Leaf-GP: an open and automated software application for measuring growth phenotypes for arabidopsis and wheat View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-12

AUTHORS

Ji Zhou, Christopher Applegate, Albor Dobon Alonso, Daniel Reynolds, Simon Orford, Michal Mackiewicz, Simon Griffiths, Steven Penfield, Nick Pullen

ABSTRACT

Background: Plants demonstrate dynamic growth phenotypes that are determined by genetic and environmental factors. Phenotypic analysis of growth features over time is a key approach to understand how plants interact with environmental change as well as respond to different treatments. Although the importance of measuring dynamic growth traits is widely recognised, available open software tools are limited in terms of batch image processing, multiple traits analyses, software usability and cross-referencing results between experiments, making automated phenotypic analysis problematic. Results: Here, we present Leaf-GP (Growth Phenotypes), an easy-to-use and open software application that can be executed on different computing platforms. To facilitate diverse scientific communities, we provide three software versions, including a graphic user interface (GUI) for personal computer (PC) users, a command-line interface for high-performance computer (HPC) users, and a well-commented interactive Jupyter Notebook (also known as the iPython Notebook) for computational biologists and computer scientists. The software is capable of extracting multiple growth traits automatically from large image datasets. We have utilised it in Arabidopsis thaliana and wheat (Triticum aestivum) growth studies at the Norwich Research Park (NRP, UK). By quantifying a number of growth phenotypes over time, we have identified diverse plant growth patterns between different genotypes under several experimental conditions. As Leaf-GP has been evaluated with noisy image series acquired by different imaging devices (e.g. smartphones and digital cameras) and still produced reliable biological outputs, we therefore believe that our automated analysis workflow and customised computer vision based feature extraction software implementation can facilitate a broader plant research community for their growth and development studies. Furthermore, because we implemented Leaf-GP based on open Python-based computer vision, image analysis and machine learning libraries, we believe that our software not only can contribute to biological research, but also demonstrates how to utilise existing open numeric and scientific libraries (e.g. Scikit-image, OpenCV, SciPy and Scikit-learn) to build sound plant phenomics analytic solutions, in a efficient and effective way. Conclusions: Leaf-GP is a sophisticated software application that provides three approaches to quantify growth phenotypes from large image series. We demonstrate its usefulness and high accuracy based on two biological applications: (1) the quantification of growth traits for Arabidopsis genotypes under two temperature conditions; and (2) measuring wheat growth in the glasshouse over time. The software is easy-to-use and cross-platform, which can be executed on Mac OS, Windows and HPC, with open Python-based scientific libraries preinstalled. Our work presents the advancement of how to integrate computer vision, image analysis, machine learning and software engineering in plant phenomics software implementation. To serve the plant research community, our modulated source code, detailed comments, executables (.exe for Windows; .app for Mac), and experimental results are freely available at https://github.com/Crop-Phenomics-Group/Leaf-GP/releases. More... »

PAGES

117

References to SciGraph publications

  • 2012-07. Current challenges in open-source bioimage informatics in NATURE METHODS
  • 2012-12. CalloseMeasurer: a novel software solution to measure callose deposition and recognise spreading callose patterns in PLANT METHODS
  • 2013-12. Functional approach to high-throughput plant growth analysis in BMC SYSTEMS BIOLOGY
  • 2012-07. Biological imaging software tools in NATURE METHODS
  • 2008-05. A multi-trait multi-environment QTL mixed model with an application to drought and nitrogen stress trials in maize (Zea mays L.) in EUPHYTICA
  • 2012-12. OSCILLATOR: A system for analysis of diurnal leaf growth using infrared photography combined with wavelet transformation in PLANT METHODS
  • 2012-12. PhenoPhyte: a flexible affordable method to quantify 2D phenotypes from imagery in PLANT METHODS
  • 2015-12. The leaf angle distribution of natural plant populations: assessing the canopy with a novel software tool in PLANT METHODS
  • 2017-12. An image analysis pipeline for automated classification of imaging light conditions and for quantification of wheat canopy cover time series in field phenotyping in PLANT METHODS
  • 2016-01. Data standards can boost metabolomics research, and if there is a will, there is a way in METABOLOMICS
  • 2017-12. rosettR: protocol and software for seedling area and growth analysis in PLANT METHODS
  • 2017-03. The plant perceptron connects environment to development in NATURE
  • 2017-12. A real-time phenotyping framework using machine learning for plant stress severity rating in soybean in PLANT METHODS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s13007-017-0266-3

    DOI

    http://dx.doi.org/10.1186/s13007-017-0266-3

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1099922647

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/29299051


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of East Anglia", 
              "id": "https://www.grid.ac/institutes/grid.8273.e", 
              "name": [
                "Earlham Institute, Norwich Research Park, Norwich, UK", 
                "John Innes Centre, Norwich Research Park, Norwich, UK", 
                "University of East Anglia, Norwich Research Park, Norwich, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhou", 
            "givenName": "Ji", 
            "id": "sg:person.016412456540.88", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016412456540.88"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Earlham Institute, Norwich Research Park, Norwich, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Applegate", 
            "givenName": "Christopher", 
            "id": "sg:person.011614154453.31", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011614154453.31"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "John Innes Centre", 
              "id": "https://www.grid.ac/institutes/grid.14830.3e", 
              "name": [
                "John Innes Centre, Norwich Research Park, Norwich, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Alonso", 
            "givenName": "Albor Dobon", 
            "id": "sg:person.07562764113.13", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07562764113.13"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Earlham Institute, Norwich Research Park, Norwich, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Reynolds", 
            "givenName": "Daniel", 
            "id": "sg:person.011155725113.65", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011155725113.65"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "John Innes Centre", 
              "id": "https://www.grid.ac/institutes/grid.14830.3e", 
              "name": [
                "John Innes Centre, Norwich Research Park, Norwich, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Orford", 
            "givenName": "Simon", 
            "id": "sg:person.0705600472.17", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0705600472.17"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of East Anglia", 
              "id": "https://www.grid.ac/institutes/grid.8273.e", 
              "name": [
                "University of East Anglia, Norwich Research Park, Norwich, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mackiewicz", 
            "givenName": "Michal", 
            "id": "sg:person.01330202506.11", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01330202506.11"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "John Innes Centre", 
              "id": "https://www.grid.ac/institutes/grid.14830.3e", 
              "name": [
                "John Innes Centre, Norwich Research Park, Norwich, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Griffiths", 
            "givenName": "Simon", 
            "id": "sg:person.01361642000.03", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01361642000.03"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "John Innes Centre", 
              "id": "https://www.grid.ac/institutes/grid.14830.3e", 
              "name": [
                "John Innes Centre, Norwich Research Park, Norwich, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Penfield", 
            "givenName": "Steven", 
            "id": "sg:person.01300201074.21", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01300201074.21"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "John Innes Centre", 
              "id": "https://www.grid.ac/institutes/grid.14830.3e", 
              "name": [
                "John Innes Centre, Norwich Research Park, Norwich, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pullen", 
            "givenName": "Nick", 
            "id": "sg:person.01055315023.05", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01055315023.05"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1186/1746-4811-8-45", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001648317", 
              "https://doi.org/10.1186/1746-4811-8-45"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3390/s140203001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003301696"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1071/fp09095", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004935878"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/nph.13416", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005660888"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.2082", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010979269", 
              "https://doi.org/10.1038/nmeth.2082"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/nph.12869", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011528841"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/tpj.13472", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011817022"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1752-0509-7-s6-s17", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014366376", 
              "https://doi.org/10.1186/1752-0509-7-s6-s17"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.compag.2011.12.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014376060"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/mcse.2011.36", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014615184"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/aob/mcf140", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014815368"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3389/fpls.2014.00770", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015217287"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3732/apps.1400033", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015458229"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.compag.2008.03.009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015542105"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13007-015-0052-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015615703", 
              "https://doi.org/10.1186/s13007-015-0052-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13007-015-0052-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015615703", 
              "https://doi.org/10.1186/s13007-015-0052-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1746-4811-8-49", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017672450", 
              "https://doi.org/10.1186/1746-4811-8-49"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1105/tpc.112.105890", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020586684"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10681-007-9594-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022582474", 
              "https://doi.org/10.1007/s10681-007-9594-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1118642", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022936033"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/jxb/erv251", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024563865"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/tpj.12833", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025551798"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0042-6989(96)00262-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026526747"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0981-9428(00)80097-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028266783"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1469-8137.2011.03756.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029629449"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1746-4811-8-29", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032235636", 
              "https://doi.org/10.1186/1746-4811-8-29"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pgen.1005373", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032454165"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1469-8137.1920.tb07327.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034181637"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1365-313x.2011.04803.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035192001"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.2084", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036212281", 
              "https://doi.org/10.1038/nmeth.2084"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1104/pp.114.238626", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038651595"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1469-8137.2007.02002.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038674925"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11306-015-0879-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039288385", 
              "https://doi.org/10.1007/s11306-015-0879-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11306-015-0879-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039288385", 
              "https://doi.org/10.1007/s11306-015-0879-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11306-015-0879-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039288385", 
              "https://doi.org/10.1007/s11306-015-0879-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/359423.359430", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039671062"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/nph.14053", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041123257"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1104/pp.112.202762", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041609295"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tsmc.1979.4310076", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042805607"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1242/dev.134619", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045721233"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.7717/peerj.453", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046599992"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1104/pp.113.233932", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047954055"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cub.2010.07.028", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049027726"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1365-313x.2007.03330.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052404139"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1478-4408.1976.tb03301.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052659466"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.tplants.2016.10.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053180734"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1105/tpc.13.7.1499", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060842158"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/76.927424", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061222541"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tip.2006.884913", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061641598"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/2258728", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069851981"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/3871382", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1070469167"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3791/50028", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1071423534"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature22010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084128627", 
              "https://doi.org/10.1038/nature22010"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13007-017-0163-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084251699", 
              "https://doi.org/10.1186/s13007-017-0163-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13007-017-0163-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084251699", 
              "https://doi.org/10.1186/s13007-017-0163-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13007-017-0168-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084251704", 
              "https://doi.org/10.1186/s13007-017-0168-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13007-017-0168-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084251704", 
              "https://doi.org/10.1186/s13007-017-0168-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13007-017-0173-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084612542", 
              "https://doi.org/10.1186/s13007-017-0173-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13007-017-0173-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084612542", 
              "https://doi.org/10.1186/s13007-017-0173-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/tra.12505", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090895808"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icip.1995.537688", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094400985"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/9781119994398", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106811459"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/9781119994398", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106811459"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/9781119994398", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106811459"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/9781119994398", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106811459"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/9781119994398", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106811459"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-12", 
        "datePublishedReg": "2017-12-01", 
        "description": "Background: Plants demonstrate dynamic growth phenotypes that are determined by genetic and environmental factors. Phenotypic analysis of growth features over time is a key approach to understand how plants interact with environmental change as well as respond to different treatments. Although the importance of measuring dynamic growth traits is widely recognised, available open software tools are limited in terms of batch image processing, multiple traits analyses, software usability and cross-referencing results between experiments, making automated phenotypic analysis problematic.\nResults: Here, we present Leaf-GP (Growth Phenotypes), an easy-to-use and open software application that can be executed on different computing platforms. To facilitate diverse scientific communities, we provide three software versions, including a graphic user interface (GUI) for personal computer (PC) users, a command-line interface for high-performance computer (HPC) users, and a well-commented interactive Jupyter Notebook (also known as the iPython Notebook) for computational biologists and computer scientists. The software is capable of extracting multiple growth traits automatically from large image datasets. We have utilised it in Arabidopsis thaliana and wheat (Triticum aestivum) growth studies at the Norwich Research Park (NRP, UK). By quantifying a number of growth phenotypes over time, we have identified diverse plant growth patterns between different genotypes under several experimental conditions. As Leaf-GP has been evaluated with noisy image series acquired by different imaging devices (e.g. smartphones and digital cameras) and still produced reliable biological outputs, we therefore believe that our automated analysis workflow and customised computer vision based feature extraction software implementation can facilitate a broader plant research community for their growth and development studies. Furthermore, because we implemented Leaf-GP based on open Python-based computer vision, image analysis and machine learning libraries, we believe that our software not only can contribute to biological research, but also demonstrates how to utilise existing open numeric and scientific libraries (e.g. Scikit-image, OpenCV, SciPy and Scikit-learn) to build sound plant phenomics analytic solutions, in a efficient and effective way.\nConclusions: Leaf-GP is a sophisticated software application that provides three approaches to quantify growth phenotypes from large image series. We demonstrate its usefulness and high accuracy based on two biological applications: (1) the quantification of growth traits for Arabidopsis genotypes under two temperature conditions; and (2) measuring wheat growth in the glasshouse over time. The software is easy-to-use and cross-platform, which can be executed on Mac OS, Windows and HPC, with open Python-based scientific libraries preinstalled. Our work presents the advancement of how to integrate computer vision, image analysis, machine learning and software engineering in plant phenomics software implementation. To serve the plant research community, our modulated source code, detailed comments, executables (.exe for Windows; .app for Mac), and experimental results are freely available at https://github.com/Crop-Phenomics-Group/Leaf-GP/releases.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1186/s13007-017-0266-3", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.7746244", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.7747785", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2758505", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.7746908", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.7746575", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.6619595", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.7748325", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1035309", 
            "issn": [
              "1746-4811"
            ], 
            "name": "Plant Methods", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "13"
          }
        ], 
        "name": "Leaf-GP: an open and automated software application for measuring growth phenotypes for arabidopsis and wheat", 
        "pagination": "117", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "87b2927ae3ffd49de4cf01f79debfadd58899667f73ac36a073b2e5817246064"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "29299051"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101245798"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s13007-017-0266-3"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1099922647"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s13007-017-0266-3", 
          "https://app.dimensions.ai/details/publication/pub.1099922647"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T15:14", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000603.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1186/s13007-017-0266-3"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13007-017-0266-3'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13007-017-0266-3'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13007-017-0266-3'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13007-017-0266-3'


     

    This table displays all metadata directly associated to this object as RDF triples.

    328 TRIPLES      21 PREDICATES      85 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s13007-017-0266-3 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N4e8c0b6586e046869c812ba4aca5e0f0
    4 schema:citation sg:pub.10.1007/s10681-007-9594-0
    5 sg:pub.10.1007/s11306-015-0879-3
    6 sg:pub.10.1038/nature22010
    7 sg:pub.10.1038/nmeth.2082
    8 sg:pub.10.1038/nmeth.2084
    9 sg:pub.10.1186/1746-4811-8-29
    10 sg:pub.10.1186/1746-4811-8-45
    11 sg:pub.10.1186/1746-4811-8-49
    12 sg:pub.10.1186/1752-0509-7-s6-s17
    13 sg:pub.10.1186/s13007-015-0052-z
    14 sg:pub.10.1186/s13007-017-0163-9
    15 sg:pub.10.1186/s13007-017-0168-4
    16 sg:pub.10.1186/s13007-017-0173-7
    17 https://doi.org/10.1002/9781119994398
    18 https://doi.org/10.1016/j.compag.2008.03.009
    19 https://doi.org/10.1016/j.compag.2011.12.007
    20 https://doi.org/10.1016/j.cub.2010.07.028
    21 https://doi.org/10.1016/j.tplants.2016.10.002
    22 https://doi.org/10.1016/s0042-6989(96)00262-3
    23 https://doi.org/10.1016/s0981-9428(00)80097-2
    24 https://doi.org/10.1071/fp09095
    25 https://doi.org/10.1093/aob/mcf140
    26 https://doi.org/10.1093/jxb/erv251
    27 https://doi.org/10.1104/pp.112.202762
    28 https://doi.org/10.1104/pp.113.233932
    29 https://doi.org/10.1104/pp.114.238626
    30 https://doi.org/10.1105/tpc.112.105890
    31 https://doi.org/10.1105/tpc.13.7.1499
    32 https://doi.org/10.1109/76.927424
    33 https://doi.org/10.1109/icip.1995.537688
    34 https://doi.org/10.1109/mcse.2011.36
    35 https://doi.org/10.1109/tip.2006.884913
    36 https://doi.org/10.1109/tsmc.1979.4310076
    37 https://doi.org/10.1111/j.1365-313x.2007.03330.x
    38 https://doi.org/10.1111/j.1365-313x.2011.04803.x
    39 https://doi.org/10.1111/j.1469-8137.1920.tb07327.x
    40 https://doi.org/10.1111/j.1469-8137.2007.02002.x
    41 https://doi.org/10.1111/j.1469-8137.2011.03756.x
    42 https://doi.org/10.1111/j.1478-4408.1976.tb03301.x
    43 https://doi.org/10.1111/nph.12869
    44 https://doi.org/10.1111/nph.13416
    45 https://doi.org/10.1111/nph.14053
    46 https://doi.org/10.1111/tpj.12833
    47 https://doi.org/10.1111/tpj.13472
    48 https://doi.org/10.1111/tra.12505
    49 https://doi.org/10.1126/science.1118642
    50 https://doi.org/10.1145/359423.359430
    51 https://doi.org/10.1242/dev.134619
    52 https://doi.org/10.1371/journal.pgen.1005373
    53 https://doi.org/10.2307/2258728
    54 https://doi.org/10.2307/3871382
    55 https://doi.org/10.3389/fpls.2014.00770
    56 https://doi.org/10.3390/s140203001
    57 https://doi.org/10.3732/apps.1400033
    58 https://doi.org/10.3791/50028
    59 https://doi.org/10.7717/peerj.453
    60 schema:datePublished 2017-12
    61 schema:datePublishedReg 2017-12-01
    62 schema:description Background: Plants demonstrate dynamic growth phenotypes that are determined by genetic and environmental factors. Phenotypic analysis of growth features over time is a key approach to understand how plants interact with environmental change as well as respond to different treatments. Although the importance of measuring dynamic growth traits is widely recognised, available open software tools are limited in terms of batch image processing, multiple traits analyses, software usability and cross-referencing results between experiments, making automated phenotypic analysis problematic. Results: Here, we present Leaf-GP (Growth Phenotypes), an easy-to-use and open software application that can be executed on different computing platforms. To facilitate diverse scientific communities, we provide three software versions, including a graphic user interface (GUI) for personal computer (PC) users, a command-line interface for high-performance computer (HPC) users, and a well-commented interactive Jupyter Notebook (also known as the iPython Notebook) for computational biologists and computer scientists. The software is capable of extracting multiple growth traits automatically from large image datasets. We have utilised it in Arabidopsis thaliana and wheat (Triticum aestivum) growth studies at the Norwich Research Park (NRP, UK). By quantifying a number of growth phenotypes over time, we have identified diverse plant growth patterns between different genotypes under several experimental conditions. As Leaf-GP has been evaluated with noisy image series acquired by different imaging devices (e.g. smartphones and digital cameras) and still produced reliable biological outputs, we therefore believe that our automated analysis workflow and customised computer vision based feature extraction software implementation can facilitate a broader plant research community for their growth and development studies. Furthermore, because we implemented Leaf-GP based on open Python-based computer vision, image analysis and machine learning libraries, we believe that our software not only can contribute to biological research, but also demonstrates how to utilise existing open numeric and scientific libraries (e.g. Scikit-image, OpenCV, SciPy and Scikit-learn) to build sound plant phenomics analytic solutions, in a efficient and effective way. Conclusions: Leaf-GP is a sophisticated software application that provides three approaches to quantify growth phenotypes from large image series. We demonstrate its usefulness and high accuracy based on two biological applications: (1) the quantification of growth traits for Arabidopsis genotypes under two temperature conditions; and (2) measuring wheat growth in the glasshouse over time. The software is easy-to-use and cross-platform, which can be executed on Mac OS, Windows and HPC, with open Python-based scientific libraries preinstalled. Our work presents the advancement of how to integrate computer vision, image analysis, machine learning and software engineering in plant phenomics software implementation. To serve the plant research community, our modulated source code, detailed comments, executables (.exe for Windows; .app for Mac), and experimental results are freely available at https://github.com/Crop-Phenomics-Group/Leaf-GP/releases.
    63 schema:genre research_article
    64 schema:inLanguage en
    65 schema:isAccessibleForFree true
    66 schema:isPartOf N18c59eefd87a4a3198a4f63e5263b845
    67 N6f89a9964dbb41f98ad5c738838ba364
    68 sg:journal.1035309
    69 schema:name Leaf-GP: an open and automated software application for measuring growth phenotypes for arabidopsis and wheat
    70 schema:pagination 117
    71 schema:productId N1f2c28fcdae14ad6bd2b9d9c7813fb98
    72 N4e2e1cf7c36f443a8faeff8c3b8e5825
    73 N8506826afb5e4809ab630331f768cbf7
    74 N8abe6b84971c4266bbe267d67c0e2603
    75 Nb2065b8c0a2149368de8e032e54abc68
    76 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099922647
    77 https://doi.org/10.1186/s13007-017-0266-3
    78 schema:sdDatePublished 2019-04-10T15:14
    79 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    80 schema:sdPublisher N5437ad4c62704e4b82b2461d4b7fbdb3
    81 schema:url http://link.springer.com/10.1186/s13007-017-0266-3
    82 sgo:license sg:explorer/license/
    83 sgo:sdDataset articles
    84 rdf:type schema:ScholarlyArticle
    85 N075983927df14a80bba3b778785b78de rdf:first sg:person.01361642000.03
    86 rdf:rest Na9a71828b93649599561ebf5a0b6469e
    87 N18c59eefd87a4a3198a4f63e5263b845 schema:volumeNumber 13
    88 rdf:type schema:PublicationVolume
    89 N1bd415cb004741099b7eab0e133e6f8e rdf:first sg:person.01055315023.05
    90 rdf:rest rdf:nil
    91 N1f2c28fcdae14ad6bd2b9d9c7813fb98 schema:name doi
    92 schema:value 10.1186/s13007-017-0266-3
    93 rdf:type schema:PropertyValue
    94 N22d6ddb7ed2d49589ca7dd0503060d4b rdf:first sg:person.07562764113.13
    95 rdf:rest N72d5f48b15824ea8ae585f8062c47c47
    96 N476a81753ba14ab09568fffd324964b7 rdf:first sg:person.0705600472.17
    97 rdf:rest N48fef23abe814e65a5fd7f4c7f75f412
    98 N48fef23abe814e65a5fd7f4c7f75f412 rdf:first sg:person.01330202506.11
    99 rdf:rest N075983927df14a80bba3b778785b78de
    100 N4e2e1cf7c36f443a8faeff8c3b8e5825 schema:name dimensions_id
    101 schema:value pub.1099922647
    102 rdf:type schema:PropertyValue
    103 N4e8c0b6586e046869c812ba4aca5e0f0 rdf:first sg:person.016412456540.88
    104 rdf:rest Ndda781cf825d48d69deaf55c2caa1b68
    105 N5437ad4c62704e4b82b2461d4b7fbdb3 schema:name Springer Nature - SN SciGraph project
    106 rdf:type schema:Organization
    107 N57eea42aaf5b40aaa8bf901316f98973 schema:name Earlham Institute, Norwich Research Park, Norwich, UK
    108 rdf:type schema:Organization
    109 N674706b34e174f478c4b32dd980d0a78 schema:name Earlham Institute, Norwich Research Park, Norwich, UK
    110 rdf:type schema:Organization
    111 N6f89a9964dbb41f98ad5c738838ba364 schema:issueNumber 1
    112 rdf:type schema:PublicationIssue
    113 N72d5f48b15824ea8ae585f8062c47c47 rdf:first sg:person.011155725113.65
    114 rdf:rest N476a81753ba14ab09568fffd324964b7
    115 N8506826afb5e4809ab630331f768cbf7 schema:name pubmed_id
    116 schema:value 29299051
    117 rdf:type schema:PropertyValue
    118 N8abe6b84971c4266bbe267d67c0e2603 schema:name nlm_unique_id
    119 schema:value 101245798
    120 rdf:type schema:PropertyValue
    121 Na9a71828b93649599561ebf5a0b6469e rdf:first sg:person.01300201074.21
    122 rdf:rest N1bd415cb004741099b7eab0e133e6f8e
    123 Nb2065b8c0a2149368de8e032e54abc68 schema:name readcube_id
    124 schema:value 87b2927ae3ffd49de4cf01f79debfadd58899667f73ac36a073b2e5817246064
    125 rdf:type schema:PropertyValue
    126 Ndda781cf825d48d69deaf55c2caa1b68 rdf:first sg:person.011614154453.31
    127 rdf:rest N22d6ddb7ed2d49589ca7dd0503060d4b
    128 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    129 schema:name Information and Computing Sciences
    130 rdf:type schema:DefinedTerm
    131 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    132 schema:name Artificial Intelligence and Image Processing
    133 rdf:type schema:DefinedTerm
    134 sg:grant.2758505 http://pending.schema.org/fundedItem sg:pub.10.1186/s13007-017-0266-3
    135 rdf:type schema:MonetaryGrant
    136 sg:grant.6619595 http://pending.schema.org/fundedItem sg:pub.10.1186/s13007-017-0266-3
    137 rdf:type schema:MonetaryGrant
    138 sg:grant.7746244 http://pending.schema.org/fundedItem sg:pub.10.1186/s13007-017-0266-3
    139 rdf:type schema:MonetaryGrant
    140 sg:grant.7746575 http://pending.schema.org/fundedItem sg:pub.10.1186/s13007-017-0266-3
    141 rdf:type schema:MonetaryGrant
    142 sg:grant.7746908 http://pending.schema.org/fundedItem sg:pub.10.1186/s13007-017-0266-3
    143 rdf:type schema:MonetaryGrant
    144 sg:grant.7747785 http://pending.schema.org/fundedItem sg:pub.10.1186/s13007-017-0266-3
    145 rdf:type schema:MonetaryGrant
    146 sg:grant.7748325 http://pending.schema.org/fundedItem sg:pub.10.1186/s13007-017-0266-3
    147 rdf:type schema:MonetaryGrant
    148 sg:journal.1035309 schema:issn 1746-4811
    149 schema:name Plant Methods
    150 rdf:type schema:Periodical
    151 sg:person.01055315023.05 schema:affiliation https://www.grid.ac/institutes/grid.14830.3e
    152 schema:familyName Pullen
    153 schema:givenName Nick
    154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01055315023.05
    155 rdf:type schema:Person
    156 sg:person.011155725113.65 schema:affiliation N57eea42aaf5b40aaa8bf901316f98973
    157 schema:familyName Reynolds
    158 schema:givenName Daniel
    159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011155725113.65
    160 rdf:type schema:Person
    161 sg:person.011614154453.31 schema:affiliation N674706b34e174f478c4b32dd980d0a78
    162 schema:familyName Applegate
    163 schema:givenName Christopher
    164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011614154453.31
    165 rdf:type schema:Person
    166 sg:person.01300201074.21 schema:affiliation https://www.grid.ac/institutes/grid.14830.3e
    167 schema:familyName Penfield
    168 schema:givenName Steven
    169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01300201074.21
    170 rdf:type schema:Person
    171 sg:person.01330202506.11 schema:affiliation https://www.grid.ac/institutes/grid.8273.e
    172 schema:familyName Mackiewicz
    173 schema:givenName Michal
    174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01330202506.11
    175 rdf:type schema:Person
    176 sg:person.01361642000.03 schema:affiliation https://www.grid.ac/institutes/grid.14830.3e
    177 schema:familyName Griffiths
    178 schema:givenName Simon
    179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01361642000.03
    180 rdf:type schema:Person
    181 sg:person.016412456540.88 schema:affiliation https://www.grid.ac/institutes/grid.8273.e
    182 schema:familyName Zhou
    183 schema:givenName Ji
    184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016412456540.88
    185 rdf:type schema:Person
    186 sg:person.0705600472.17 schema:affiliation https://www.grid.ac/institutes/grid.14830.3e
    187 schema:familyName Orford
    188 schema:givenName Simon
    189 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0705600472.17
    190 rdf:type schema:Person
    191 sg:person.07562764113.13 schema:affiliation https://www.grid.ac/institutes/grid.14830.3e
    192 schema:familyName Alonso
    193 schema:givenName Albor Dobon
    194 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07562764113.13
    195 rdf:type schema:Person
    196 sg:pub.10.1007/s10681-007-9594-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022582474
    197 https://doi.org/10.1007/s10681-007-9594-0
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1007/s11306-015-0879-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039288385
    200 https://doi.org/10.1007/s11306-015-0879-3
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1038/nature22010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084128627
    203 https://doi.org/10.1038/nature22010
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1038/nmeth.2082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010979269
    206 https://doi.org/10.1038/nmeth.2082
    207 rdf:type schema:CreativeWork
    208 sg:pub.10.1038/nmeth.2084 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036212281
    209 https://doi.org/10.1038/nmeth.2084
    210 rdf:type schema:CreativeWork
    211 sg:pub.10.1186/1746-4811-8-29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032235636
    212 https://doi.org/10.1186/1746-4811-8-29
    213 rdf:type schema:CreativeWork
    214 sg:pub.10.1186/1746-4811-8-45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001648317
    215 https://doi.org/10.1186/1746-4811-8-45
    216 rdf:type schema:CreativeWork
    217 sg:pub.10.1186/1746-4811-8-49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017672450
    218 https://doi.org/10.1186/1746-4811-8-49
    219 rdf:type schema:CreativeWork
    220 sg:pub.10.1186/1752-0509-7-s6-s17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014366376
    221 https://doi.org/10.1186/1752-0509-7-s6-s17
    222 rdf:type schema:CreativeWork
    223 sg:pub.10.1186/s13007-015-0052-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1015615703
    224 https://doi.org/10.1186/s13007-015-0052-z
    225 rdf:type schema:CreativeWork
    226 sg:pub.10.1186/s13007-017-0163-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084251699
    227 https://doi.org/10.1186/s13007-017-0163-9
    228 rdf:type schema:CreativeWork
    229 sg:pub.10.1186/s13007-017-0168-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084251704
    230 https://doi.org/10.1186/s13007-017-0168-4
    231 rdf:type schema:CreativeWork
    232 sg:pub.10.1186/s13007-017-0173-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084612542
    233 https://doi.org/10.1186/s13007-017-0173-7
    234 rdf:type schema:CreativeWork
    235 https://doi.org/10.1002/9781119994398 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106811459
    236 rdf:type schema:CreativeWork
    237 https://doi.org/10.1016/j.compag.2008.03.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015542105
    238 rdf:type schema:CreativeWork
    239 https://doi.org/10.1016/j.compag.2011.12.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014376060
    240 rdf:type schema:CreativeWork
    241 https://doi.org/10.1016/j.cub.2010.07.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049027726
    242 rdf:type schema:CreativeWork
    243 https://doi.org/10.1016/j.tplants.2016.10.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053180734
    244 rdf:type schema:CreativeWork
    245 https://doi.org/10.1016/s0042-6989(96)00262-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026526747
    246 rdf:type schema:CreativeWork
    247 https://doi.org/10.1016/s0981-9428(00)80097-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028266783
    248 rdf:type schema:CreativeWork
    249 https://doi.org/10.1071/fp09095 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004935878
    250 rdf:type schema:CreativeWork
    251 https://doi.org/10.1093/aob/mcf140 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014815368
    252 rdf:type schema:CreativeWork
    253 https://doi.org/10.1093/jxb/erv251 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024563865
    254 rdf:type schema:CreativeWork
    255 https://doi.org/10.1104/pp.112.202762 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041609295
    256 rdf:type schema:CreativeWork
    257 https://doi.org/10.1104/pp.113.233932 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047954055
    258 rdf:type schema:CreativeWork
    259 https://doi.org/10.1104/pp.114.238626 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038651595
    260 rdf:type schema:CreativeWork
    261 https://doi.org/10.1105/tpc.112.105890 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020586684
    262 rdf:type schema:CreativeWork
    263 https://doi.org/10.1105/tpc.13.7.1499 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060842158
    264 rdf:type schema:CreativeWork
    265 https://doi.org/10.1109/76.927424 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061222541
    266 rdf:type schema:CreativeWork
    267 https://doi.org/10.1109/icip.1995.537688 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094400985
    268 rdf:type schema:CreativeWork
    269 https://doi.org/10.1109/mcse.2011.36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014615184
    270 rdf:type schema:CreativeWork
    271 https://doi.org/10.1109/tip.2006.884913 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061641598
    272 rdf:type schema:CreativeWork
    273 https://doi.org/10.1109/tsmc.1979.4310076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042805607
    274 rdf:type schema:CreativeWork
    275 https://doi.org/10.1111/j.1365-313x.2007.03330.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1052404139
    276 rdf:type schema:CreativeWork
    277 https://doi.org/10.1111/j.1365-313x.2011.04803.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1035192001
    278 rdf:type schema:CreativeWork
    279 https://doi.org/10.1111/j.1469-8137.1920.tb07327.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1034181637
    280 rdf:type schema:CreativeWork
    281 https://doi.org/10.1111/j.1469-8137.2007.02002.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1038674925
    282 rdf:type schema:CreativeWork
    283 https://doi.org/10.1111/j.1469-8137.2011.03756.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1029629449
    284 rdf:type schema:CreativeWork
    285 https://doi.org/10.1111/j.1478-4408.1976.tb03301.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1052659466
    286 rdf:type schema:CreativeWork
    287 https://doi.org/10.1111/nph.12869 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011528841
    288 rdf:type schema:CreativeWork
    289 https://doi.org/10.1111/nph.13416 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005660888
    290 rdf:type schema:CreativeWork
    291 https://doi.org/10.1111/nph.14053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041123257
    292 rdf:type schema:CreativeWork
    293 https://doi.org/10.1111/tpj.12833 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025551798
    294 rdf:type schema:CreativeWork
    295 https://doi.org/10.1111/tpj.13472 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011817022
    296 rdf:type schema:CreativeWork
    297 https://doi.org/10.1111/tra.12505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090895808
    298 rdf:type schema:CreativeWork
    299 https://doi.org/10.1126/science.1118642 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022936033
    300 rdf:type schema:CreativeWork
    301 https://doi.org/10.1145/359423.359430 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039671062
    302 rdf:type schema:CreativeWork
    303 https://doi.org/10.1242/dev.134619 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045721233
    304 rdf:type schema:CreativeWork
    305 https://doi.org/10.1371/journal.pgen.1005373 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032454165
    306 rdf:type schema:CreativeWork
    307 https://doi.org/10.2307/2258728 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069851981
    308 rdf:type schema:CreativeWork
    309 https://doi.org/10.2307/3871382 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070469167
    310 rdf:type schema:CreativeWork
    311 https://doi.org/10.3389/fpls.2014.00770 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015217287
    312 rdf:type schema:CreativeWork
    313 https://doi.org/10.3390/s140203001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003301696
    314 rdf:type schema:CreativeWork
    315 https://doi.org/10.3732/apps.1400033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015458229
    316 rdf:type schema:CreativeWork
    317 https://doi.org/10.3791/50028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071423534
    318 rdf:type schema:CreativeWork
    319 https://doi.org/10.7717/peerj.453 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046599992
    320 rdf:type schema:CreativeWork
    321 https://www.grid.ac/institutes/grid.14830.3e schema:alternateName John Innes Centre
    322 schema:name John Innes Centre, Norwich Research Park, Norwich, UK
    323 rdf:type schema:Organization
    324 https://www.grid.ac/institutes/grid.8273.e schema:alternateName University of East Anglia
    325 schema:name Earlham Institute, Norwich Research Park, Norwich, UK
    326 John Innes Centre, Norwich Research Park, Norwich, UK
    327 University of East Anglia, Norwich Research Park, Norwich, UK
    328 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...