Terzyme: a tool for identification and analysis of the plant terpenome View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Piyush Priya, Archana Yadav, Jyoti Chand, Gitanjali Yadav

ABSTRACT

Background: Terpenoid hydrocarbons represent the largest and most ancient group of phytochemicals, such that the entire chemical library of a plant is often referred to as its 'terpenome'. Besides having numerous pharmacological properties, terpenes contribute to the scent of the rose, the flavors of cinnamon and the yellow of sunflowers. Rapidly increasing -omics datasets provide an unprecedented opportunity for terpenome detection, paving the way for automated web resources dedicated to phytochemical predictions in genomic data. Results: We have developed Terzyme, a predictive algorithm for identification, classification and assignment of broad substrate unit to terpene synthase (TPS) and prenyl transferase (PT) enzymes, known to generate the enormous structural and functional diversity of terpenoid compounds across the plant kingdom. Terzyme uses sequence information, plant taxonomy and machine learning methods for predicting TPSs and PTs in genome and proteome datasets. We demonstrate a significant enrichment of the currently identified terpenome by running Terzyme on more than 40 plants. Conclusions: Terzyme is the result of a rigorous analysis of evolutionary relationships between hundreds of characterized sequences of TPSs and PTs with known specificities, followed by analysis of genome-wide gene distribution patterns, ontology based clustering and optimization of various parameters for building accurate profile Hidden Markov Models. The predictive webserver and database is freely available at http://nipgr.res.in/terzyme.html and would serve as a useful tool for deciphering the species-specific phytochemical potential of plant genomes. More... »

PAGES

4

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13007-017-0269-0

DOI

http://dx.doi.org/10.1186/s13007-017-0269-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1100287389

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29339971


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Institute of Plant Genome Research", 
          "id": "https://www.grid.ac/institutes/grid.419632.b", 
          "name": [
            "Computational Biology Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, 110067, New Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Priya", 
        "givenName": "Piyush", 
        "id": "sg:person.0705731574.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0705731574.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute of Plant Genome Research", 
          "id": "https://www.grid.ac/institutes/grid.419632.b", 
          "name": [
            "Computational Biology Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, 110067, New Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yadav", 
        "givenName": "Archana", 
        "id": "sg:person.01215310436.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01215310436.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute of Plant Genome Research", 
          "id": "https://www.grid.ac/institutes/grid.419632.b", 
          "name": [
            "Computational Biology Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, 110067, New Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chand", 
        "givenName": "Jyoti", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Cambridge", 
          "id": "https://www.grid.ac/institutes/grid.5335.0", 
          "name": [
            "Computational Biology Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, 110067, New Delhi, India", 
            "Department of Plant Sciences, University of Cambridge, Downing Site, CB2 3EA, Cambridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yadav", 
        "givenName": "Gitanjali", 
        "id": "sg:person.01060502000.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01060502000.57"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0959-440x(98)80088-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002092418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1590/s1415-47572007000500011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002195272"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btm098", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002597864"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1104/pp.104.042028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004486810"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bti610", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006001436"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11101-013-9284-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007307233", 
          "https://doi.org/10.1007/s11101-013-9284-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2229-11-43", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011825780", 
          "https://doi.org/10.1186/1471-2229-11-43"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkr367", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012248325"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.febslet.2006.10.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017026747"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cbpa.2007.12.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020373217"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/16.4.404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022765706"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1469-8137.2009.02923.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024144364"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1469-8137.2009.02923.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024144364"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0709466105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025292983"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1104/pp.111.179648", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025672834"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2229-10-226", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026595466", 
          "https://doi.org/10.1186/1471-2229-10-226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tplants.2005.07.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028299640"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.95.8.4126", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028556046"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/1521-3773(20000818)39:16<2812::aid-anie2812>3.0.co;2-#", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030103447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1023005504702", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030739306", 
          "https://doi.org/10.1023/a:1023005504702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkr393", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036261989"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.molp.2015.01.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036295543"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.291.5511.2141", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039631657"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/mp/sss015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040138610"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1104/pp.104.050567", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040377769"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00438-002-0709-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040663641", 
          "https://doi.org/10.1007/s00438-002-0709-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2229-13-80", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040750691", 
          "https://doi.org/10.1186/1471-2229-13-80"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1105/tpc.011015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044639629"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/25.17.3389", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047265454"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.261562898", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049451804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-313x.2011.04520.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049623323"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40502-016-0256-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049862103", 
          "https://doi.org/10.1007/s40502-016-0256-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40502-016-0256-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049862103", 
          "https://doi.org/10.1007/s40502-016-0256-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tig.2010.07.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051278629"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature12211", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052388928", 
          "https://doi.org/10.1038/nature12211"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.287.5454.818", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062568247"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1705567114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090371428"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "Background: Terpenoid hydrocarbons represent the largest and most ancient group of phytochemicals, such that the entire chemical library of a plant is often referred to as its 'terpenome'. Besides having numerous pharmacological properties, terpenes contribute to the scent of the rose, the flavors of cinnamon and the yellow of sunflowers. Rapidly increasing -omics datasets provide an unprecedented opportunity for terpenome detection, paving the way for automated web resources dedicated to phytochemical predictions in genomic data.\nResults: We have developed Terzyme, a predictive algorithm for identification, classification and assignment of broad substrate unit to terpene synthase (TPS) and prenyl transferase (PT) enzymes, known to generate the enormous structural and functional diversity of terpenoid compounds across the plant kingdom. Terzyme uses sequence information, plant taxonomy and machine learning methods for predicting TPSs and PTs in genome and proteome datasets. We demonstrate a significant enrichment of the currently identified terpenome by running Terzyme on more than 40 plants.\nConclusions: Terzyme is the result of a rigorous analysis of evolutionary relationships between hundreds of characterized sequences of TPSs and PTs with known specificities, followed by analysis of genome-wide gene distribution patterns, ontology based clustering and optimization of various parameters for building accurate profile Hidden Markov Models. The predictive webserver and database is freely available at http://nipgr.res.in/terzyme.html and would serve as a useful tool for deciphering the species-specific phytochemical potential of plant genomes.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s13007-017-0269-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1035309", 
        "issn": [
          "1746-4811"
        ], 
        "name": "Plant Methods", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "14"
      }
    ], 
    "name": "Terzyme: a tool for identification and analysis of the plant terpenome", 
    "pagination": "4", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "21d60b57377f692021e67bc25e307d2b7ccaf983b8ac7f8add63eaff7e829336"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29339971"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101245798"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13007-017-0269-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1100287389"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13007-017-0269-0", 
      "https://app.dimensions.ai/details/publication/pub.1100287389"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000484.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186/s13007-017-0269-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13007-017-0269-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13007-017-0269-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13007-017-0269-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13007-017-0269-0'


 

This table displays all metadata directly associated to this object as RDF triples.

205 TRIPLES      21 PREDICATES      64 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13007-017-0269-0 schema:about anzsrc-for:06
2 anzsrc-for:0604
3 schema:author N15210edde0dd4b4da7b7f3f0f5cd0800
4 schema:citation sg:pub.10.1007/s00438-002-0709-y
5 sg:pub.10.1007/s11101-013-9284-6
6 sg:pub.10.1007/s40502-016-0256-x
7 sg:pub.10.1023/a:1023005504702
8 sg:pub.10.1038/nature12211
9 sg:pub.10.1186/1471-2229-10-226
10 sg:pub.10.1186/1471-2229-11-43
11 sg:pub.10.1186/1471-2229-13-80
12 https://doi.org/10.1002/1521-3773(20000818)39:16<2812::aid-anie2812>3.0.co;2-#
13 https://doi.org/10.1016/j.cbpa.2007.12.008
14 https://doi.org/10.1016/j.febslet.2006.10.018
15 https://doi.org/10.1016/j.molp.2015.01.018
16 https://doi.org/10.1016/j.tig.2010.07.001
17 https://doi.org/10.1016/j.tplants.2005.07.007
18 https://doi.org/10.1016/s0959-440x(98)80088-2
19 https://doi.org/10.1073/pnas.0709466105
20 https://doi.org/10.1073/pnas.1705567114
21 https://doi.org/10.1073/pnas.261562898
22 https://doi.org/10.1073/pnas.95.8.4126
23 https://doi.org/10.1093/bioinformatics/16.4.404
24 https://doi.org/10.1093/bioinformatics/bti610
25 https://doi.org/10.1093/bioinformatics/btm098
26 https://doi.org/10.1093/mp/sss015
27 https://doi.org/10.1093/nar/25.17.3389
28 https://doi.org/10.1093/nar/gkr367
29 https://doi.org/10.1093/nar/gkr393
30 https://doi.org/10.1104/pp.104.042028
31 https://doi.org/10.1104/pp.104.050567
32 https://doi.org/10.1104/pp.111.179648
33 https://doi.org/10.1105/tpc.011015
34 https://doi.org/10.1111/j.1365-313x.2011.04520.x
35 https://doi.org/10.1111/j.1469-8137.2009.02923.x
36 https://doi.org/10.1126/science.287.5454.818
37 https://doi.org/10.1126/science.291.5511.2141
38 https://doi.org/10.1590/s1415-47572007000500011
39 schema:datePublished 2018-12
40 schema:datePublishedReg 2018-12-01
41 schema:description Background: Terpenoid hydrocarbons represent the largest and most ancient group of phytochemicals, such that the entire chemical library of a plant is often referred to as its 'terpenome'. Besides having numerous pharmacological properties, terpenes contribute to the scent of the rose, the flavors of cinnamon and the yellow of sunflowers. Rapidly increasing -omics datasets provide an unprecedented opportunity for terpenome detection, paving the way for automated web resources dedicated to phytochemical predictions in genomic data. Results: We have developed Terzyme, a predictive algorithm for identification, classification and assignment of broad substrate unit to terpene synthase (TPS) and prenyl transferase (PT) enzymes, known to generate the enormous structural and functional diversity of terpenoid compounds across the plant kingdom. Terzyme uses sequence information, plant taxonomy and machine learning methods for predicting TPSs and PTs in genome and proteome datasets. We demonstrate a significant enrichment of the currently identified terpenome by running Terzyme on more than 40 plants. Conclusions: Terzyme is the result of a rigorous analysis of evolutionary relationships between hundreds of characterized sequences of TPSs and PTs with known specificities, followed by analysis of genome-wide gene distribution patterns, ontology based clustering and optimization of various parameters for building accurate profile Hidden Markov Models. The predictive webserver and database is freely available at http://nipgr.res.in/terzyme.html and would serve as a useful tool for deciphering the species-specific phytochemical potential of plant genomes.
42 schema:genre research_article
43 schema:inLanguage en
44 schema:isAccessibleForFree true
45 schema:isPartOf N2535f816c4e747e5bba9f449cfd8cfca
46 N5c7373fb81634fa1b7dee0f96bc3fbb7
47 sg:journal.1035309
48 schema:name Terzyme: a tool for identification and analysis of the plant terpenome
49 schema:pagination 4
50 schema:productId N0e44f1362eb74705906cc7ba287289d5
51 N3d842f26f9c6449d927e1c4e7acdf3fd
52 N639eaa2569834efc93ac17160b141602
53 Naa0e4c7546354ab589ad9bd1fd89df66
54 Ndc9823361d2f4b969f7c6e3c0661d6af
55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100287389
56 https://doi.org/10.1186/s13007-017-0269-0
57 schema:sdDatePublished 2019-04-11T00:09
58 schema:sdLicense https://scigraph.springernature.com/explorer/license/
59 schema:sdPublisher N394bf3c208904d7c8ee9e24127ab243c
60 schema:url http://link.springer.com/10.1186/s13007-017-0269-0
61 sgo:license sg:explorer/license/
62 sgo:sdDataset articles
63 rdf:type schema:ScholarlyArticle
64 N0e44f1362eb74705906cc7ba287289d5 schema:name nlm_unique_id
65 schema:value 101245798
66 rdf:type schema:PropertyValue
67 N15210edde0dd4b4da7b7f3f0f5cd0800 rdf:first sg:person.0705731574.46
68 rdf:rest N533110245c9146dba8c5705968a8670e
69 N2535f816c4e747e5bba9f449cfd8cfca schema:issueNumber 1
70 rdf:type schema:PublicationIssue
71 N2d063e98c9c44a2db5e0c15b94d34bd9 rdf:first sg:person.01060502000.57
72 rdf:rest rdf:nil
73 N394bf3c208904d7c8ee9e24127ab243c schema:name Springer Nature - SN SciGraph project
74 rdf:type schema:Organization
75 N3d842f26f9c6449d927e1c4e7acdf3fd schema:name dimensions_id
76 schema:value pub.1100287389
77 rdf:type schema:PropertyValue
78 N533110245c9146dba8c5705968a8670e rdf:first sg:person.01215310436.07
79 rdf:rest Ndda0d735e98d41a690e10400781fd01e
80 N5c7373fb81634fa1b7dee0f96bc3fbb7 schema:volumeNumber 14
81 rdf:type schema:PublicationVolume
82 N5e38bd3b8f844c4a8d10fa711512b5ed schema:affiliation https://www.grid.ac/institutes/grid.419632.b
83 schema:familyName Chand
84 schema:givenName Jyoti
85 rdf:type schema:Person
86 N639eaa2569834efc93ac17160b141602 schema:name doi
87 schema:value 10.1186/s13007-017-0269-0
88 rdf:type schema:PropertyValue
89 Naa0e4c7546354ab589ad9bd1fd89df66 schema:name readcube_id
90 schema:value 21d60b57377f692021e67bc25e307d2b7ccaf983b8ac7f8add63eaff7e829336
91 rdf:type schema:PropertyValue
92 Ndc9823361d2f4b969f7c6e3c0661d6af schema:name pubmed_id
93 schema:value 29339971
94 rdf:type schema:PropertyValue
95 Ndda0d735e98d41a690e10400781fd01e rdf:first N5e38bd3b8f844c4a8d10fa711512b5ed
96 rdf:rest N2d063e98c9c44a2db5e0c15b94d34bd9
97 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
98 schema:name Biological Sciences
99 rdf:type schema:DefinedTerm
100 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
101 schema:name Genetics
102 rdf:type schema:DefinedTerm
103 sg:journal.1035309 schema:issn 1746-4811
104 schema:name Plant Methods
105 rdf:type schema:Periodical
106 sg:person.01060502000.57 schema:affiliation https://www.grid.ac/institutes/grid.5335.0
107 schema:familyName Yadav
108 schema:givenName Gitanjali
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01060502000.57
110 rdf:type schema:Person
111 sg:person.01215310436.07 schema:affiliation https://www.grid.ac/institutes/grid.419632.b
112 schema:familyName Yadav
113 schema:givenName Archana
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01215310436.07
115 rdf:type schema:Person
116 sg:person.0705731574.46 schema:affiliation https://www.grid.ac/institutes/grid.419632.b
117 schema:familyName Priya
118 schema:givenName Piyush
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0705731574.46
120 rdf:type schema:Person
121 sg:pub.10.1007/s00438-002-0709-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1040663641
122 https://doi.org/10.1007/s00438-002-0709-y
123 rdf:type schema:CreativeWork
124 sg:pub.10.1007/s11101-013-9284-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007307233
125 https://doi.org/10.1007/s11101-013-9284-6
126 rdf:type schema:CreativeWork
127 sg:pub.10.1007/s40502-016-0256-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1049862103
128 https://doi.org/10.1007/s40502-016-0256-x
129 rdf:type schema:CreativeWork
130 sg:pub.10.1023/a:1023005504702 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030739306
131 https://doi.org/10.1023/a:1023005504702
132 rdf:type schema:CreativeWork
133 sg:pub.10.1038/nature12211 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052388928
134 https://doi.org/10.1038/nature12211
135 rdf:type schema:CreativeWork
136 sg:pub.10.1186/1471-2229-10-226 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026595466
137 https://doi.org/10.1186/1471-2229-10-226
138 rdf:type schema:CreativeWork
139 sg:pub.10.1186/1471-2229-11-43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011825780
140 https://doi.org/10.1186/1471-2229-11-43
141 rdf:type schema:CreativeWork
142 sg:pub.10.1186/1471-2229-13-80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040750691
143 https://doi.org/10.1186/1471-2229-13-80
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1002/1521-3773(20000818)39:16<2812::aid-anie2812>3.0.co;2-# schema:sameAs https://app.dimensions.ai/details/publication/pub.1030103447
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.cbpa.2007.12.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020373217
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.febslet.2006.10.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017026747
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.molp.2015.01.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036295543
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.tig.2010.07.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051278629
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.tplants.2005.07.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028299640
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/s0959-440x(98)80088-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002092418
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1073/pnas.0709466105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025292983
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1073/pnas.1705567114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090371428
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1073/pnas.261562898 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049451804
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1073/pnas.95.8.4126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028556046
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1093/bioinformatics/16.4.404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022765706
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1093/bioinformatics/bti610 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006001436
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1093/bioinformatics/btm098 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002597864
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1093/mp/sss015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040138610
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1093/nar/25.17.3389 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047265454
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1093/nar/gkr367 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012248325
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1093/nar/gkr393 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036261989
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1104/pp.104.042028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004486810
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1104/pp.104.050567 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040377769
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1104/pp.111.179648 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025672834
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1105/tpc.011015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044639629
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1111/j.1365-313x.2011.04520.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1049623323
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1111/j.1469-8137.2009.02923.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1024144364
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1126/science.287.5454.818 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062568247
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1126/science.291.5511.2141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039631657
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1590/s1415-47572007000500011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002195272
198 rdf:type schema:CreativeWork
199 https://www.grid.ac/institutes/grid.419632.b schema:alternateName National Institute of Plant Genome Research
200 schema:name Computational Biology Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, 110067, New Delhi, India
201 rdf:type schema:Organization
202 https://www.grid.ac/institutes/grid.5335.0 schema:alternateName University of Cambridge
203 schema:name Computational Biology Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, 110067, New Delhi, India
204 Department of Plant Sciences, University of Cambridge, Downing Site, CB2 3EA, Cambridge, UK
205 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...