Dietary iron interacts with genetic background to influence glucose homeostasis View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Mario A. Miranda, Celine L. St Pierre, Juan F. Macias-Velasco, Huyen Anh Nguyen, Heather Schmidt, Lucian T. Agnello, Jessica P. Wayhart, Heather A. Lawson

ABSTRACT

Background: Iron is a critical component of metabolic homeostasis, but consumption of dietary iron has increased dramatically in the last 30 years, corresponding with the rise of metabolic disease. While the link between iron metabolism and metabolic health is well established, the extent to which dietary iron contributes to metabolic disease risk is unexplored. Further, it is unknown how dietary iron interacts with genetic background to modify metabolic disease risk. Methods: LG/J and SM/J inbred mouse strains were used to investigate the relationship between genetic background and metabolic function during an 8-week high iron diet. Glucose tolerance and adiposity were assessed, colorimetric assays determined levels of circulating metabolic markers, and hepatic iron content was measured. RNA sequencing was performed on white adipose tissue to identify genes differentially expressed across strain, diet, and strain X diet cohorts. Hepatic Hamp expression and circulating hepcidin was measured, and small nucleotide variants were identified in the Hamp genic region. Results: LG/J mice experienced elevated fasting glucose and glucose intolerance during the high iron diet, corresponding with increased hepatic iron load, increased circulating ferritin, and signs of liver injury. Adipose function was also altered in high iron-fed LG/J mice, including decreased adiposity and leptin production and differential expression of genes involved in iron and glucose homeostasis. LG/J mice failed to upregulate hepatic Hamp expression during the high iron diet, resulting in low circulating hepcidin levels compared to SM/J mice. Conclusions: This study highlights the importance of accounting for genetic variation when assessing the effects of diet on metabolic health, and suggests dietary iron's impact on liver and adipose tissue is an underappreciated component of metabolic disease risk. More... »

PAGES

13

References to SciGraph publications

  • 2011-04. The importance of context to the genetic architecture of diabetes-related traits is revealed in a genome-wide scan of a LG/J × SM/J murine model in MAMMALIAN GENOME
  • 2009-01. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources in NATURE PROTOCOLS
  • 2018-07. Contribution of three-dimensional architecture and tumor-associated fibroblasts to hepcidin regulation in breast cancer in ONCOGENE
  • 2006-11. Increased insulin secretory capacity but decreased insulin sensitivity after correction of iron overload by phlebotomy in hereditary haemochromatosis in DIABETOLOGIA
  • 2015-12. Using whole-genome sequences of the LG/J and SM/J inbred mouse strains to prioritize quantitative trait genes and nucleotides in BMC GENOMICS
  • 2014-09. Fine-tuned iron availability is essential to achieve optimal adipocyte differentiation and mitochondrial biogenesis in DIABETOLOGIA
  • 2013-12. Excess iron modulates endoplasmic reticulum stress-associated pathways in a mouse model of alcohol and high-fat diet-induced liver injury in LABORATORY INVESTIGATION
  • 2006-07. High prevalence of abnormal glucose homeostasis secondary to decreased insulin secretion in individuals with hereditary haemochromatosis in DIABETOLOGIA
  • 1995-03. Iron at the cell surface controls both DNA synthesis and plasma membrane redox system in PROTOPLASMA
  • 2017-04. Physiologic and genetic evidence links hemopexin to triglycerides in mice and humans in INTERNATIONAL JOURNAL OF OBESITY
  • 2016-12. JBrowse: a dynamic web platform for genome visualization and analysis in GENOME BIOLOGY
  • Journal

    TITLE

    Nutrition & Metabolism

    ISSUE

    1

    VOLUME

    16

    From Grant

  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s12986-019-0339-6

    DOI

    http://dx.doi.org/10.1186/s12986-019-0339-6

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1112221215

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30820238


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Clinical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Washington University in St. Louis", 
              "id": "https://www.grid.ac/institutes/grid.4367.6", 
              "name": [
                "Department of Genetics, Washington University School of Medicine in Saint Louis, 660 South Euclid Ave, 63110, Saint Louis, MO, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Miranda", 
            "givenName": "Mario A.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Washington University in St. Louis", 
              "id": "https://www.grid.ac/institutes/grid.4367.6", 
              "name": [
                "Department of Genetics, Washington University School of Medicine in Saint Louis, 660 South Euclid Ave, 63110, Saint Louis, MO, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "St Pierre", 
            "givenName": "Celine L.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Washington University in St. Louis", 
              "id": "https://www.grid.ac/institutes/grid.4367.6", 
              "name": [
                "Department of Genetics, Washington University School of Medicine in Saint Louis, 660 South Euclid Ave, 63110, Saint Louis, MO, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Macias-Velasco", 
            "givenName": "Juan F.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Washington University in St. Louis", 
              "id": "https://www.grid.ac/institutes/grid.4367.6", 
              "name": [
                "Department of Genetics, Washington University School of Medicine in Saint Louis, 660 South Euclid Ave, 63110, Saint Louis, MO, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Nguyen", 
            "givenName": "Huyen Anh", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Washington University in St. Louis", 
              "id": "https://www.grid.ac/institutes/grid.4367.6", 
              "name": [
                "Department of Genetics, Washington University School of Medicine in Saint Louis, 660 South Euclid Ave, 63110, Saint Louis, MO, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Schmidt", 
            "givenName": "Heather", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Washington University in St. Louis", 
              "id": "https://www.grid.ac/institutes/grid.4367.6", 
              "name": [
                "Department of Genetics, Washington University School of Medicine in Saint Louis, 660 South Euclid Ave, 63110, Saint Louis, MO, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Agnello", 
            "givenName": "Lucian T.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Washington University in St. Louis", 
              "id": "https://www.grid.ac/institutes/grid.4367.6", 
              "name": [
                "Department of Genetics, Washington University School of Medicine in Saint Louis, 660 South Euclid Ave, 63110, Saint Louis, MO, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wayhart", 
            "givenName": "Jessica P.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Washington University in St. Louis", 
              "id": "https://www.grid.ac/institutes/grid.4367.6", 
              "name": [
                "Department of Genetics, Washington University School of Medicine in Saint Louis, 660 South Euclid Ave, 63110, Saint Louis, MO, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lawson", 
            "givenName": "Heather A.", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1172/jci81860", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000286815"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.bbrc.2009.04.032", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001940356"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkm306", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003651676"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1182/blood-2002-07-2140", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006387947"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00125-006-0445-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007181697", 
              "https://doi.org/10.1007/s00125-006-0445-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00125-006-0445-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007181697", 
              "https://doi.org/10.1007/s00125-006-0445-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00125-006-0445-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007181697", 
              "https://doi.org/10.1007/s00125-006-0445-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ajpath.2013.02.019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010428464"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2147/hp.s68771", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013785185"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00125-014-3298-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014059368", 
              "https://doi.org/10.1007/s00125-014-3298-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00125-014-3298-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014059368", 
              "https://doi.org/10.1007/s00125-014-3298-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3324/haematol.2008.001784", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017990723"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1152/ajpendo.00022.2010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018132779"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1172/jci44421", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022774096"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btp616", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023247882"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3233/dma-2009-0676", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023676261"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.bbagen.2008.09.008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023732098"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jnutbio.2013.02.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027623613"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12864-015-1592-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028350100", 
              "https://doi.org/10.1186/s12864-015-1592-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12864-015-1592-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028350100", 
              "https://doi.org/10.1186/s12864-015-1592-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0002-9343(72)90070-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028663937"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2337/diabetes.51.8.2348", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029321916"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkw1092", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034040244"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2337/diabetes.53.10.2535", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035983042"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0889-1575(03)00049-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036838931"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0889-1575(03)00049-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036838931"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btq033", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036892131"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pgen.1002256", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037318582"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2337/dc06-1686", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037681052"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1038/oby.2010.141", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039605261"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1038/oby.2010.141", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039605261"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nprot.2008.211", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039987283", 
              "https://doi.org/10.1038/nprot.2008.211"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2337/dc05-2471", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040140777"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1182/blood-2005-04-1630", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040441431"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2337/diacare.27.10.2422", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040485955"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00335-010-9313-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043177246", 
              "https://doi.org/10.1007/s00335-010-9313-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/labinvest.2013.121", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043634071", 
              "https://doi.org/10.1038/labinvest.2013.121"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01276926", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045229517", 
              "https://doi.org/10.1007/bf01276926"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01276926", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045229517", 
              "https://doi.org/10.1007/bf01276926"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3324/haematol.2009.006270", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050172699"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.bcmd.2007.03.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051092192"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13059-016-0924-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052281292", 
              "https://doi.org/10.1186/s13059-016-0924-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00125-006-0200-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052862345", 
              "https://doi.org/10.1007/s00125-006-0200-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00125-006-0200-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052862345", 
              "https://doi.org/10.1007/s00125-006-0200-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00125-006-0200-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052862345", 
              "https://doi.org/10.1007/s00125-006-0200-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/bts635", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053365587"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ijo.2017.19", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1074216722", 
              "https://doi.org/10.1038/ijo.2017.19"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/jn/132.4.849s", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1075023851"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1075186697", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41388-018-0243-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103626916", 
              "https://doi.org/10.1038/s41388-018-0243-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41388-018-0243-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103626916", 
              "https://doi.org/10.1038/s41388-018-0243-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3390/nu10101437", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107401141"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-12", 
        "datePublishedReg": "2019-12-01", 
        "description": "Background: Iron is a critical component of metabolic homeostasis, but consumption of dietary iron has increased dramatically in the last 30\u2009years, corresponding with the rise of metabolic disease. While the link between iron metabolism and metabolic health is well established, the extent to which dietary iron contributes to metabolic disease risk is unexplored. Further, it is unknown how dietary iron interacts with genetic background to modify metabolic disease risk.\nMethods: LG/J and SM/J inbred mouse strains were used to investigate the relationship between genetic background and metabolic function during an 8-week high iron diet. Glucose tolerance and adiposity were assessed, colorimetric assays determined levels of circulating metabolic markers, and hepatic iron content was measured. RNA sequencing was performed on white adipose tissue to identify genes differentially expressed across strain, diet, and strain X diet cohorts. Hepatic Hamp expression and circulating hepcidin was measured, and small nucleotide variants were identified in the Hamp genic region.\nResults: LG/J mice experienced elevated fasting glucose and glucose intolerance during the high iron diet, corresponding with increased hepatic iron load, increased circulating ferritin, and signs of liver injury. Adipose function was also altered in high iron-fed LG/J mice, including decreased adiposity and leptin production and differential expression of genes involved in iron and glucose homeostasis. LG/J mice failed to upregulate hepatic Hamp expression during the high iron diet, resulting in low circulating hepcidin levels compared to SM/J mice.\nConclusions: This study highlights the importance of accounting for genetic variation when assessing the effects of diet on metabolic health, and suggests dietary iron's impact on liver and adipose tissue is an underappreciated component of metabolic disease risk.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1186/s12986-019-0339-6", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.5244802", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2417627", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2684534", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2404328", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2683663", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1034448", 
            "issn": [
              "1743-7075"
            ], 
            "name": "Nutrition & Metabolism", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "16"
          }
        ], 
        "name": "Dietary iron interacts with genetic background to influence glucose homeostasis", 
        "pagination": "13", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "f9ffc11d3214ab81622ff57693e9209bc96b956766eaed0851939fcc976b930f"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30820238"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101231644"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s12986-019-0339-6"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1112221215"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s12986-019-0339-6", 
          "https://app.dimensions.ai/details/publication/pub.1112221215"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T11:20", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000354_0000000354/records_11719_00000002.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1186%2Fs12986-019-0339-6"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12986-019-0339-6'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12986-019-0339-6'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12986-019-0339-6'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12986-019-0339-6'


     

    This table displays all metadata directly associated to this object as RDF triples.

    255 TRIPLES      21 PREDICATES      71 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s12986-019-0339-6 schema:about anzsrc-for:11
    2 anzsrc-for:1103
    3 schema:author Nb219d8aa5a464821a21de8f0b97baa84
    4 schema:citation sg:pub.10.1007/bf01276926
    5 sg:pub.10.1007/s00125-006-0200-0
    6 sg:pub.10.1007/s00125-006-0445-7
    7 sg:pub.10.1007/s00125-014-3298-5
    8 sg:pub.10.1007/s00335-010-9313-3
    9 sg:pub.10.1038/ijo.2017.19
    10 sg:pub.10.1038/labinvest.2013.121
    11 sg:pub.10.1038/nprot.2008.211
    12 sg:pub.10.1038/s41388-018-0243-y
    13 sg:pub.10.1186/s12864-015-1592-3
    14 sg:pub.10.1186/s13059-016-0924-1
    15 https://app.dimensions.ai/details/publication/pub.1075186697
    16 https://doi.org/10.1016/0002-9343(72)90070-8
    17 https://doi.org/10.1016/j.ajpath.2013.02.019
    18 https://doi.org/10.1016/j.bbagen.2008.09.008
    19 https://doi.org/10.1016/j.bbrc.2009.04.032
    20 https://doi.org/10.1016/j.bcmd.2007.03.007
    21 https://doi.org/10.1016/j.jnutbio.2013.02.004
    22 https://doi.org/10.1016/s0889-1575(03)00049-8
    23 https://doi.org/10.1038/oby.2010.141
    24 https://doi.org/10.1093/bioinformatics/btp616
    25 https://doi.org/10.1093/bioinformatics/btq033
    26 https://doi.org/10.1093/bioinformatics/bts635
    27 https://doi.org/10.1093/jn/132.4.849s
    28 https://doi.org/10.1093/nar/gkm306
    29 https://doi.org/10.1093/nar/gkw1092
    30 https://doi.org/10.1152/ajpendo.00022.2010
    31 https://doi.org/10.1172/jci44421
    32 https://doi.org/10.1172/jci81860
    33 https://doi.org/10.1182/blood-2002-07-2140
    34 https://doi.org/10.1182/blood-2005-04-1630
    35 https://doi.org/10.1371/journal.pgen.1002256
    36 https://doi.org/10.2147/hp.s68771
    37 https://doi.org/10.2337/dc05-2471
    38 https://doi.org/10.2337/dc06-1686
    39 https://doi.org/10.2337/diabetes.51.8.2348
    40 https://doi.org/10.2337/diabetes.53.10.2535
    41 https://doi.org/10.2337/diacare.27.10.2422
    42 https://doi.org/10.3233/dma-2009-0676
    43 https://doi.org/10.3324/haematol.2008.001784
    44 https://doi.org/10.3324/haematol.2009.006270
    45 https://doi.org/10.3390/nu10101437
    46 schema:datePublished 2019-12
    47 schema:datePublishedReg 2019-12-01
    48 schema:description Background: Iron is a critical component of metabolic homeostasis, but consumption of dietary iron has increased dramatically in the last 30 years, corresponding with the rise of metabolic disease. While the link between iron metabolism and metabolic health is well established, the extent to which dietary iron contributes to metabolic disease risk is unexplored. Further, it is unknown how dietary iron interacts with genetic background to modify metabolic disease risk. Methods: LG/J and SM/J inbred mouse strains were used to investigate the relationship between genetic background and metabolic function during an 8-week high iron diet. Glucose tolerance and adiposity were assessed, colorimetric assays determined levels of circulating metabolic markers, and hepatic iron content was measured. RNA sequencing was performed on white adipose tissue to identify genes differentially expressed across strain, diet, and strain X diet cohorts. Hepatic Hamp expression and circulating hepcidin was measured, and small nucleotide variants were identified in the Hamp genic region. Results: LG/J mice experienced elevated fasting glucose and glucose intolerance during the high iron diet, corresponding with increased hepatic iron load, increased circulating ferritin, and signs of liver injury. Adipose function was also altered in high iron-fed LG/J mice, including decreased adiposity and leptin production and differential expression of genes involved in iron and glucose homeostasis. LG/J mice failed to upregulate hepatic Hamp expression during the high iron diet, resulting in low circulating hepcidin levels compared to SM/J mice. Conclusions: This study highlights the importance of accounting for genetic variation when assessing the effects of diet on metabolic health, and suggests dietary iron's impact on liver and adipose tissue is an underappreciated component of metabolic disease risk.
    49 schema:genre research_article
    50 schema:inLanguage en
    51 schema:isAccessibleForFree true
    52 schema:isPartOf Na7d50025ba4f42d6b2c8aeab1b8fd142
    53 Nd7242ccb680e43889e7f0cfcf49c3c4d
    54 sg:journal.1034448
    55 schema:name Dietary iron interacts with genetic background to influence glucose homeostasis
    56 schema:pagination 13
    57 schema:productId N1c578b8dd015412983c822001b605a27
    58 N1d74886c67524067b90a98d279d0f589
    59 N3cb1b97a9cf34b9990fc3302faafd9bb
    60 N4f6e9c4fdfa149c4989d0a460a3d6f5c
    61 Nd3e95f5ce2c242058bdd79c6a5e23fcb
    62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112221215
    63 https://doi.org/10.1186/s12986-019-0339-6
    64 schema:sdDatePublished 2019-04-11T11:20
    65 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    66 schema:sdPublisher Nc989ab2c9a374c2888e2c5a40a443aed
    67 schema:url https://link.springer.com/10.1186%2Fs12986-019-0339-6
    68 sgo:license sg:explorer/license/
    69 sgo:sdDataset articles
    70 rdf:type schema:ScholarlyArticle
    71 N04946e805e9b471d98edab3d2315e9d9 rdf:first Nfb11679ec4e94d33a6881a1f187ecde2
    72 rdf:rest N4c6503c6056644b6b5fd6127e59598c9
    73 N1c578b8dd015412983c822001b605a27 schema:name dimensions_id
    74 schema:value pub.1112221215
    75 rdf:type schema:PropertyValue
    76 N1d74886c67524067b90a98d279d0f589 schema:name doi
    77 schema:value 10.1186/s12986-019-0339-6
    78 rdf:type schema:PropertyValue
    79 N2bc218a2f5914a45807e6bd1a16c0764 rdf:first Nf6af0d5f3cb64162b33fc50ee60dffcd
    80 rdf:rest Na70ab8b106954f6984cf6e4d2ca7e2d7
    81 N30b498798bb941e5b33192219417d6e7 rdf:first N96b2caedd53049158ce221b1f6e953e5
    82 rdf:rest N2bc218a2f5914a45807e6bd1a16c0764
    83 N3cb1b97a9cf34b9990fc3302faafd9bb schema:name nlm_unique_id
    84 schema:value 101231644
    85 rdf:type schema:PropertyValue
    86 N49c90718a7b74a218349fb63a9873e17 rdf:first N9342ecdf7dde45a584f0a5d809c74101
    87 rdf:rest rdf:nil
    88 N4c6503c6056644b6b5fd6127e59598c9 rdf:first Nf77ed3f8280c4154a439f7c0361609b5
    89 rdf:rest N49c90718a7b74a218349fb63a9873e17
    90 N4c83d78130b34cf786fa8ce21ba19058 rdf:first N5b911b7edf124bc88e7831df6176372f
    91 rdf:rest N04946e805e9b471d98edab3d2315e9d9
    92 N4f6e9c4fdfa149c4989d0a460a3d6f5c schema:name pubmed_id
    93 schema:value 30820238
    94 rdf:type schema:PropertyValue
    95 N5b911b7edf124bc88e7831df6176372f schema:affiliation https://www.grid.ac/institutes/grid.4367.6
    96 schema:familyName Schmidt
    97 schema:givenName Heather
    98 rdf:type schema:Person
    99 N9342ecdf7dde45a584f0a5d809c74101 schema:affiliation https://www.grid.ac/institutes/grid.4367.6
    100 schema:familyName Lawson
    101 schema:givenName Heather A.
    102 rdf:type schema:Person
    103 N96b2caedd53049158ce221b1f6e953e5 schema:affiliation https://www.grid.ac/institutes/grid.4367.6
    104 schema:familyName St Pierre
    105 schema:givenName Celine L.
    106 rdf:type schema:Person
    107 N9ea485ed213b496686b2819bbca3fb83 schema:affiliation https://www.grid.ac/institutes/grid.4367.6
    108 schema:familyName Nguyen
    109 schema:givenName Huyen Anh
    110 rdf:type schema:Person
    111 Na70ab8b106954f6984cf6e4d2ca7e2d7 rdf:first N9ea485ed213b496686b2819bbca3fb83
    112 rdf:rest N4c83d78130b34cf786fa8ce21ba19058
    113 Na7d50025ba4f42d6b2c8aeab1b8fd142 schema:issueNumber 1
    114 rdf:type schema:PublicationIssue
    115 Nb219d8aa5a464821a21de8f0b97baa84 rdf:first Neaeacba3167c45b2a01afed5100a77d2
    116 rdf:rest N30b498798bb941e5b33192219417d6e7
    117 Nc989ab2c9a374c2888e2c5a40a443aed schema:name Springer Nature - SN SciGraph project
    118 rdf:type schema:Organization
    119 Nd3e95f5ce2c242058bdd79c6a5e23fcb schema:name readcube_id
    120 schema:value f9ffc11d3214ab81622ff57693e9209bc96b956766eaed0851939fcc976b930f
    121 rdf:type schema:PropertyValue
    122 Nd7242ccb680e43889e7f0cfcf49c3c4d schema:volumeNumber 16
    123 rdf:type schema:PublicationVolume
    124 Neaeacba3167c45b2a01afed5100a77d2 schema:affiliation https://www.grid.ac/institutes/grid.4367.6
    125 schema:familyName Miranda
    126 schema:givenName Mario A.
    127 rdf:type schema:Person
    128 Nf6af0d5f3cb64162b33fc50ee60dffcd schema:affiliation https://www.grid.ac/institutes/grid.4367.6
    129 schema:familyName Macias-Velasco
    130 schema:givenName Juan F.
    131 rdf:type schema:Person
    132 Nf77ed3f8280c4154a439f7c0361609b5 schema:affiliation https://www.grid.ac/institutes/grid.4367.6
    133 schema:familyName Wayhart
    134 schema:givenName Jessica P.
    135 rdf:type schema:Person
    136 Nfb11679ec4e94d33a6881a1f187ecde2 schema:affiliation https://www.grid.ac/institutes/grid.4367.6
    137 schema:familyName Agnello
    138 schema:givenName Lucian T.
    139 rdf:type schema:Person
    140 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    141 schema:name Medical and Health Sciences
    142 rdf:type schema:DefinedTerm
    143 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
    144 schema:name Clinical Sciences
    145 rdf:type schema:DefinedTerm
    146 sg:grant.2404328 http://pending.schema.org/fundedItem sg:pub.10.1186/s12986-019-0339-6
    147 rdf:type schema:MonetaryGrant
    148 sg:grant.2417627 http://pending.schema.org/fundedItem sg:pub.10.1186/s12986-019-0339-6
    149 rdf:type schema:MonetaryGrant
    150 sg:grant.2683663 http://pending.schema.org/fundedItem sg:pub.10.1186/s12986-019-0339-6
    151 rdf:type schema:MonetaryGrant
    152 sg:grant.2684534 http://pending.schema.org/fundedItem sg:pub.10.1186/s12986-019-0339-6
    153 rdf:type schema:MonetaryGrant
    154 sg:grant.5244802 http://pending.schema.org/fundedItem sg:pub.10.1186/s12986-019-0339-6
    155 rdf:type schema:MonetaryGrant
    156 sg:journal.1034448 schema:issn 1743-7075
    157 schema:name Nutrition & Metabolism
    158 rdf:type schema:Periodical
    159 sg:pub.10.1007/bf01276926 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045229517
    160 https://doi.org/10.1007/bf01276926
    161 rdf:type schema:CreativeWork
    162 sg:pub.10.1007/s00125-006-0200-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052862345
    163 https://doi.org/10.1007/s00125-006-0200-0
    164 rdf:type schema:CreativeWork
    165 sg:pub.10.1007/s00125-006-0445-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007181697
    166 https://doi.org/10.1007/s00125-006-0445-7
    167 rdf:type schema:CreativeWork
    168 sg:pub.10.1007/s00125-014-3298-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014059368
    169 https://doi.org/10.1007/s00125-014-3298-5
    170 rdf:type schema:CreativeWork
    171 sg:pub.10.1007/s00335-010-9313-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043177246
    172 https://doi.org/10.1007/s00335-010-9313-3
    173 rdf:type schema:CreativeWork
    174 sg:pub.10.1038/ijo.2017.19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074216722
    175 https://doi.org/10.1038/ijo.2017.19
    176 rdf:type schema:CreativeWork
    177 sg:pub.10.1038/labinvest.2013.121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043634071
    178 https://doi.org/10.1038/labinvest.2013.121
    179 rdf:type schema:CreativeWork
    180 sg:pub.10.1038/nprot.2008.211 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039987283
    181 https://doi.org/10.1038/nprot.2008.211
    182 rdf:type schema:CreativeWork
    183 sg:pub.10.1038/s41388-018-0243-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1103626916
    184 https://doi.org/10.1038/s41388-018-0243-y
    185 rdf:type schema:CreativeWork
    186 sg:pub.10.1186/s12864-015-1592-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028350100
    187 https://doi.org/10.1186/s12864-015-1592-3
    188 rdf:type schema:CreativeWork
    189 sg:pub.10.1186/s13059-016-0924-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052281292
    190 https://doi.org/10.1186/s13059-016-0924-1
    191 rdf:type schema:CreativeWork
    192 https://app.dimensions.ai/details/publication/pub.1075186697 schema:CreativeWork
    193 https://doi.org/10.1016/0002-9343(72)90070-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028663937
    194 rdf:type schema:CreativeWork
    195 https://doi.org/10.1016/j.ajpath.2013.02.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010428464
    196 rdf:type schema:CreativeWork
    197 https://doi.org/10.1016/j.bbagen.2008.09.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023732098
    198 rdf:type schema:CreativeWork
    199 https://doi.org/10.1016/j.bbrc.2009.04.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001940356
    200 rdf:type schema:CreativeWork
    201 https://doi.org/10.1016/j.bcmd.2007.03.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051092192
    202 rdf:type schema:CreativeWork
    203 https://doi.org/10.1016/j.jnutbio.2013.02.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027623613
    204 rdf:type schema:CreativeWork
    205 https://doi.org/10.1016/s0889-1575(03)00049-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036838931
    206 rdf:type schema:CreativeWork
    207 https://doi.org/10.1038/oby.2010.141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039605261
    208 rdf:type schema:CreativeWork
    209 https://doi.org/10.1093/bioinformatics/btp616 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023247882
    210 rdf:type schema:CreativeWork
    211 https://doi.org/10.1093/bioinformatics/btq033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036892131
    212 rdf:type schema:CreativeWork
    213 https://doi.org/10.1093/bioinformatics/bts635 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053365587
    214 rdf:type schema:CreativeWork
    215 https://doi.org/10.1093/jn/132.4.849s schema:sameAs https://app.dimensions.ai/details/publication/pub.1075023851
    216 rdf:type schema:CreativeWork
    217 https://doi.org/10.1093/nar/gkm306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003651676
    218 rdf:type schema:CreativeWork
    219 https://doi.org/10.1093/nar/gkw1092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034040244
    220 rdf:type schema:CreativeWork
    221 https://doi.org/10.1152/ajpendo.00022.2010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018132779
    222 rdf:type schema:CreativeWork
    223 https://doi.org/10.1172/jci44421 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022774096
    224 rdf:type schema:CreativeWork
    225 https://doi.org/10.1172/jci81860 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000286815
    226 rdf:type schema:CreativeWork
    227 https://doi.org/10.1182/blood-2002-07-2140 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006387947
    228 rdf:type schema:CreativeWork
    229 https://doi.org/10.1182/blood-2005-04-1630 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040441431
    230 rdf:type schema:CreativeWork
    231 https://doi.org/10.1371/journal.pgen.1002256 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037318582
    232 rdf:type schema:CreativeWork
    233 https://doi.org/10.2147/hp.s68771 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013785185
    234 rdf:type schema:CreativeWork
    235 https://doi.org/10.2337/dc05-2471 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040140777
    236 rdf:type schema:CreativeWork
    237 https://doi.org/10.2337/dc06-1686 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037681052
    238 rdf:type schema:CreativeWork
    239 https://doi.org/10.2337/diabetes.51.8.2348 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029321916
    240 rdf:type schema:CreativeWork
    241 https://doi.org/10.2337/diabetes.53.10.2535 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035983042
    242 rdf:type schema:CreativeWork
    243 https://doi.org/10.2337/diacare.27.10.2422 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040485955
    244 rdf:type schema:CreativeWork
    245 https://doi.org/10.3233/dma-2009-0676 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023676261
    246 rdf:type schema:CreativeWork
    247 https://doi.org/10.3324/haematol.2008.001784 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017990723
    248 rdf:type schema:CreativeWork
    249 https://doi.org/10.3324/haematol.2009.006270 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050172699
    250 rdf:type schema:CreativeWork
    251 https://doi.org/10.3390/nu10101437 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107401141
    252 rdf:type schema:CreativeWork
    253 https://www.grid.ac/institutes/grid.4367.6 schema:alternateName Washington University in St. Louis
    254 schema:name Department of Genetics, Washington University School of Medicine in Saint Louis, 660 South Euclid Ave, 63110, Saint Louis, MO, USA
    255 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...