High-throughput method for ear phenotyping and kernel weight estimation in maize using ear digital imaging View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

R. Makanza, M. Zaman-Allah, J. E. Cairns, J. Eyre, J. Burgueño, Ángela Pacheco, C. Diepenbrock, C. Magorokosho, A. Tarekegne, M. Olsen, B. M. Prasanna

ABSTRACT

Background: Grain yield, ear and kernel attributes can assist to understand the performance of maize plant under different environmental conditions and can be used in the variety development process to address farmer's preferences. These parameters are however still laborious and expensive to measure. Results: A low-cost ear digital imaging method was developed that provides estimates of ear and kernel attributes i.e., ear number and size, kernel number and size as well as kernel weight from photos of ears harvested from field trial plots. The image processing method uses a script that runs in a batch mode on ImageJ; an open source software. Kernel weight was estimated using the total kernel number derived from the number of kernels visible on the image and the average kernel size. Data showed a good agreement in terms of accuracy and precision between ground truth measurements and data generated through image processing. Broad-sense heritability of the estimated parameters was in the range or higher than that for measured grain weight. Limitation of the method for kernel weight estimation is discussed. Conclusion: The method developed in this work provides an opportunity to significantly reduce the cost of selection in the breeding process, especially for resource constrained crop improvement programs and can be used to learn more about the genetic bases of grain yield determinants. More... »

PAGES

49

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13007-018-0317-4

DOI

http://dx.doi.org/10.1186/s13007-018-0317-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1104607168

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29946344


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "International Maize and Wheat Improvement Center (CIMMYT), PO Box MP163, Harare, Zimbabwe"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Makanza", 
        "givenName": "R.", 
        "id": "sg:person.016466663024.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016466663024.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "International Maize and Wheat Improvement Center (CIMMYT), PO Box MP163, Harare, Zimbabwe"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zaman-Allah", 
        "givenName": "M.", 
        "id": "sg:person.0743470261.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0743470261.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "International Maize and Wheat Improvement Center (CIMMYT), PO Box MP163, Harare, Zimbabwe"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cairns", 
        "givenName": "J. E.", 
        "id": "sg:person.0751164645.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751164645.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Queensland", 
          "id": "https://www.grid.ac/institutes/grid.1003.2", 
          "name": [
            "University of Queensland, Brisbane, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Eyre", 
        "givenName": "J.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "International Maize and Wheat Improvement Center", 
          "id": "https://www.grid.ac/institutes/grid.433436.5", 
          "name": [
            "International Maize and Wheat Improvement Center (CIMMYT), El Batan, Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Burgue\u00f1o", 
        "givenName": "J.", 
        "id": "sg:person.0733536233.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0733536233.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "International Maize and Wheat Improvement Center", 
          "id": "https://www.grid.ac/institutes/grid.433436.5", 
          "name": [
            "International Maize and Wheat Improvement Center (CIMMYT), El Batan, Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pacheco", 
        "givenName": "\u00c1ngela", 
        "id": "sg:person.012001304316.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012001304316.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cornell University", 
          "id": "https://www.grid.ac/institutes/grid.5386.8", 
          "name": [
            "Cornell University, 14853, Ithaca, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Diepenbrock", 
        "givenName": "C.", 
        "id": "sg:person.01360237432.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360237432.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "International Maize and Wheat Improvement Center (CIMMYT), PO Box MP163, Harare, Zimbabwe"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Magorokosho", 
        "givenName": "C.", 
        "id": "sg:person.013700235142.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013700235142.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "International Maize and Wheat Improvement Center (CIMMYT), PO Box MP163, Harare, Zimbabwe"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tarekegne", 
        "givenName": "A.", 
        "id": "sg:person.01304200342.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01304200342.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "International Maize and Wheat Improvement Center (CIMMYT), PO Box 1041, Nairobi, Kenya"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Olsen", 
        "givenName": "M.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "International Maize and Wheat Improvement Center (CIMMYT), PO Box 1041, Nairobi, Kenya"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Prasanna", 
        "givenName": "B. M.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/9780470650288.ch5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004971515"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jxb/eru215", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007116535"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00122-011-1532-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015650022", 
          "https://doi.org/10.1007/s00122-011-1532-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0734-189x(87)80186-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019291816"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0031-3203(99)00055-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019457313"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/g3.112.003806", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021856968"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/g3.112.003806", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021856968"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fcr.2006.07.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025491791"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-19620-6_59", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030527353", 
          "https://doi.org/10.1007/978-3-319-19620-6_59"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1104/pp.112.205120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031048590"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.2089", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035817137", 
          "https://doi.org/10.1038/nmeth.2089"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-313x.2005.02591.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036632576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-313x.2005.02591.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036632576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00122-005-0133-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038658240", 
          "https://doi.org/10.1007/s00122-005-0133-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00122-005-0133-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038658240", 
          "https://doi.org/10.1007/s00122-005-0133-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1744-7909.2012.01156.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039024084"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11104-004-4210-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039285872", 
          "https://doi.org/10.1007/s11104-004-4210-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11104-004-4210-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039285872", 
          "https://doi.org/10.1007/s11104-004-4210-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11104-004-4210-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039285872", 
          "https://doi.org/10.1007/s11104-004-4210-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fcr.2010.04.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039508984"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00122-014-2276-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039603241", 
          "https://doi.org/10.1007/s00122-014-2276-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.measurement.2016.05.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040799476"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fcr.2013.02.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041854605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00122-009-1099-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041970245", 
          "https://doi.org/10.1007/s00122-009-1099-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00122-009-1099-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041970245", 
          "https://doi.org/10.1007/s00122-009-1099-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00122-009-1099-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041970245", 
          "https://doi.org/10.1007/s00122-009-1099-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.theriogenology.2010.01.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047128210"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/tpj.13320", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048139300"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2134/agronj1951.00021962004300060007x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068983606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2135/cropsci1995.0011183x003500050021x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069024806"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2135/cropsci2000.4041056x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069026839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2135/cropsci2002.1173", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069027617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2135/cropsci2002.1910", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069027760"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2135/cropsci2013.01.0035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069032010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2532051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069977481"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biosystemseng.2017.10.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092650068"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccsp.2011.5739305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095130911"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "Background: Grain yield, ear and kernel attributes can assist to understand the performance of maize plant under different environmental conditions and can be used in the variety development process to address farmer's preferences. These parameters are however still laborious and expensive to measure.\nResults: A low-cost ear digital imaging method was developed that provides estimates of ear and kernel attributes i.e., ear number and size, kernel number and size as well as kernel weight from photos of ears harvested from field trial plots. The image processing method uses a script that runs in a batch mode on ImageJ; an open source software. Kernel weight was estimated using the total kernel number derived from the number of kernels visible on the image and the average kernel size. Data showed a good agreement in terms of accuracy and precision between ground truth measurements and data generated through image processing. Broad-sense heritability of the estimated parameters was in the range or higher than that for measured grain weight. Limitation of the method for kernel weight estimation is discussed.\nConclusion: The method developed in this work provides an opportunity to significantly reduce the cost of selection in the breeding process, especially for resource constrained crop improvement programs and can be used to learn more about the genetic bases of grain yield determinants.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s13007-018-0317-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1035309", 
        "issn": [
          "1746-4811"
        ], 
        "name": "Plant Methods", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "14"
      }
    ], 
    "name": "High-throughput method for ear phenotyping and kernel weight estimation in maize using ear digital imaging", 
    "pagination": "49", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d10dc1d536ba623e9538a7ff848b56d935749d30ca20c52dd6c695bcb143125a"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29946344"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101245798"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13007-018-0317-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1104607168"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13007-018-0317-4", 
      "https://app.dimensions.ai/details/publication/pub.1104607168"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000604.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs13007-018-0317-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13007-018-0317-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13007-018-0317-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13007-018-0317-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13007-018-0317-4'


 

This table displays all metadata directly associated to this object as RDF triples.

252 TRIPLES      21 PREDICATES      59 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13007-018-0317-4 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N89b18b1abeb946abbb2f112502c9d6a3
4 schema:citation sg:pub.10.1007/978-3-319-19620-6_59
5 sg:pub.10.1007/s00122-005-0133-x
6 sg:pub.10.1007/s00122-009-1099-x
7 sg:pub.10.1007/s00122-011-1532-9
8 sg:pub.10.1007/s00122-014-2276-0
9 sg:pub.10.1007/s11104-004-4210-8
10 sg:pub.10.1038/nmeth.2089
11 https://doi.org/10.1002/9780470650288.ch5
12 https://doi.org/10.1016/j.biosystemseng.2017.10.010
13 https://doi.org/10.1016/j.fcr.2006.07.004
14 https://doi.org/10.1016/j.fcr.2010.04.010
15 https://doi.org/10.1016/j.fcr.2013.02.002
16 https://doi.org/10.1016/j.measurement.2016.05.015
17 https://doi.org/10.1016/j.theriogenology.2010.01.003
18 https://doi.org/10.1016/s0031-3203(99)00055-2
19 https://doi.org/10.1016/s0734-189x(87)80186-x
20 https://doi.org/10.1093/jxb/eru215
21 https://doi.org/10.1104/pp.112.205120
22 https://doi.org/10.1109/iccsp.2011.5739305
23 https://doi.org/10.1111/j.1365-313x.2005.02591.x
24 https://doi.org/10.1111/j.1744-7909.2012.01156.x
25 https://doi.org/10.1111/tpj.13320
26 https://doi.org/10.1534/g3.112.003806
27 https://doi.org/10.2134/agronj1951.00021962004300060007x
28 https://doi.org/10.2135/cropsci1995.0011183x003500050021x
29 https://doi.org/10.2135/cropsci2000.4041056x
30 https://doi.org/10.2135/cropsci2002.1173
31 https://doi.org/10.2135/cropsci2002.1910
32 https://doi.org/10.2135/cropsci2013.01.0035
33 https://doi.org/10.2307/2532051
34 schema:datePublished 2018-12
35 schema:datePublishedReg 2018-12-01
36 schema:description Background: Grain yield, ear and kernel attributes can assist to understand the performance of maize plant under different environmental conditions and can be used in the variety development process to address farmer's preferences. These parameters are however still laborious and expensive to measure. Results: A low-cost ear digital imaging method was developed that provides estimates of ear and kernel attributes i.e., ear number and size, kernel number and size as well as kernel weight from photos of ears harvested from field trial plots. The image processing method uses a script that runs in a batch mode on ImageJ; an open source software. Kernel weight was estimated using the total kernel number derived from the number of kernels visible on the image and the average kernel size. Data showed a good agreement in terms of accuracy and precision between ground truth measurements and data generated through image processing. Broad-sense heritability of the estimated parameters was in the range or higher than that for measured grain weight. Limitation of the method for kernel weight estimation is discussed. Conclusion: The method developed in this work provides an opportunity to significantly reduce the cost of selection in the breeding process, especially for resource constrained crop improvement programs and can be used to learn more about the genetic bases of grain yield determinants.
37 schema:genre research_article
38 schema:inLanguage en
39 schema:isAccessibleForFree true
40 schema:isPartOf N450ba15c9c8843489663a1586447b117
41 N69d5e4bf4578480f9ee8a955e7b1f193
42 sg:journal.1035309
43 schema:name High-throughput method for ear phenotyping and kernel weight estimation in maize using ear digital imaging
44 schema:pagination 49
45 schema:productId N2322ea491275469cac813b1478f046ae
46 N4a428a4d8439477ab7dcf090dc25f31a
47 N5d25f5d34cb24a668fa19956126c0411
48 Ne8461da00800426fa3c53277258d060c
49 Nefa6fb24673a41c5b9472deae5a5d20c
50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104607168
51 https://doi.org/10.1186/s13007-018-0317-4
52 schema:sdDatePublished 2019-04-10T21:54
53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
54 schema:sdPublisher Ncbbfe137999b45d08e9730c6c2bb7eca
55 schema:url https://link.springer.com/10.1186%2Fs13007-018-0317-4
56 sgo:license sg:explorer/license/
57 sgo:sdDataset articles
58 rdf:type schema:ScholarlyArticle
59 N024954f4d52d4130a273ea12dd3b94fe schema:name International Maize and Wheat Improvement Center (CIMMYT), PO Box MP163, Harare, Zimbabwe
60 rdf:type schema:Organization
61 N0e650c9b893d4708aa3e5cf667090bd2 rdf:first sg:person.0751164645.13
62 rdf:rest N1c43c51cc61446a1a7f3d20fd315936f
63 N0fa2f5ef5e9d4935aa390af7f43e5ded rdf:first sg:person.0733536233.17
64 rdf:rest N9fb1bef5ffc24b49926caab40de5bc2b
65 N1c43c51cc61446a1a7f3d20fd315936f rdf:first Nf565cb2b444e47ba964690baa436088f
66 rdf:rest N0fa2f5ef5e9d4935aa390af7f43e5ded
67 N2322ea491275469cac813b1478f046ae schema:name nlm_unique_id
68 schema:value 101245798
69 rdf:type schema:PropertyValue
70 N3bef244c3b454f07ad3dfeb4ed1bffd7 rdf:first Nad6a529a672e44979f232e1e2bba6b25
71 rdf:rest Nd862844ae88f49b19d75590e81e7366a
72 N450ba15c9c8843489663a1586447b117 schema:issueNumber 1
73 rdf:type schema:PublicationIssue
74 N4a428a4d8439477ab7dcf090dc25f31a schema:name pubmed_id
75 schema:value 29946344
76 rdf:type schema:PropertyValue
77 N5d25f5d34cb24a668fa19956126c0411 schema:name readcube_id
78 schema:value d10dc1d536ba623e9538a7ff848b56d935749d30ca20c52dd6c695bcb143125a
79 rdf:type schema:PropertyValue
80 N665bb7a81ef9447892e3b2e9e375ff15 schema:name International Maize and Wheat Improvement Center (CIMMYT), PO Box 1041, Nairobi, Kenya
81 rdf:type schema:Organization
82 N69d5e4bf4578480f9ee8a955e7b1f193 schema:volumeNumber 14
83 rdf:type schema:PublicationVolume
84 N6f7b681c2a0b47fe93d9094b8409fa4e schema:affiliation N665bb7a81ef9447892e3b2e9e375ff15
85 schema:familyName Prasanna
86 schema:givenName B. M.
87 rdf:type schema:Person
88 N768e7de20f64460dad8ca83fc07ece6d schema:name International Maize and Wheat Improvement Center (CIMMYT), PO Box MP163, Harare, Zimbabwe
89 rdf:type schema:Organization
90 N783eeb1d82c044f4b067af731d2c3988 rdf:first sg:person.013700235142.19
91 rdf:rest Ned0f9adc3d2b49619fd32f68c62587bb
92 N8186d90d45d74c42a81c085c6b792341 rdf:first sg:person.0743470261.99
93 rdf:rest N0e650c9b893d4708aa3e5cf667090bd2
94 N89b18b1abeb946abbb2f112502c9d6a3 rdf:first sg:person.016466663024.80
95 rdf:rest N8186d90d45d74c42a81c085c6b792341
96 N9f162c2b17be48979720e0ce1b1c4197 schema:name International Maize and Wheat Improvement Center (CIMMYT), PO Box 1041, Nairobi, Kenya
97 rdf:type schema:Organization
98 N9fb1bef5ffc24b49926caab40de5bc2b rdf:first sg:person.012001304316.96
99 rdf:rest Nd5c8ca92bf864fb5abbdeb1b23ee7781
100 Nad6a529a672e44979f232e1e2bba6b25 schema:affiliation N9f162c2b17be48979720e0ce1b1c4197
101 schema:familyName Olsen
102 schema:givenName M.
103 rdf:type schema:Person
104 Ncbbfe137999b45d08e9730c6c2bb7eca schema:name Springer Nature - SN SciGraph project
105 rdf:type schema:Organization
106 Nce29f955479d4b87abd181ad29e506a5 schema:name International Maize and Wheat Improvement Center (CIMMYT), PO Box MP163, Harare, Zimbabwe
107 rdf:type schema:Organization
108 Nd5c8ca92bf864fb5abbdeb1b23ee7781 rdf:first sg:person.01360237432.00
109 rdf:rest N783eeb1d82c044f4b067af731d2c3988
110 Nd862844ae88f49b19d75590e81e7366a rdf:first N6f7b681c2a0b47fe93d9094b8409fa4e
111 rdf:rest rdf:nil
112 Ne8461da00800426fa3c53277258d060c schema:name doi
113 schema:value 10.1186/s13007-018-0317-4
114 rdf:type schema:PropertyValue
115 Ned0f9adc3d2b49619fd32f68c62587bb rdf:first sg:person.01304200342.21
116 rdf:rest N3bef244c3b454f07ad3dfeb4ed1bffd7
117 Nefa6fb24673a41c5b9472deae5a5d20c schema:name dimensions_id
118 schema:value pub.1104607168
119 rdf:type schema:PropertyValue
120 Nf565cb2b444e47ba964690baa436088f schema:affiliation https://www.grid.ac/institutes/grid.1003.2
121 schema:familyName Eyre
122 schema:givenName J.
123 rdf:type schema:Person
124 Nfa082deca6e3485cb78965718692613d schema:name International Maize and Wheat Improvement Center (CIMMYT), PO Box MP163, Harare, Zimbabwe
125 rdf:type schema:Organization
126 Nfade3bc5f96341e0a597e97e1ab5e7ae schema:name International Maize and Wheat Improvement Center (CIMMYT), PO Box MP163, Harare, Zimbabwe
127 rdf:type schema:Organization
128 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
129 schema:name Information and Computing Sciences
130 rdf:type schema:DefinedTerm
131 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
132 schema:name Artificial Intelligence and Image Processing
133 rdf:type schema:DefinedTerm
134 sg:journal.1035309 schema:issn 1746-4811
135 schema:name Plant Methods
136 rdf:type schema:Periodical
137 sg:person.012001304316.96 schema:affiliation https://www.grid.ac/institutes/grid.433436.5
138 schema:familyName Pacheco
139 schema:givenName Ángela
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012001304316.96
141 rdf:type schema:Person
142 sg:person.01304200342.21 schema:affiliation Nfa082deca6e3485cb78965718692613d
143 schema:familyName Tarekegne
144 schema:givenName A.
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01304200342.21
146 rdf:type schema:Person
147 sg:person.01360237432.00 schema:affiliation https://www.grid.ac/institutes/grid.5386.8
148 schema:familyName Diepenbrock
149 schema:givenName C.
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360237432.00
151 rdf:type schema:Person
152 sg:person.013700235142.19 schema:affiliation Nfade3bc5f96341e0a597e97e1ab5e7ae
153 schema:familyName Magorokosho
154 schema:givenName C.
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013700235142.19
156 rdf:type schema:Person
157 sg:person.016466663024.80 schema:affiliation N768e7de20f64460dad8ca83fc07ece6d
158 schema:familyName Makanza
159 schema:givenName R.
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016466663024.80
161 rdf:type schema:Person
162 sg:person.0733536233.17 schema:affiliation https://www.grid.ac/institutes/grid.433436.5
163 schema:familyName Burgueño
164 schema:givenName J.
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0733536233.17
166 rdf:type schema:Person
167 sg:person.0743470261.99 schema:affiliation Nce29f955479d4b87abd181ad29e506a5
168 schema:familyName Zaman-Allah
169 schema:givenName M.
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0743470261.99
171 rdf:type schema:Person
172 sg:person.0751164645.13 schema:affiliation N024954f4d52d4130a273ea12dd3b94fe
173 schema:familyName Cairns
174 schema:givenName J. E.
175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751164645.13
176 rdf:type schema:Person
177 sg:pub.10.1007/978-3-319-19620-6_59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030527353
178 https://doi.org/10.1007/978-3-319-19620-6_59
179 rdf:type schema:CreativeWork
180 sg:pub.10.1007/s00122-005-0133-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1038658240
181 https://doi.org/10.1007/s00122-005-0133-x
182 rdf:type schema:CreativeWork
183 sg:pub.10.1007/s00122-009-1099-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1041970245
184 https://doi.org/10.1007/s00122-009-1099-x
185 rdf:type schema:CreativeWork
186 sg:pub.10.1007/s00122-011-1532-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015650022
187 https://doi.org/10.1007/s00122-011-1532-9
188 rdf:type schema:CreativeWork
189 sg:pub.10.1007/s00122-014-2276-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039603241
190 https://doi.org/10.1007/s00122-014-2276-0
191 rdf:type schema:CreativeWork
192 sg:pub.10.1007/s11104-004-4210-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039285872
193 https://doi.org/10.1007/s11104-004-4210-8
194 rdf:type schema:CreativeWork
195 sg:pub.10.1038/nmeth.2089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035817137
196 https://doi.org/10.1038/nmeth.2089
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1002/9780470650288.ch5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004971515
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1016/j.biosystemseng.2017.10.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092650068
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1016/j.fcr.2006.07.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025491791
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1016/j.fcr.2010.04.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039508984
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1016/j.fcr.2013.02.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041854605
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1016/j.measurement.2016.05.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040799476
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1016/j.theriogenology.2010.01.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047128210
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1016/s0031-3203(99)00055-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019457313
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1016/s0734-189x(87)80186-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1019291816
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1093/jxb/eru215 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007116535
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1104/pp.112.205120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031048590
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1109/iccsp.2011.5739305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095130911
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1111/j.1365-313x.2005.02591.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1036632576
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1111/j.1744-7909.2012.01156.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1039024084
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1111/tpj.13320 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048139300
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1534/g3.112.003806 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021856968
229 rdf:type schema:CreativeWork
230 https://doi.org/10.2134/agronj1951.00021962004300060007x schema:sameAs https://app.dimensions.ai/details/publication/pub.1068983606
231 rdf:type schema:CreativeWork
232 https://doi.org/10.2135/cropsci1995.0011183x003500050021x schema:sameAs https://app.dimensions.ai/details/publication/pub.1069024806
233 rdf:type schema:CreativeWork
234 https://doi.org/10.2135/cropsci2000.4041056x schema:sameAs https://app.dimensions.ai/details/publication/pub.1069026839
235 rdf:type schema:CreativeWork
236 https://doi.org/10.2135/cropsci2002.1173 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069027617
237 rdf:type schema:CreativeWork
238 https://doi.org/10.2135/cropsci2002.1910 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069027760
239 rdf:type schema:CreativeWork
240 https://doi.org/10.2135/cropsci2013.01.0035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069032010
241 rdf:type schema:CreativeWork
242 https://doi.org/10.2307/2532051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069977481
243 rdf:type schema:CreativeWork
244 https://www.grid.ac/institutes/grid.1003.2 schema:alternateName University of Queensland
245 schema:name University of Queensland, Brisbane, Australia
246 rdf:type schema:Organization
247 https://www.grid.ac/institutes/grid.433436.5 schema:alternateName International Maize and Wheat Improvement Center
248 schema:name International Maize and Wheat Improvement Center (CIMMYT), El Batan, Mexico
249 rdf:type schema:Organization
250 https://www.grid.ac/institutes/grid.5386.8 schema:alternateName Cornell University
251 schema:name Cornell University, 14853, Ithaca, NY, USA
252 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...