Predicting grain yield using canopy hyperspectral reflectance in wheat breeding data View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-12

AUTHORS

Osval A. Montesinos-López, Abelardo Montesinos-López, José Crossa, Gustavo de los Campos, Gregorio Alvarado, Mondal Suchismita, Jessica Rutkoski, Lorena González-Pérez, Juan Burgueño

ABSTRACT

BACKGROUND: Modern agriculture uses hyperspectral cameras to obtain hundreds of reflectance data measured at discrete narrow bands to cover the whole visible light spectrum and part of the infrared and ultraviolet light spectra, depending on the camera. This information is used to construct vegetation indices (VI) (e.g., green normalized difference vegetation index or GNDVI, simple ratio or SRa, etc.) which are used for the prediction of primary traits (e.g., biomass). However, these indices only use some bands and are cultivar-specific; therefore they lose considerable information and are not robust for all cultivars. RESULTS: This study proposes models that use all available bands as predictors to increase prediction accuracy; we compared these approaches with eight conventional vegetation indexes (VIs) constructed using only some bands. The data set we used comes from CIMMYT's global wheat program and comprises 1170 genotypes evaluated for grain yield (ton/ha) in five environments (Drought, Irrigated, EarlyHeat, Melgas and Reduced Irrigated); the reflectance data were measured in 250 discrete narrow bands ranging between 392 and 851 nm. The proposed models for the simultaneous analysis of all the bands were ordinal least square (OLS), Bayes B, principal components with Bayes B, functional B-spline, functional Fourier and functional partial least square. The results of these models were compared with the OLS performed using as predictors each of the eight VIs individually and combined. CONCLUSIONS: We found that using all bands simultaneously increased prediction accuracy more than using VI alone. The Splines and Fourier models had the best prediction accuracy for each of the nine time-points under study. Combining image data collected at different time-points led to a small increase in prediction accuracy relative to models that use data from a single time-point. Also, using bands with heritabilities larger than 0.5 only in Drought as predictor variables showed improvements in prediction accuracy. More... »

PAGES

4

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13007-016-0154-2

DOI

http://dx.doi.org/10.1186/s13007-016-0154-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1012533476

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28053649


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Colima", 
          "id": "https://www.grid.ac/institutes/grid.412887.0", 
          "name": [
            "International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600, Mexico City, Mexico", 
            "Facultad de Telem\u00e1tica, Universidad de Colima, 28040, Colima, Colima, Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Montesinos-L\u00f3pez", 
        "givenName": "Osval A.", 
        "id": "sg:person.01064375741.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01064375741.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mathematics Research Center", 
          "id": "https://www.grid.ac/institutes/grid.454267.6", 
          "name": [
            "Departamento de Estad\u00edstica, Centro de Investigaci\u00f3n en Matem\u00e1ticas (CIMAT), 36240, Guanajuato, Guanajuato, Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Montesinos-L\u00f3pez", 
        "givenName": "Abelardo", 
        "id": "sg:person.01200624341.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01200624341.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "International Maize and Wheat Improvement Center", 
          "id": "https://www.grid.ac/institutes/grid.433436.5", 
          "name": [
            "International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600, Mexico City, Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Crossa", 
        "givenName": "Jos\u00e9", 
        "id": "sg:person.01274600533.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274600533.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Michigan State University", 
          "id": "https://www.grid.ac/institutes/grid.17088.36", 
          "name": [
            "Epidemiology and Biostatistics Department, Michigan State University, 909 Fee Road, 48824, East Lansing, MI, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "de los Campos", 
        "givenName": "Gustavo", 
        "id": "sg:person.01016147301.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01016147301.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "International Maize and Wheat Improvement Center", 
          "id": "https://www.grid.ac/institutes/grid.433436.5", 
          "name": [
            "International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600, Mexico City, Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Alvarado", 
        "givenName": "Gregorio", 
        "id": "sg:person.01366501504.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01366501504.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "International Maize and Wheat Improvement Center", 
          "id": "https://www.grid.ac/institutes/grid.433436.5", 
          "name": [
            "International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600, Mexico City, Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Suchismita", 
        "givenName": "Mondal", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "International Rice Research Institute", 
          "id": "https://www.grid.ac/institutes/grid.419387.0", 
          "name": [
            "International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600, Mexico City, Mexico", 
            "International Rice Research Institute, Los Ba\u00f1os Research Center, Los Ba\u00f1os, Laguna, Philippines"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rutkoski", 
        "givenName": "Jessica", 
        "id": "sg:person.01011016542.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01011016542.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "International Maize and Wheat Improvement Center", 
          "id": "https://www.grid.ac/institutes/grid.433436.5", 
          "name": [
            "International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600, Mexico City, Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gonz\u00e1lez-P\u00e9rez", 
        "givenName": "Lorena", 
        "id": "sg:person.014316012575.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014316012575.93"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "International Maize and Wheat Improvement Center", 
          "id": "https://www.grid.ac/institutes/grid.433436.5", 
          "name": [
            "International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600, Mexico City, Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Burgue\u00f1o", 
        "givenName": "Juan", 
        "id": "sg:person.0733536233.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0733536233.17"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0034-4257(01)00342-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000671354"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/014311699212524", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001347134"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/s141120078", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002490891"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/b98886", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005163290", 
          "https://doi.org/10.1007/b98886"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/b98886", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005163290", 
          "https://doi.org/10.1007/b98886"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/b98886", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005163290", 
          "https://doi.org/10.1007/b98886"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rsta.1983.0039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006686648"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rse.2011.08.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010200919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0034-4257(79)90013-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018726315"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0034-4257(79)90013-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018726315"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.14358/pers.73.10.1141", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019499721"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0034-4257(02)00151-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020184200"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0034-4257(02)00151-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020184200"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/rs70202109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021763845"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tplants.2013.09.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022724478"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/02757259309532171", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030853256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01431160110115799", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035499873"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/agronomy4020191", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036535772"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01431160110107653", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038418623"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0034-4257(89)90076-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038438290"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0034-4257(89)90076-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038438290"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3168/jds.2014-9143", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046975305"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3168/jds.2014-9143", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046975305"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3168/jds.2014-9143", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046975305"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3168/jds.2014-9143", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046975305"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tplants.2015.10.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047877032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0034-4257(01)00332-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047914242"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/g3.116.032888", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050869607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/g3.116.032888", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050869607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0034-4257(03)00094-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051831671"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0034-4257(03)00094-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051831671"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01431169308904332", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052616424"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/36.377948", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061161247"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18637/jss.v051.i04", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068672762"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2135/cropsci2010.07.0397", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069031282"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-12", 
    "datePublishedReg": "2017-12-01", 
    "description": "BACKGROUND: Modern agriculture uses hyperspectral cameras to obtain hundreds of reflectance data measured at discrete narrow bands to cover the whole visible light spectrum and part of the infrared and ultraviolet light spectra, depending on the camera. This information is used to construct vegetation indices (VI) (e.g., green normalized difference vegetation index or GNDVI, simple ratio or SRa, etc.) which are used for the prediction of primary traits (e.g., biomass). However, these indices only use some bands and are cultivar-specific; therefore they lose considerable information and are not robust for all cultivars.\nRESULTS: This study proposes models that use all available bands as predictors to increase prediction accuracy; we compared these approaches with eight conventional vegetation indexes (VIs) constructed using only some bands. The data set we used comes from CIMMYT's global wheat program and comprises 1170 genotypes evaluated for grain yield (ton/ha) in five environments (Drought, Irrigated, EarlyHeat, Melgas and Reduced Irrigated); the reflectance data were measured in 250 discrete narrow bands ranging between 392 and 851\u00a0nm. The proposed models for the simultaneous analysis of all the bands were ordinal least square (OLS), Bayes B, principal components with Bayes B, functional B-spline, functional Fourier and functional partial least square. The results of these models were compared with the OLS performed using as predictors each of the eight VIs individually and combined.\nCONCLUSIONS: We found that using all bands simultaneously increased prediction accuracy more than using VI alone. The Splines and Fourier models had the best prediction accuracy for each of the nine time-points under study. Combining image data collected at different time-points led to a small increase in prediction accuracy relative to models that use data from a single time-point. Also, using bands with heritabilities larger than 0.5 only in Drought as predictor variables showed improvements in prediction accuracy.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s13007-016-0154-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1035309", 
        "issn": [
          "1746-4811"
        ], 
        "name": "Plant Methods", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "13"
      }
    ], 
    "name": "Predicting grain yield using canopy hyperspectral reflectance in wheat breeding data", 
    "pagination": "4", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3bb6650925ed06beb98299dff1f0a3c277adfadc692509990a4f8e69fc0025e6"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28053649"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101245798"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13007-016-0154-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1012533476"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13007-016-0154-2", 
      "https://app.dimensions.ai/details/publication/pub.1012533476"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:50", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89786_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs13007-016-0154-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13007-016-0154-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13007-016-0154-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13007-016-0154-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13007-016-0154-2'


 

This table displays all metadata directly associated to this object as RDF triples.

213 TRIPLES      21 PREDICATES      54 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13007-016-0154-2 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N21de644bf33241258136623a3eb633be
4 schema:citation sg:pub.10.1007/b98886
5 https://doi.org/10.1016/0034-4257(79)90013-0
6 https://doi.org/10.1016/0034-4257(89)90076-x
7 https://doi.org/10.1016/j.rse.2011.08.010
8 https://doi.org/10.1016/j.tplants.2013.09.008
9 https://doi.org/10.1016/j.tplants.2015.10.015
10 https://doi.org/10.1016/s0034-4257(01)00332-7
11 https://doi.org/10.1016/s0034-4257(01)00342-x
12 https://doi.org/10.1016/s0034-4257(02)00151-7
13 https://doi.org/10.1016/s0034-4257(03)00094-4
14 https://doi.org/10.1080/01431160110107653
15 https://doi.org/10.1080/01431160110115799
16 https://doi.org/10.1080/01431169308904332
17 https://doi.org/10.1080/014311699212524
18 https://doi.org/10.1080/02757259309532171
19 https://doi.org/10.1098/rsta.1983.0039
20 https://doi.org/10.1109/36.377948
21 https://doi.org/10.14358/pers.73.10.1141
22 https://doi.org/10.1534/g3.116.032888
23 https://doi.org/10.18637/jss.v051.i04
24 https://doi.org/10.2135/cropsci2010.07.0397
25 https://doi.org/10.3168/jds.2014-9143
26 https://doi.org/10.3390/agronomy4020191
27 https://doi.org/10.3390/rs70202109
28 https://doi.org/10.3390/s141120078
29 schema:datePublished 2017-12
30 schema:datePublishedReg 2017-12-01
31 schema:description BACKGROUND: Modern agriculture uses hyperspectral cameras to obtain hundreds of reflectance data measured at discrete narrow bands to cover the whole visible light spectrum and part of the infrared and ultraviolet light spectra, depending on the camera. This information is used to construct vegetation indices (VI) (e.g., green normalized difference vegetation index or GNDVI, simple ratio or SRa, etc.) which are used for the prediction of primary traits (e.g., biomass). However, these indices only use some bands and are cultivar-specific; therefore they lose considerable information and are not robust for all cultivars. RESULTS: This study proposes models that use all available bands as predictors to increase prediction accuracy; we compared these approaches with eight conventional vegetation indexes (VIs) constructed using only some bands. The data set we used comes from CIMMYT's global wheat program and comprises 1170 genotypes evaluated for grain yield (ton/ha) in five environments (Drought, Irrigated, EarlyHeat, Melgas and Reduced Irrigated); the reflectance data were measured in 250 discrete narrow bands ranging between 392 and 851 nm. The proposed models for the simultaneous analysis of all the bands were ordinal least square (OLS), Bayes B, principal components with Bayes B, functional B-spline, functional Fourier and functional partial least square. The results of these models were compared with the OLS performed using as predictors each of the eight VIs individually and combined. CONCLUSIONS: We found that using all bands simultaneously increased prediction accuracy more than using VI alone. The Splines and Fourier models had the best prediction accuracy for each of the nine time-points under study. Combining image data collected at different time-points led to a small increase in prediction accuracy relative to models that use data from a single time-point. Also, using bands with heritabilities larger than 0.5 only in Drought as predictor variables showed improvements in prediction accuracy.
32 schema:genre research_article
33 schema:inLanguage en
34 schema:isAccessibleForFree true
35 schema:isPartOf N3a238b7f6d8d4389b9063853852453ad
36 N90660a0929524c2dbfafbce684b69570
37 sg:journal.1035309
38 schema:name Predicting grain yield using canopy hyperspectral reflectance in wheat breeding data
39 schema:pagination 4
40 schema:productId N21b869b556de478a9a5c7348ff8f7a95
41 N3b01e3eaf4624c358ecc8090530ee189
42 N6c9a1cc9f15b4693887c0bf0fe5189ba
43 N8b91053179ea44d4ad82a9e759fbe153
44 Nf7e4feacc4ef4045995b95e251328aaa
45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012533476
46 https://doi.org/10.1186/s13007-016-0154-2
47 schema:sdDatePublished 2019-04-11T09:50
48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
49 schema:sdPublisher N9db08c4cb317473f9ef278e9fa298282
50 schema:url https://link.springer.com/10.1186%2Fs13007-016-0154-2
51 sgo:license sg:explorer/license/
52 sgo:sdDataset articles
53 rdf:type schema:ScholarlyArticle
54 N21b869b556de478a9a5c7348ff8f7a95 schema:name dimensions_id
55 schema:value pub.1012533476
56 rdf:type schema:PropertyValue
57 N21de644bf33241258136623a3eb633be rdf:first sg:person.01064375741.28
58 rdf:rest N6a3733c2898b4f4aa918f298729395d6
59 N3a238b7f6d8d4389b9063853852453ad schema:issueNumber 1
60 rdf:type schema:PublicationIssue
61 N3b01e3eaf4624c358ecc8090530ee189 schema:name readcube_id
62 schema:value 3bb6650925ed06beb98299dff1f0a3c277adfadc692509990a4f8e69fc0025e6
63 rdf:type schema:PropertyValue
64 N5a549b7482c24926a20d548d24e5e42d rdf:first Ndc3e465640774b89a3d9697d302f2e6a
65 rdf:rest Nd97e288713144c239e4254bc1b12d697
66 N5e8be49805754fb892f53e8ac8b588ef rdf:first sg:person.01016147301.80
67 rdf:rest Nd4bed029ac3a41109a434887c71c21ba
68 N6a3733c2898b4f4aa918f298729395d6 rdf:first sg:person.01200624341.14
69 rdf:rest Nf7c80b764ecb4b02ab7c478578b2b204
70 N6c9a1cc9f15b4693887c0bf0fe5189ba schema:name doi
71 schema:value 10.1186/s13007-016-0154-2
72 rdf:type schema:PropertyValue
73 N87ce8f63dcbc4a8da08008aabffd3108 rdf:first sg:person.0733536233.17
74 rdf:rest rdf:nil
75 N8b91053179ea44d4ad82a9e759fbe153 schema:name nlm_unique_id
76 schema:value 101245798
77 rdf:type schema:PropertyValue
78 N90660a0929524c2dbfafbce684b69570 schema:volumeNumber 13
79 rdf:type schema:PublicationVolume
80 N9db08c4cb317473f9ef278e9fa298282 schema:name Springer Nature - SN SciGraph project
81 rdf:type schema:Organization
82 Nba232d10004b4eeca706fffe416ffed2 rdf:first sg:person.014316012575.93
83 rdf:rest N87ce8f63dcbc4a8da08008aabffd3108
84 Nd4bed029ac3a41109a434887c71c21ba rdf:first sg:person.01366501504.53
85 rdf:rest N5a549b7482c24926a20d548d24e5e42d
86 Nd97e288713144c239e4254bc1b12d697 rdf:first sg:person.01011016542.04
87 rdf:rest Nba232d10004b4eeca706fffe416ffed2
88 Ndc3e465640774b89a3d9697d302f2e6a schema:affiliation https://www.grid.ac/institutes/grid.433436.5
89 schema:familyName Suchismita
90 schema:givenName Mondal
91 rdf:type schema:Person
92 Nf7c80b764ecb4b02ab7c478578b2b204 rdf:first sg:person.01274600533.83
93 rdf:rest N5e8be49805754fb892f53e8ac8b588ef
94 Nf7e4feacc4ef4045995b95e251328aaa schema:name pubmed_id
95 schema:value 28053649
96 rdf:type schema:PropertyValue
97 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
98 schema:name Information and Computing Sciences
99 rdf:type schema:DefinedTerm
100 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
101 schema:name Artificial Intelligence and Image Processing
102 rdf:type schema:DefinedTerm
103 sg:journal.1035309 schema:issn 1746-4811
104 schema:name Plant Methods
105 rdf:type schema:Periodical
106 sg:person.01011016542.04 schema:affiliation https://www.grid.ac/institutes/grid.419387.0
107 schema:familyName Rutkoski
108 schema:givenName Jessica
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01011016542.04
110 rdf:type schema:Person
111 sg:person.01016147301.80 schema:affiliation https://www.grid.ac/institutes/grid.17088.36
112 schema:familyName de los Campos
113 schema:givenName Gustavo
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01016147301.80
115 rdf:type schema:Person
116 sg:person.01064375741.28 schema:affiliation https://www.grid.ac/institutes/grid.412887.0
117 schema:familyName Montesinos-López
118 schema:givenName Osval A.
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01064375741.28
120 rdf:type schema:Person
121 sg:person.01200624341.14 schema:affiliation https://www.grid.ac/institutes/grid.454267.6
122 schema:familyName Montesinos-López
123 schema:givenName Abelardo
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01200624341.14
125 rdf:type schema:Person
126 sg:person.01274600533.83 schema:affiliation https://www.grid.ac/institutes/grid.433436.5
127 schema:familyName Crossa
128 schema:givenName José
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274600533.83
130 rdf:type schema:Person
131 sg:person.01366501504.53 schema:affiliation https://www.grid.ac/institutes/grid.433436.5
132 schema:familyName Alvarado
133 schema:givenName Gregorio
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01366501504.53
135 rdf:type schema:Person
136 sg:person.014316012575.93 schema:affiliation https://www.grid.ac/institutes/grid.433436.5
137 schema:familyName González-Pérez
138 schema:givenName Lorena
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014316012575.93
140 rdf:type schema:Person
141 sg:person.0733536233.17 schema:affiliation https://www.grid.ac/institutes/grid.433436.5
142 schema:familyName Burgueño
143 schema:givenName Juan
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0733536233.17
145 rdf:type schema:Person
146 sg:pub.10.1007/b98886 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005163290
147 https://doi.org/10.1007/b98886
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/0034-4257(79)90013-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018726315
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/0034-4257(89)90076-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1038438290
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.rse.2011.08.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010200919
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.tplants.2013.09.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022724478
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.tplants.2015.10.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047877032
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/s0034-4257(01)00332-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047914242
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/s0034-4257(01)00342-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1000671354
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/s0034-4257(02)00151-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020184200
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/s0034-4257(03)00094-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051831671
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1080/01431160110107653 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038418623
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1080/01431160110115799 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035499873
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1080/01431169308904332 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052616424
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1080/014311699212524 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001347134
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1080/02757259309532171 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030853256
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1098/rsta.1983.0039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006686648
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1109/36.377948 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061161247
180 rdf:type schema:CreativeWork
181 https://doi.org/10.14358/pers.73.10.1141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019499721
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1534/g3.116.032888 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050869607
184 rdf:type schema:CreativeWork
185 https://doi.org/10.18637/jss.v051.i04 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068672762
186 rdf:type schema:CreativeWork
187 https://doi.org/10.2135/cropsci2010.07.0397 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069031282
188 rdf:type schema:CreativeWork
189 https://doi.org/10.3168/jds.2014-9143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046975305
190 rdf:type schema:CreativeWork
191 https://doi.org/10.3390/agronomy4020191 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036535772
192 rdf:type schema:CreativeWork
193 https://doi.org/10.3390/rs70202109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021763845
194 rdf:type schema:CreativeWork
195 https://doi.org/10.3390/s141120078 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002490891
196 rdf:type schema:CreativeWork
197 https://www.grid.ac/institutes/grid.17088.36 schema:alternateName Michigan State University
198 schema:name Epidemiology and Biostatistics Department, Michigan State University, 909 Fee Road, 48824, East Lansing, MI, USA
199 rdf:type schema:Organization
200 https://www.grid.ac/institutes/grid.412887.0 schema:alternateName University of Colima
201 schema:name Facultad de Telemática, Universidad de Colima, 28040, Colima, Colima, Mexico
202 International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600, Mexico City, Mexico
203 rdf:type schema:Organization
204 https://www.grid.ac/institutes/grid.419387.0 schema:alternateName International Rice Research Institute
205 schema:name International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600, Mexico City, Mexico
206 International Rice Research Institute, Los Baños Research Center, Los Baños, Laguna, Philippines
207 rdf:type schema:Organization
208 https://www.grid.ac/institutes/grid.433436.5 schema:alternateName International Maize and Wheat Improvement Center
209 schema:name International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600, Mexico City, Mexico
210 rdf:type schema:Organization
211 https://www.grid.ac/institutes/grid.454267.6 schema:alternateName Mathematics Research Center
212 schema:name Departamento de Estadística, Centro de Investigación en Matemáticas (CIMAT), 36240, Guanajuato, Guanajuato, Mexico
213 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...