Genomic Bayesian functional regression models with interactions for predicting wheat grain yield using hyper-spectral image data View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-12

AUTHORS

Abelardo Montesinos-López, Osval A. Montesinos-López, Jaime Cuevas, Walter A. Mata-López, Juan Burgueño, Sushismita Mondal, Julio Huerta, Ravi Singh, Enrique Autrique, Lorena González-Pérez, José Crossa

ABSTRACT

BACKGROUND: Modern agriculture uses hyperspectral cameras that provide hundreds of reflectance data at discrete narrow bands in many environments. These bands often cover the whole visible light spectrum and part of the infrared and ultraviolet light spectra. With the bands, vegetation indices are constructed for predicting agronomically important traits such as grain yield and biomass. However, since vegetation indices only use some wavelengths (referred to as bands), we propose using all bands simultaneously as predictor variables for the primary trait grain yield; results of several multi-environment maize (Aguate et al. in Crop Sci 57(5):1-8, 2017) and wheat (Montesinos-López et al. in Plant Methods 13(4):1-23, 2017) breeding trials indicated that using all bands produced better prediction accuracy than vegetation indices. However, until now, these prediction models have not accounted for the effects of genotype × environment (G × E) and band × environment (B × E) interactions incorporating genomic or pedigree information. RESULTS: In this study, we propose Bayesian functional regression models that take into account all available bands, genomic or pedigree information, the main effects of lines and environments, as well as G × E and B × E interaction effects. The data set used is comprised of 976 wheat lines evaluated for grain yield in three environments (Drought, Irrigated and Reduced Irrigation). The reflectance data were measured in 250 discrete narrow bands ranging from 392 to 851 nm (nm). The proposed Bayesian functional regression models were implemented using two types of basis: B-splines and Fourier. Results of the proposed Bayesian functional regression models, including all the wavelengths for predicting grain yield, were compared with results from conventional models with and without bands. CONCLUSIONS: We observed that the models with B × E interaction terms were the most accurate models, whereas the functional regression models (with B-splines and Fourier basis) and the conventional models performed similarly in terms of prediction accuracy. However, the functional regression models are more parsimonious and computationally more efficient because the number of beta coefficients to be estimated is 21 (number of basis), rather than estimating the 250 regression coefficients for all bands. In this study adding pedigree or genomic information did not increase prediction accuracy. More... »

PAGES

62

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13007-017-0212-4

DOI

http://dx.doi.org/10.1186/s13007-017-0212-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1090911157

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28769997


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0703", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Crop and Pasture Production", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/07", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Agricultural and Veterinary Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Guadalajara", 
          "id": "https://www.grid.ac/institutes/grid.412890.6", 
          "name": [
            "Departamento de Matem\u00e1ticas, Centro Universitario de Ciencias Exactas e Ingenier\u00edas (CUCEI), Universidad de Guadalajara, 44430, Guadalajara, Jalisco, Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Montesinos-L\u00f3pez", 
        "givenName": "Abelardo", 
        "id": "sg:person.01200624341.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01200624341.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Colima", 
          "id": "https://www.grid.ac/institutes/grid.412887.0", 
          "name": [
            "Facultad de Telem\u00e1tica, Universidad de Colima, Colima, Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Montesinos-L\u00f3pez", 
        "givenName": "Osval A.", 
        "id": "sg:person.01064375741.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01064375741.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Quintana Roo", 
          "id": "https://www.grid.ac/institutes/grid.441185.d", 
          "name": [
            "Universidad de Quintana Roo, Chetumal, Quintana Roo, Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cuevas", 
        "givenName": "Jaime", 
        "id": "sg:person.0662160356.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0662160356.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Colima", 
          "id": "https://www.grid.ac/institutes/grid.412887.0", 
          "name": [
            "Facultad Ingenier\u00eda Mec\u00e1nica y El\u00e9ctrica, Universidad de Colima, Colima, Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mata-L\u00f3pez", 
        "givenName": "Walter A.", 
        "id": "sg:person.013235537267.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013235537267.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "International Maize and Wheat Improvement Center", 
          "id": "https://www.grid.ac/institutes/grid.433436.5", 
          "name": [
            "International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600, Mexico, D.F., Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Burgue\u00f1o", 
        "givenName": "Juan", 
        "id": "sg:person.0733536233.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0733536233.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "International Maize and Wheat Improvement Center", 
          "id": "https://www.grid.ac/institutes/grid.433436.5", 
          "name": [
            "International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600, Mexico, D.F., Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mondal", 
        "givenName": "Sushismita", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "International Maize and Wheat Improvement Center", 
          "id": "https://www.grid.ac/institutes/grid.433436.5", 
          "name": [
            "International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600, Mexico, D.F., Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Huerta", 
        "givenName": "Julio", 
        "id": "sg:person.011472453341.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011472453341.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "International Maize and Wheat Improvement Center", 
          "id": "https://www.grid.ac/institutes/grid.433436.5", 
          "name": [
            "International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600, Mexico, D.F., Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Singh", 
        "givenName": "Ravi", 
        "id": "sg:person.01122126436.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01122126436.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "International Maize and Wheat Improvement Center", 
          "id": "https://www.grid.ac/institutes/grid.433436.5", 
          "name": [
            "International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600, Mexico, D.F., Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Autrique", 
        "givenName": "Enrique", 
        "id": "sg:person.01177104246.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01177104246.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "International Maize and Wheat Improvement Center", 
          "id": "https://www.grid.ac/institutes/grid.433436.5", 
          "name": [
            "International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600, Mexico, D.F., Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gonz\u00e1lez-P\u00e9rez", 
        "givenName": "Lorena", 
        "id": "sg:person.014316012575.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014316012575.93"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "International Maize and Wheat Improvement Center", 
          "id": "https://www.grid.ac/institutes/grid.433436.5", 
          "name": [
            "International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600, Mexico, D.F., Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Crossa", 
        "givenName": "Jos\u00e9", 
        "id": "sg:person.01274600533.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274600533.83"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1111/1467-842x.00163", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001877740"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1467-842x.00163", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001877740"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-842x.2010.00570.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004790787"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-842x.2010.00570.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004790787"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/b98886", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005163290", 
          "https://doi.org/10.1007/b98886"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/b98886", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005163290", 
          "https://doi.org/10.1007/b98886"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/b98886", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005163290", 
          "https://doi.org/10.1007/b98886"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(01)41972-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008312528"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(01)41972-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008312528"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13007-016-0154-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012533476", 
          "https://doi.org/10.1186/s13007-016-0154-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13007-016-0154-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012533476", 
          "https://doi.org/10.1186/s13007-016-0154-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bimj.201100219", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020870143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tplants.2013.09.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022724478"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00122-013-2243-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023693068", 
          "https://doi.org/10.1007/s00122-013-2243-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00122-013-2243-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023693068", 
          "https://doi.org/10.1007/s00122-013-2243-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/499023a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024217602", 
          "https://doi.org/10.1038/499023a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1111/j.1601-5223.1922.tb02734.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031953019", 
          "https://doi.org/10.1111/j.1601-5223.1922.tb02734.x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1111/j.1601-5223.1922.tb02734.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031953019", 
          "https://doi.org/10.1111/j.1601-5223.1922.tb02734.x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tplants.2011.09.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032697097"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13007-016-0152-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040969139", 
          "https://doi.org/10.1186/s13007-016-0152-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13007-016-0152-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040969139", 
          "https://doi.org/10.1186/s13007-016-0152-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/g3.114.016188", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044468503"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/g3.114.016188", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044468503"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.pbi.2015.02.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050807422"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.pbi.2015.02.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050807422"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/g3.116.032888", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050869607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/g3.116.032888", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050869607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18637/jss.v051.i03", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068672761"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18637/jss.v051.i04", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068672762"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3835/plantgenome2016.03.0024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071448020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3168/jds.2007-0980", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077799697"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2134/agronj2016.07.0395", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084640427"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3835/plantgenome2016.11.0111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085544396"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2135/cropsci2017.01.0007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090713569"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-12", 
    "datePublishedReg": "2017-12-01", 
    "description": "BACKGROUND: Modern agriculture uses hyperspectral cameras that provide hundreds of reflectance data at discrete narrow bands in many environments. These bands often cover the whole visible light spectrum and part of the infrared and ultraviolet light spectra. With the bands, vegetation indices are constructed for predicting agronomically important traits such as grain yield and biomass. However, since vegetation indices only use some wavelengths (referred to as bands), we propose using all bands simultaneously as predictor variables for the primary trait grain yield; results of several multi-environment maize (Aguate et al. in Crop Sci 57(5):1-8, 2017) and wheat (Montesinos-L\u00f3pez et al. in Plant Methods 13(4):1-23, 2017) breeding trials indicated that using all bands produced better prediction accuracy than vegetation indices. However, until now, these prediction models have not accounted for the effects of genotype\u00a0\u00d7\u00a0environment (G\u00a0\u00d7\u00a0E) and band\u00a0\u00d7\u00a0environment (B\u00a0\u00d7\u00a0E) interactions incorporating genomic or pedigree information.\nRESULTS: In this study, we propose Bayesian functional regression models that take into account all available bands, genomic or pedigree information, the main effects of lines and environments, as well as G\u00a0\u00d7\u00a0E and B\u00a0\u00d7\u00a0E interaction effects. The data set used is comprised of 976 wheat lines evaluated for grain yield in three environments (Drought, Irrigated and Reduced Irrigation). The reflectance data were measured in 250 discrete narrow bands ranging from 392 to 851\u00a0nm (nm). The proposed Bayesian functional regression models were implemented using two types of basis: B-splines and Fourier. Results of the proposed Bayesian functional regression models, including all the wavelengths for predicting grain yield, were compared with results from conventional models with and without bands.\nCONCLUSIONS: We observed that the models with B\u00a0\u00d7\u00a0E interaction terms were the most accurate models, whereas the functional regression models (with B-splines and Fourier basis) and the conventional models performed similarly in terms of prediction accuracy. However, the functional regression models are more parsimonious and computationally more efficient because the number of beta coefficients to be estimated is 21 (number of basis), rather than estimating the 250 regression coefficients for all bands. In this study adding pedigree or genomic information did not increase prediction accuracy.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s13007-017-0212-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1035309", 
        "issn": [
          "1746-4811"
        ], 
        "name": "Plant Methods", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "13"
      }
    ], 
    "name": "Genomic Bayesian functional regression models with interactions for predicting wheat grain yield using hyper-spectral image data", 
    "pagination": "62", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "443aefed9c7cdd307e0d2f57be287d34fa6819fd92d9303c89c165f2ff034a24"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28769997"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101245798"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13007-017-0212-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1090911157"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13007-017-0212-4", 
      "https://app.dimensions.ai/details/publication/pub.1090911157"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:21", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87078_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs13007-017-0212-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13007-017-0212-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13007-017-0212-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13007-017-0212-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13007-017-0212-4'


 

This table displays all metadata directly associated to this object as RDF triples.

219 TRIPLES      21 PREDICATES      51 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13007-017-0212-4 schema:about anzsrc-for:07
2 anzsrc-for:0703
3 schema:author Nb4d1650ad5b44650804353af582a58a7
4 schema:citation sg:pub.10.1007/b98886
5 sg:pub.10.1007/s00122-013-2243-1
6 sg:pub.10.1038/499023a
7 sg:pub.10.1111/j.1601-5223.1922.tb02734.x
8 sg:pub.10.1186/s13007-016-0152-4
9 sg:pub.10.1186/s13007-016-0154-2
10 https://doi.org/10.1002/bimj.201100219
11 https://doi.org/10.1016/j.pbi.2015.02.006
12 https://doi.org/10.1016/j.tplants.2011.09.005
13 https://doi.org/10.1016/j.tplants.2013.09.008
14 https://doi.org/10.1016/s0140-6736(01)41972-6
15 https://doi.org/10.1111/1467-842x.00163
16 https://doi.org/10.1111/j.1467-842x.2010.00570.x
17 https://doi.org/10.1534/g3.114.016188
18 https://doi.org/10.1534/g3.116.032888
19 https://doi.org/10.18637/jss.v051.i03
20 https://doi.org/10.18637/jss.v051.i04
21 https://doi.org/10.2134/agronj2016.07.0395
22 https://doi.org/10.2135/cropsci2017.01.0007
23 https://doi.org/10.3168/jds.2007-0980
24 https://doi.org/10.3835/plantgenome2016.03.0024
25 https://doi.org/10.3835/plantgenome2016.11.0111
26 schema:datePublished 2017-12
27 schema:datePublishedReg 2017-12-01
28 schema:description BACKGROUND: Modern agriculture uses hyperspectral cameras that provide hundreds of reflectance data at discrete narrow bands in many environments. These bands often cover the whole visible light spectrum and part of the infrared and ultraviolet light spectra. With the bands, vegetation indices are constructed for predicting agronomically important traits such as grain yield and biomass. However, since vegetation indices only use some wavelengths (referred to as bands), we propose using all bands simultaneously as predictor variables for the primary trait grain yield; results of several multi-environment maize (Aguate et al. in Crop Sci 57(5):1-8, 2017) and wheat (Montesinos-López et al. in Plant Methods 13(4):1-23, 2017) breeding trials indicated that using all bands produced better prediction accuracy than vegetation indices. However, until now, these prediction models have not accounted for the effects of genotype × environment (G × E) and band × environment (B × E) interactions incorporating genomic or pedigree information. RESULTS: In this study, we propose Bayesian functional regression models that take into account all available bands, genomic or pedigree information, the main effects of lines and environments, as well as G × E and B × E interaction effects. The data set used is comprised of 976 wheat lines evaluated for grain yield in three environments (Drought, Irrigated and Reduced Irrigation). The reflectance data were measured in 250 discrete narrow bands ranging from 392 to 851 nm (nm). The proposed Bayesian functional regression models were implemented using two types of basis: B-splines and Fourier. Results of the proposed Bayesian functional regression models, including all the wavelengths for predicting grain yield, were compared with results from conventional models with and without bands. CONCLUSIONS: We observed that the models with B × E interaction terms were the most accurate models, whereas the functional regression models (with B-splines and Fourier basis) and the conventional models performed similarly in terms of prediction accuracy. However, the functional regression models are more parsimonious and computationally more efficient because the number of beta coefficients to be estimated is 21 (number of basis), rather than estimating the 250 regression coefficients for all bands. In this study adding pedigree or genomic information did not increase prediction accuracy.
29 schema:genre research_article
30 schema:inLanguage en
31 schema:isAccessibleForFree true
32 schema:isPartOf N92634720942f45c89fdc213138c4b64d
33 Na13943d916cc4a0c8526bc2791afacdf
34 sg:journal.1035309
35 schema:name Genomic Bayesian functional regression models with interactions for predicting wheat grain yield using hyper-spectral image data
36 schema:pagination 62
37 schema:productId N0580c95cfc1b47159aaf7efd2964f8e9
38 Na3b96dc71b274127b496766f863e9eb6
39 Ne3fa5da9a2a5448fb31bcf888ad4814c
40 Nf2bf30a7f9174b85922f90d45ed8c59a
41 Nf45e29ac980b40b59911fc3a5cdaa440
42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090911157
43 https://doi.org/10.1186/s13007-017-0212-4
44 schema:sdDatePublished 2019-04-11T12:21
45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
46 schema:sdPublisher N8695055f06ba45ffaca86bec3aacb22e
47 schema:url https://link.springer.com/10.1186%2Fs13007-017-0212-4
48 sgo:license sg:explorer/license/
49 sgo:sdDataset articles
50 rdf:type schema:ScholarlyArticle
51 N0074e02f9c58430b8723604cfab13993 rdf:first sg:person.013235537267.05
52 rdf:rest Ndf5fde323d8646ae877b36af320b077f
53 N0580c95cfc1b47159aaf7efd2964f8e9 schema:name readcube_id
54 schema:value 443aefed9c7cdd307e0d2f57be287d34fa6819fd92d9303c89c165f2ff034a24
55 rdf:type schema:PropertyValue
56 N26603d64409141718807f44ab16452a6 rdf:first sg:person.01122126436.15
57 rdf:rest Nc09e3796e5674df7aad4a76a64ec1e23
58 N45824e3344b34f81a6a3d6cba0b974f5 rdf:first sg:person.0662160356.78
59 rdf:rest N0074e02f9c58430b8723604cfab13993
60 N7a04a9f0d1374afb8cc351662fb00eff schema:affiliation https://www.grid.ac/institutes/grid.433436.5
61 schema:familyName Mondal
62 schema:givenName Sushismita
63 rdf:type schema:Person
64 N7c4375a9a55c491a8bc6deb1cdc5d1e8 rdf:first sg:person.01064375741.28
65 rdf:rest N45824e3344b34f81a6a3d6cba0b974f5
66 N8695055f06ba45ffaca86bec3aacb22e schema:name Springer Nature - SN SciGraph project
67 rdf:type schema:Organization
68 N92634720942f45c89fdc213138c4b64d schema:issueNumber 1
69 rdf:type schema:PublicationIssue
70 N95f7f19b8bb44dd89808b172e9e7d24b rdf:first sg:person.014316012575.93
71 rdf:rest Nf74c0fa721a84475aac3a7b612968e40
72 N967a5810fa394d00a9cea337f20a9307 rdf:first sg:person.011472453341.10
73 rdf:rest N26603d64409141718807f44ab16452a6
74 Na13943d916cc4a0c8526bc2791afacdf schema:volumeNumber 13
75 rdf:type schema:PublicationVolume
76 Na3b96dc71b274127b496766f863e9eb6 schema:name doi
77 schema:value 10.1186/s13007-017-0212-4
78 rdf:type schema:PropertyValue
79 Nb4d1650ad5b44650804353af582a58a7 rdf:first sg:person.01200624341.14
80 rdf:rest N7c4375a9a55c491a8bc6deb1cdc5d1e8
81 Nc09e3796e5674df7aad4a76a64ec1e23 rdf:first sg:person.01177104246.71
82 rdf:rest N95f7f19b8bb44dd89808b172e9e7d24b
83 Nc6c94d950a1940a592f61f9614ccb425 rdf:first N7a04a9f0d1374afb8cc351662fb00eff
84 rdf:rest N967a5810fa394d00a9cea337f20a9307
85 Ndf5fde323d8646ae877b36af320b077f rdf:first sg:person.0733536233.17
86 rdf:rest Nc6c94d950a1940a592f61f9614ccb425
87 Ne3fa5da9a2a5448fb31bcf888ad4814c schema:name nlm_unique_id
88 schema:value 101245798
89 rdf:type schema:PropertyValue
90 Nf2bf30a7f9174b85922f90d45ed8c59a schema:name pubmed_id
91 schema:value 28769997
92 rdf:type schema:PropertyValue
93 Nf45e29ac980b40b59911fc3a5cdaa440 schema:name dimensions_id
94 schema:value pub.1090911157
95 rdf:type schema:PropertyValue
96 Nf74c0fa721a84475aac3a7b612968e40 rdf:first sg:person.01274600533.83
97 rdf:rest rdf:nil
98 anzsrc-for:07 schema:inDefinedTermSet anzsrc-for:
99 schema:name Agricultural and Veterinary Sciences
100 rdf:type schema:DefinedTerm
101 anzsrc-for:0703 schema:inDefinedTermSet anzsrc-for:
102 schema:name Crop and Pasture Production
103 rdf:type schema:DefinedTerm
104 sg:journal.1035309 schema:issn 1746-4811
105 schema:name Plant Methods
106 rdf:type schema:Periodical
107 sg:person.01064375741.28 schema:affiliation https://www.grid.ac/institutes/grid.412887.0
108 schema:familyName Montesinos-López
109 schema:givenName Osval A.
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01064375741.28
111 rdf:type schema:Person
112 sg:person.01122126436.15 schema:affiliation https://www.grid.ac/institutes/grid.433436.5
113 schema:familyName Singh
114 schema:givenName Ravi
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01122126436.15
116 rdf:type schema:Person
117 sg:person.011472453341.10 schema:affiliation https://www.grid.ac/institutes/grid.433436.5
118 schema:familyName Huerta
119 schema:givenName Julio
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011472453341.10
121 rdf:type schema:Person
122 sg:person.01177104246.71 schema:affiliation https://www.grid.ac/institutes/grid.433436.5
123 schema:familyName Autrique
124 schema:givenName Enrique
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01177104246.71
126 rdf:type schema:Person
127 sg:person.01200624341.14 schema:affiliation https://www.grid.ac/institutes/grid.412890.6
128 schema:familyName Montesinos-López
129 schema:givenName Abelardo
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01200624341.14
131 rdf:type schema:Person
132 sg:person.01274600533.83 schema:affiliation https://www.grid.ac/institutes/grid.433436.5
133 schema:familyName Crossa
134 schema:givenName José
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274600533.83
136 rdf:type schema:Person
137 sg:person.013235537267.05 schema:affiliation https://www.grid.ac/institutes/grid.412887.0
138 schema:familyName Mata-López
139 schema:givenName Walter A.
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013235537267.05
141 rdf:type schema:Person
142 sg:person.014316012575.93 schema:affiliation https://www.grid.ac/institutes/grid.433436.5
143 schema:familyName González-Pérez
144 schema:givenName Lorena
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014316012575.93
146 rdf:type schema:Person
147 sg:person.0662160356.78 schema:affiliation https://www.grid.ac/institutes/grid.441185.d
148 schema:familyName Cuevas
149 schema:givenName Jaime
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0662160356.78
151 rdf:type schema:Person
152 sg:person.0733536233.17 schema:affiliation https://www.grid.ac/institutes/grid.433436.5
153 schema:familyName Burgueño
154 schema:givenName Juan
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0733536233.17
156 rdf:type schema:Person
157 sg:pub.10.1007/b98886 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005163290
158 https://doi.org/10.1007/b98886
159 rdf:type schema:CreativeWork
160 sg:pub.10.1007/s00122-013-2243-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023693068
161 https://doi.org/10.1007/s00122-013-2243-1
162 rdf:type schema:CreativeWork
163 sg:pub.10.1038/499023a schema:sameAs https://app.dimensions.ai/details/publication/pub.1024217602
164 https://doi.org/10.1038/499023a
165 rdf:type schema:CreativeWork
166 sg:pub.10.1111/j.1601-5223.1922.tb02734.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1031953019
167 https://doi.org/10.1111/j.1601-5223.1922.tb02734.x
168 rdf:type schema:CreativeWork
169 sg:pub.10.1186/s13007-016-0152-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040969139
170 https://doi.org/10.1186/s13007-016-0152-4
171 rdf:type schema:CreativeWork
172 sg:pub.10.1186/s13007-016-0154-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012533476
173 https://doi.org/10.1186/s13007-016-0154-2
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1002/bimj.201100219 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020870143
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/j.pbi.2015.02.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050807422
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/j.tplants.2011.09.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032697097
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/j.tplants.2013.09.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022724478
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/s0140-6736(01)41972-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008312528
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1111/1467-842x.00163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001877740
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1111/j.1467-842x.2010.00570.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1004790787
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1534/g3.114.016188 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044468503
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1534/g3.116.032888 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050869607
192 rdf:type schema:CreativeWork
193 https://doi.org/10.18637/jss.v051.i03 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068672761
194 rdf:type schema:CreativeWork
195 https://doi.org/10.18637/jss.v051.i04 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068672762
196 rdf:type schema:CreativeWork
197 https://doi.org/10.2134/agronj2016.07.0395 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084640427
198 rdf:type schema:CreativeWork
199 https://doi.org/10.2135/cropsci2017.01.0007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090713569
200 rdf:type schema:CreativeWork
201 https://doi.org/10.3168/jds.2007-0980 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077799697
202 rdf:type schema:CreativeWork
203 https://doi.org/10.3835/plantgenome2016.03.0024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071448020
204 rdf:type schema:CreativeWork
205 https://doi.org/10.3835/plantgenome2016.11.0111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085544396
206 rdf:type schema:CreativeWork
207 https://www.grid.ac/institutes/grid.412887.0 schema:alternateName University of Colima
208 schema:name Facultad Ingeniería Mecánica y Eléctrica, Universidad de Colima, Colima, Mexico
209 Facultad de Telemática, Universidad de Colima, Colima, Mexico
210 rdf:type schema:Organization
211 https://www.grid.ac/institutes/grid.412890.6 schema:alternateName University of Guadalajara
212 schema:name Departamento de Matemáticas, Centro Universitario de Ciencias Exactas e Ingenierías (CUCEI), Universidad de Guadalajara, 44430, Guadalajara, Jalisco, Mexico
213 rdf:type schema:Organization
214 https://www.grid.ac/institutes/grid.433436.5 schema:alternateName International Maize and Wheat Improvement Center
215 schema:name International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600, Mexico, D.F., Mexico
216 rdf:type schema:Organization
217 https://www.grid.ac/institutes/grid.441185.d schema:alternateName University of Quintana Roo
218 schema:name Universidad de Quintana Roo, Chetumal, Quintana Roo, Mexico
219 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...