.org/10.1016/j.fcr.2013.06.009
24 https://doi.org/10.1016/j.fcr.2018.02.018
25 https://doi.org/10.1016/j.isprsjprs.2010.11.001
26 https://doi.org/10.1016/j.isprsjprs.2017.05.003
27 https://doi.org/10.1016/j.isprsjprs.2017.10.011
28 https://doi.org/10.1016/j.isprsjprs.2017.11.002
29 https://doi.org/10.1016/j.isprsjprs.2018.04.011
30 https://doi.org/10.1016/j.jag.2010.03.002
31 https://doi.org/10.1016/j.jag.2012.03.012
32 https://doi.org/10.1016/j.jag.2014.05.006
33 https://doi.org/10.1016/j.jag.2015.02.012
34 https://doi.org/10.1016/j.jag.2015.03.002
35 https://doi.org/10.1016/j.neucom.2005.12.126
36 https://doi.org/10.1016/j.rse.2012.07.006
37 https://doi.org/10.1016/j.rse.2016.07.026
38 https://doi.org/10.1016/s0034-4257(01)00289-9
39 https://doi.org/10.1016/s0034-4257(03)00131-7
40 https://doi.org/10.1016/s0034-4257(99)00067-x
41 https://doi.org/10.1080/10106040108542184
42 https://doi.org/10.1109/tsmcb.2011.2168604
43 https://doi.org/10.1117/1.jrs.8.083671
44 https://doi.org/10.1117/12.651781
45 https://doi.org/10.13031/2013.15381
46 https://doi.org/10.1371/journal.pone.0072736
47 https://doi.org/10.2134/agronj2006.0370c
48 https://doi.org/10.2747/1548-1603.48.1.86
49 https://doi.org/10.3389/fpls.2017.00421
50 https://doi.org/10.3389/fpls.2017.02002
51 https://doi.org/10.3390/f5081910
52 https://doi.org/10.3390/rs10010066
53 https://doi.org/10.3390/rs10040563
54 https://doi.org/10.3390/rs10040627
55 https://doi.org/10.3390/rs10050805
56 https://doi.org/10.3390/rs10060824
57 https://doi.org/10.3390/rs2010290
58 https://doi.org/10.3390/rs6064927
59 https://doi.org/10.3390/rs61110395
60 https://doi.org/10.3390/rs70911449
61 https://doi.org/10.3390/rs71114939
62 https://doi.org/10.3390/rs71215841
63 https://doi.org/10.3390/rs8090706
64 https://doi.org/10.3390/rs8120972
65 https://doi.org/10.3390/rs8121031
66 https://doi.org/10.3390/rs9020111
67 https://doi.org/10.3390/rs9040319
68 https://doi.org/10.3390/rs9070647
69 schema:datePublished 2019-12
70 schema:datePublishedReg 2019-12-01
71 schema:description Background: Aboveground biomass (AGB) is a widely used agronomic parameter for characterizing crop growth status and predicting grain yield. The rapid and accurate estimation of AGB in a non-destructive way is useful for making informed decisions on precision crop management. Previous studies have investigated vegetation indices (VIs) and canopy height metrics derived from Unmanned Aerial Vehicle (UAV) data to estimate the AGB of various crops. However, the input variables were derived either from one type of data or from different sensors on board UAVs. Whether the combination of VIs and canopy height metrics derived from a single low-cost UAV system can improve the AGB estimation accuracy remains unclear. This study used a low-cost UAV system to acquire imagery at 30 m flight altitude at critical growth stages of wheat in Rugao of eastern China. The experiments were conducted in 2016 and 2017 and involved 36 field plots representing variations in cultivar, nitrogen fertilization level and sowing density. We evaluated the performance of VIs, canopy height metrics and their combination for AGB estimation in wheat with the stepwise multiple linear regression (SMLR) and three types of machine learning algorithms (support vector regression, SVR; extreme learning machine, ELM; random forest, RF). Results: Our results demonstrated that the combination of VIs and canopy height metrics improved the estimation accuracy for AGB of wheat over the use of VIs or canopy height metrics alone. Specifically, RF performed the best among the SMLR and three machine learning algorithms regardless of using all the original variables or selected variables by the SMLR. The best accuracy (R 2 = 0.78, RMSE = 1.34 t/ha, rRMSE = 28.98%) was obtained when applying RF to the combination of VIs and canopy height metrics. Conclusions: Our findings implied that an inexpensive approach consisting of the RF algorithm and the combination of RGB imagery and point cloud data derived from a low-cost UAV system at the consumer-grade level can be used to improve the accuracy of AGB estimation and have potential in the practical applications in the rapid estimation of other growth parameters.
72 schema:genre research_article
73 schema:inLanguage en
74 schema:isAccessibleForFree true
75 schema:isPartOf N8c980508bfe04a129152cc6aa65e205a
76 Nd4446c630af741c2bbcd7df25b6ee72f
77 sg:journal.1035309
78 schema:name Improved estimation of aboveground biomass in wheat from RGB imagery and point cloud data acquired with a low-cost unmanned aerial vehicle system
79 schema:pagination 17
80 schema:productId N00d158e9639a46f5a34102cc8ccb60af
81 N27805efb1a0e4af581fa2385d3bac390
82 N2d5562cddf944383931e35259538cfe3
83 Nb55d5b2f4d98435cbb934ace38877da0
84 Nc6d7b37799c046b6bbd6447c4da7adbb
85 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112224689
86 https://doi.org/10.1186/s13007-019-0402-3
87 schema:sdDatePublished 2019-04-11T11:17
88 schema:sdLicense https://scigraph.springernature.com/explorer/license/
89 schema:sdPublisher Ne837f165ac3d48fd8b06dd35e92560b4
90 schema:url https://link.springer.com/10.1186%2Fs13007-019-0402-3
91 sgo:license sg:explorer/license/
92 sgo:sdDataset articles
93 rdf:type schema:ScholarlyArticle
94 N00d158e9639a46f5a34102cc8ccb60af schema:name doi
95 schema:value 10.1186/s13007-019-0402-3
96 rdf:type schema:PropertyValue
97 N0759d082529143b4884ffab0db893e12 schema:affiliation https://www.grid.ac/institutes/grid.27871.3b
98 schema:familyName Li
99 schema:givenName Dong
100 rdf:type schema:Person
101 N1c74201ac6434de7bb7e1cb69174d2aa rdf:first Nb4408bac773742b797322c2d361de7f7
102 rdf:rest N87e3d5468ad24a288f461331f412a675
103 N26aa397f1d8041f099489620033d23ed schema:affiliation https://www.grid.ac/institutes/grid.27871.3b
104 schema:familyName Cao
105 schema:givenName Weixing
106 rdf:type schema:Person
107 N27805efb1a0e4af581fa2385d3bac390 schema:name dimensions_id
108 schema:value pub.1112224689
109 rdf:type schema:PropertyValue
110 N2bda40c59c85433499da4262c856cf3b rdf:first N8883e9044b8d4a8286782e63295a46f9
111 rdf:rest Ne2f817b12690466f80d0ed10136607bb
112 N2d5562cddf944383931e35259538cfe3 schema:name nlm_unique_id
113 schema:value 101245798
114 rdf:type schema:PropertyValue
115 N2f42df755bb2477e8fad5f21ef9913ef schema:affiliation https://www.grid.ac/institutes/grid.27871.3b
116 schema:familyName Cheng
117 schema:givenName Tao
118 rdf:type schema:Person
119 N3800f3020e6f4c249aea76145d79d695 schema:affiliation https://www.grid.ac/institutes/grid.27871.3b
120 schema:familyName Zhu
121 schema:givenName Yan
122 rdf:type schema:Person
123 N3fd5ca01b1054a4595e2032c5b853803 rdf:first N2f42df755bb2477e8fad5f21ef9913ef
124 rdf:rest rdf:nil
125 N501b78202d0b434ebc0cc75d1dbd24d0 schema:affiliation https://www.grid.ac/institutes/grid.27871.3b
126 schema:familyName Yao
127 schema:givenName Xia
128 rdf:type schema:Person
129 N87e3d5468ad24a288f461331f412a675 rdf:first Nea94bb4887f14e75975dce2fec819160
130 rdf:rest N8e5510bfff3742f5a13792ce46a45a9b
131 N8883e9044b8d4a8286782e63295a46f9 schema:affiliation https://www.grid.ac/institutes/grid.27871.3b
132 schema:familyName Tian
133 schema:givenName Yongchao
134 rdf:type schema:Person
135 N8c980508bfe04a129152cc6aa65e205a schema:volumeNumber 15
136 rdf:type schema:PublicationVolume
137 N8e5510bfff3742f5a13792ce46a45a9b rdf:first Nefc01ceca89540fdbd4d0186bb275034
138 rdf:rest Na41cb52020e14443a6a112c611419205
139 Na41cb52020e14443a6a112c611419205 rdf:first N0759d082529143b4884ffab0db893e12
140 rdf:rest Nc414d1f4152e4e05b8c55eee56c7b4eb
141 Nb4408bac773742b797322c2d361de7f7 schema:affiliation https://www.grid.ac/institutes/grid.27871.3b
142 schema:familyName Lu
143 schema:givenName Ning
144 rdf:type schema:Person
145 Nb55d5b2f4d98435cbb934ace38877da0 schema:name readcube_id
146 schema:value 56e39501d2418f5d1f2e3c5d1cd758da8076b8b4059be3b1f88fc9f3b47674c7
147 rdf:type schema:PropertyValue
148 Nc414d1f4152e4e05b8c55eee56c7b4eb rdf:first Ne84dc94a1f6d4dc2936d96f2a17328c0
149 rdf:rest Ndf45061b7832421b8053ae06c0a7513d
150 Nc6d7b37799c046b6bbd6447c4da7adbb schema:name pubmed_id
151 schema:value 30828356
152 rdf:type schema:PropertyValue
153 Nd4446c630af741c2bbcd7df25b6ee72f schema:issueNumber 1
154 rdf:type schema:PublicationIssue
155 Ndf45061b7832421b8053ae06c0a7513d rdf:first N501b78202d0b434ebc0cc75d1dbd24d0
156 rdf:rest N2bda40c59c85433499da4262c856cf3b
157 Ne2f817b12690466f80d0ed10136607bb rdf:first N3800f3020e6f4c249aea76145d79d695
158 rdf:rest Ne9426ea2a9114986a1305c385ec67915
159 Ne837f165ac3d48fd8b06dd35e92560b4 schema:name Springer Nature - SN SciGraph project
160 rdf:type schema:Organization
161 Ne84dc94a1f6d4dc2936d96f2a17328c0 schema:affiliation https://www.grid.ac/institutes/grid.27871.3b
162 schema:familyName Cao
163 schema:givenName Qiang
164 rdf:type schema:Person
165 Ne9426ea2a9114986a1305c385ec67915 rdf:first N26aa397f1d8041f099489620033d23ed
166 rdf:rest N3fd5ca01b1054a4595e2032c5b853803
167 Nea94bb4887f14e75975dce2fec819160 schema:affiliation https://www.grid.ac/institutes/grid.27871.3b
168 schema:familyName Zhou
169 schema:givenName Jie
170 rdf:type schema:Person
171 Nefc01ceca89540fdbd4d0186bb275034 schema:affiliation https://www.grid.ac/institutes/grid.27871.3b
172 schema:familyName Han
173 schema:givenName Zixu
174 rdf:type schema:Person
175 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
176 schema:name Information and Computing Sciences
177 rdf:type schema:DefinedTerm
178 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
179 schema:name Artificial Intelligence and Image Processing
180 rdf:type schema:DefinedTerm
181 sg:journal.1035309 schema:issn 1746-4811
182 schema:name Plant Methods
183 rdf:type schema:Periodical
184 sg:pub.10.1007/978-1-4757-2440-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027312764
185 https://doi.org/10.1007/978-1-4757-2440-0
186 rdf:type schema:CreativeWork
187 sg:pub.10.1007/s11119-005-2324-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004471142
188 https://doi.org/10.1007/s11119-005-2324-5
189 rdf:type schema:CreativeWork
190 sg:pub.10.1007/s11119-017-9501-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083405913
191 https://doi.org/10.1007/s11119-017-9501-1
192 rdf:type schema:CreativeWork
193 sg:pub.10.1023/a:1010933404324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024739340
194 https://doi.org/10.1023/a:1010933404324
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1006/anbo.1997.0544 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054485972
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1016/0034-4257(79)90013-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018726315
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1016/0034-4257(95)00235-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042695960
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1016/j.agee.2006.05.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004479201
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1016/j.asr.2012.04.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041401653
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1016/j.cj.2016.01.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041298173
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1016/j.compag.2007.09.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016477629
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1016/j.compag.2008.03.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015542105
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1016/j.compag.2010.05.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035784819
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1016/j.compag.2013.10.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037501265
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1016/j.compag.2014.02.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043257068
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1016/j.compag.2014.10.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028720869
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1016/j.ecolind.2016.03.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013955564
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1016/j.eja.2014.01.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002161636
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1016/j.eswa.2017.04.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084526013
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1016/j.fcr.2013.06.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050628581
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1016/j.fcr.2018.02.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101337957
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1016/j.isprsjprs.2010.11.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032013526
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1016/j.isprsjprs.2017.05.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086119689
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1016/j.isprsjprs.2017.10.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092546132
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1016/j.isprsjprs.2017.11.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092597876
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1016/j.isprsjprs.2018.04.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103676903
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1016/j.jag.2010.03.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012100302
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1016/j.jag.2012.03.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046409442
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1016/j.jag.2014.05.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036684787
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1016/j.jag.2015.02.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031786995
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1016/j.jag.2015.03.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045613354
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1016/j.neucom.2005.12.126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038265102
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1016/j.rse.2012.07.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007506205
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1016/j.rse.2016.07.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015500465
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1016/s0034-4257(01)00289-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017674213
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1016/s0034-4257(03)00131-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032965828
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1016/s0034-4257(99)00067-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1009167378
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1080/10106040108542184 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049502681
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1109/tsmcb.2011.2168604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006047450
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1117/1.jrs.8.083671 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024334843
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1117/12.651781 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040900746
269 rdf:type schema:CreativeWork
270 https://doi.org/10.13031/2013.15381 schema:sameAs https://app.dimensions.ai/details/publication/pub.1097002395
271 rdf:type schema:CreativeWork
272 https://doi.org/10.1371/journal.pone.0072736 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011375182
273 rdf:type schema:CreativeWork
274 https://doi.org/10.2134/agronj2006.0370c schema:sameAs https://app.dimensions.ai/details/publication/pub.1068995742
275 rdf:type schema:CreativeWork
276 https://doi.org/10.2747/1548-1603.48.1.86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041805397
277 rdf:type schema:CreativeWork
278 https://doi.org/10.3389/fpls.2017.00421 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084434364
279 rdf:type schema:CreativeWork
280 https://doi.org/10.3389/fpls.2017.02002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093025787
281 rdf:type schema:CreativeWork
282 https://doi.org/10.3390/f5081910 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009711963
283 rdf:type schema:CreativeWork
284 https://doi.org/10.3390/rs10010066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100265620
285 rdf:type schema:CreativeWork
286 https://doi.org/10.3390/rs10040563 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103168332
287 rdf:type schema:CreativeWork
288 https://doi.org/10.3390/rs10040627 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103466913
289 rdf:type schema:CreativeWork
290 https://doi.org/10.3390/rs10050805 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104141558
291 rdf:type schema:CreativeWork
292 https://doi.org/10.3390/rs10060824 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104266830
293 rdf:type schema:CreativeWork
294 https://doi.org/10.3390/rs2010290 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007702481
295 rdf:type schema:CreativeWork
296 https://doi.org/10.3390/rs6064927 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024389348
297 rdf:type schema:CreativeWork
298 https://doi.org/10.3390/rs61110395 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007471000
299 rdf:type schema:CreativeWork
300 https://doi.org/10.3390/rs70911449 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021995596
301 rdf:type schema:CreativeWork
302 https://doi.org/10.3390/rs71114939 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002696989
303 rdf:type schema:CreativeWork
304 https://doi.org/10.3390/rs71215841 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028599549
305 rdf:type schema:CreativeWork
306 https://doi.org/10.3390/rs8090706 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042099182
307 rdf:type schema:CreativeWork
308 https://doi.org/10.3390/rs8120972 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045502417
309 rdf:type schema:CreativeWork
310 https://doi.org/10.3390/rs8121031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008804548
311 rdf:type schema:CreativeWork
312 https://doi.org/10.3390/rs9020111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074238723
313 rdf:type schema:CreativeWork
314 https://doi.org/10.3390/rs9040319 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084437132
315 rdf:type schema:CreativeWork
316 https://doi.org/10.3390/rs9070647 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086115933
317 rdf:type schema:CreativeWork
318 https://www.grid.ac/institutes/grid.27871.3b schema:alternateName Nanjing Agricultural University
319 schema:name National Engineering and Technology Center for Information Agriculture (NETCIA), Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture and Rural Affairs, Jiangsu Key Laboratory for Information Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, One Weigang, 210095, Nanjing, Jiangsu, China
320 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...