Predicting wrist kinematics from motor unit discharge timings for the control of active prostheses. View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Tamás Kapelner, Ivan Vujaklija, Ning Jiang, Francesco Negro, Oskar C Aszmann, Jose Principe, Dario Farina

ABSTRACT

BACKGROUND: Current myoelectric control algorithms for active prostheses map time- and frequency-domain features of the interference EMG signal into prosthesis commands. With this approach, only a fraction of the available information content of the EMG is used and the resulting control fails to satisfy the majority of users. In this study, we predict joint angles of the three degrees of freedom of the wrist from motor unit discharge timings identified by decomposition of high-density surface EMG. METHODS: We recorded wrist kinematics and high-density surface EMG signals from six able-bodied individuals and one patient with limb deficiency while they performed movements of three degrees of freedom of the wrist at three different speeds. We compared the performance of linear regression to predict the observed individual wrist joint angles from, either traditional time domain features of the interference EMG or from motor unit discharge timings (which we termed neural features) obtained by EMG decomposition. In addition, we propose and test a simple model-based dimensionality reduction, based on the physiological notion that the discharge timings of motor units are partly correlated. RESULTS: The regression approach using neural features outperformed regression on classic global EMG features (average R2 for neural features 0.77 and 0.64, for able-bodied subjects and patients, respectively; for time-domain features 0.70 and 0.52). CONCLUSIONS: These results indicate that the use of neural information extracted from EMG decomposition can advance man-machine interfacing for prosthesis control. More... »

PAGES

47

References to SciGraph publications

  • 1975-09. A model for a motor unit train recorded during constant force isometric contractions in BIOLOGICAL CYBERNETICS
  • 2018-12. Online mapping of EMG signals into kinematics by autoencoding in JOURNAL OF NEUROENGINEERING AND REHABILITATION
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s12984-019-0516-x

    DOI

    http://dx.doi.org/10.1186/s12984-019-0516-x

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1113262114

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30953528


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Universit\u00e4tsmedizin G\u00f6ttingen", 
              "id": "https://www.grid.ac/institutes/grid.411984.1", 
              "name": [
                "Institute of Neurorehabilitation Systems, University Medical Center G\u00f6ttingen, G\u00f6ttingen, Germany."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kapelner", 
            "givenName": "Tam\u00e1s", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Aalto University", 
              "id": "https://www.grid.ac/institutes/grid.5373.2", 
              "name": [
                "Department of Electrical Engineering and Automation, Aalto University, Espoo, Finland."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Vujaklija", 
            "givenName": "Ivan", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Waterloo", 
              "id": "https://www.grid.ac/institutes/grid.46078.3d", 
              "name": [
                "Department of Systems Design Engineering, University of Waterloo, Waterloo, Canada."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jiang", 
            "givenName": "Ning", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Brescia", 
              "id": "https://www.grid.ac/institutes/grid.7637.5", 
              "name": [
                "Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Negro", 
            "givenName": "Francesco", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Medical University of Vienna", 
              "id": "https://www.grid.ac/institutes/grid.22937.3d", 
              "name": [
                "Christian Doppler Laboratory for Restoration of Extremity Function and Division of Plastic and Reconstructive Surgery, Department of Surgery, Medical University of Vienna, Wien, Austria."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Aszmann", 
            "givenName": "Oskar C", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Florida", 
              "id": "https://www.grid.ac/institutes/grid.15276.37", 
              "name": [
                "Department of Electrical and Computer Engineering, University of Florida, Gainesville, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Principe", 
            "givenName": "Jose", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Imperial College London", 
              "id": "https://www.grid.ac/institutes/grid.7445.2", 
              "name": [
                "Department of Bioengineering, Imperial College London, London, UK. d.farina@imperial.ac.uk."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Farina", 
            "givenName": "Dario", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1109/tnsre.2014.2305520", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003695510"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0304-3940(91)90867-s", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008597724"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0304-3940(91)90867-s", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008597724"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.biomaterials.2004.06.025", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011475587"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1152/jn.00555.2014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022122926"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1113/jphysiol.2014.273581", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022230195"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1152/jn.00793.2001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023506335"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0924-980x(95)00188-q", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024289845"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00337255", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025482073", 
              "https://doi.org/10.1007/bf00337255"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00337255", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025482073", 
              "https://doi.org/10.1007/bf00337255"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1152/jn.00855.2010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029365684"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.bios.2010.05.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035206519"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1152/jn.01060.2010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039078449"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2147/orr.s71468", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040348996"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2147/orr.s71468", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040348996"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2147/orr.s71468", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040348996"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0166-2236(94)90064-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040639617"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0166-2236(94)90064-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040639617"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/1741-2560/13/2/026027", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059161962"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/10.204774", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061084148"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/jproc.2015.2498665", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061298113"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tbme.2008.2008171", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061527412"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tnsre.2008.2006207", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061740309"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tnsre.2011.2163529", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061740550"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tnsre.2013.2247631", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061740720"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tnsre.2013.2287383", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061740791"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tsp.2007.896108", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061800679"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3389/fnbot.2017.00007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083817677"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/ner.2015.7146702", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095462784"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12984-018-0363-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101516757", 
              "https://doi.org/10.1186/s12984-018-0363-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12984-018-0363-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101516757", 
              "https://doi.org/10.1186/s12984-018-0363-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12984-018-0363-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101516757", 
              "https://doi.org/10.1186/s12984-018-0363-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12984-018-0363-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101516757", 
              "https://doi.org/10.1186/s12984-018-0363-1"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-12", 
        "datePublishedReg": "2019-12-01", 
        "description": "BACKGROUND: Current myoelectric control algorithms for active prostheses map time- and frequency-domain features of the interference EMG signal into prosthesis commands. With this approach, only a fraction of the available information content of the EMG is used and the resulting control fails to satisfy the majority of users. In this study, we predict joint angles of the three degrees of freedom of the wrist from motor unit discharge timings identified by decomposition of high-density surface EMG.\nMETHODS: We recorded wrist kinematics and high-density surface EMG signals from six able-bodied individuals and one patient with limb deficiency while they performed movements of three degrees of freedom of the wrist at three different speeds. We compared the performance of linear regression to predict the observed individual wrist joint angles from, either traditional time domain features of the interference EMG or from motor unit discharge timings (which we termed neural features) obtained by EMG decomposition. In addition, we propose and test a simple model-based dimensionality reduction, based on the physiological notion that the discharge timings of motor units are partly correlated.\nRESULTS: The regression approach using neural features outperformed regression on classic global EMG features (average R2 for neural features 0.77 and 0.64, for able-bodied subjects and patients, respectively; for time-domain features 0.70 and 0.52).\nCONCLUSIONS: These results indicate that the use of neural information extracted from EMG decomposition can advance man-machine interfacing for prosthesis control.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1186/s12984-019-0516-x", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.3788381", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.6623712", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1034479", 
            "issn": [
              "1743-0003"
            ], 
            "name": "Journal of NeuroEngineering and Rehabilitation", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "16"
          }
        ], 
        "name": "Predicting wrist kinematics from motor unit discharge timings for the control of active prostheses.", 
        "pagination": "47", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s12984-019-0516-x"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1113262114"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101232233"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30953528"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s12984-019-0516-x", 
          "https://app.dimensions.ai/details/publication/pub.1113262114"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-15T09:02", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000375_0000000375/records_91453_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://jneuroengrehab.biomedcentral.com/articles/10.1186/s12984-019-0516-x"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12984-019-0516-x'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12984-019-0516-x'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12984-019-0516-x'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12984-019-0516-x'


     

    This table displays all metadata directly associated to this object as RDF triples.

    198 TRIPLES      21 PREDICATES      53 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s12984-019-0516-x schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N8d04c54739da4e4280b16cac42057eb8
    4 schema:citation sg:pub.10.1007/bf00337255
    5 sg:pub.10.1186/s12984-018-0363-1
    6 https://doi.org/10.1016/0166-2236(94)90064-7
    7 https://doi.org/10.1016/0304-3940(91)90867-s
    8 https://doi.org/10.1016/0924-980x(95)00188-q
    9 https://doi.org/10.1016/j.biomaterials.2004.06.025
    10 https://doi.org/10.1016/j.bios.2010.05.010
    11 https://doi.org/10.1088/1741-2560/13/2/026027
    12 https://doi.org/10.1109/10.204774
    13 https://doi.org/10.1109/jproc.2015.2498665
    14 https://doi.org/10.1109/ner.2015.7146702
    15 https://doi.org/10.1109/tbme.2008.2008171
    16 https://doi.org/10.1109/tnsre.2008.2006207
    17 https://doi.org/10.1109/tnsre.2011.2163529
    18 https://doi.org/10.1109/tnsre.2013.2247631
    19 https://doi.org/10.1109/tnsre.2013.2287383
    20 https://doi.org/10.1109/tnsre.2014.2305520
    21 https://doi.org/10.1109/tsp.2007.896108
    22 https://doi.org/10.1113/jphysiol.2014.273581
    23 https://doi.org/10.1152/jn.00555.2014
    24 https://doi.org/10.1152/jn.00793.2001
    25 https://doi.org/10.1152/jn.00855.2010
    26 https://doi.org/10.1152/jn.01060.2010
    27 https://doi.org/10.2147/orr.s71468
    28 https://doi.org/10.3389/fnbot.2017.00007
    29 schema:datePublished 2019-12
    30 schema:datePublishedReg 2019-12-01
    31 schema:description BACKGROUND: Current myoelectric control algorithms for active prostheses map time- and frequency-domain features of the interference EMG signal into prosthesis commands. With this approach, only a fraction of the available information content of the EMG is used and the resulting control fails to satisfy the majority of users. In this study, we predict joint angles of the three degrees of freedom of the wrist from motor unit discharge timings identified by decomposition of high-density surface EMG. METHODS: We recorded wrist kinematics and high-density surface EMG signals from six able-bodied individuals and one patient with limb deficiency while they performed movements of three degrees of freedom of the wrist at three different speeds. We compared the performance of linear regression to predict the observed individual wrist joint angles from, either traditional time domain features of the interference EMG or from motor unit discharge timings (which we termed neural features) obtained by EMG decomposition. In addition, we propose and test a simple model-based dimensionality reduction, based on the physiological notion that the discharge timings of motor units are partly correlated. RESULTS: The regression approach using neural features outperformed regression on classic global EMG features (average R2 for neural features 0.77 and 0.64, for able-bodied subjects and patients, respectively; for time-domain features 0.70 and 0.52). CONCLUSIONS: These results indicate that the use of neural information extracted from EMG decomposition can advance man-machine interfacing for prosthesis control.
    32 schema:genre research_article
    33 schema:inLanguage en
    34 schema:isAccessibleForFree true
    35 schema:isPartOf Na2bf5b910b944c0a9a932cef78a06e39
    36 Ne4e91af9e97e4b058ac1c74adfae4456
    37 sg:journal.1034479
    38 schema:name Predicting wrist kinematics from motor unit discharge timings for the control of active prostheses.
    39 schema:pagination 47
    40 schema:productId N2d7d921bff874c90b543d27e34a8c9b6
    41 N60a7546affa740f583fa8e7635101135
    42 Ndc22725867ec4a0692ef4c9801ca6d02
    43 Ne0bcf28eb7ed4de48ac3c9a4dec187a0
    44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113262114
    45 https://doi.org/10.1186/s12984-019-0516-x
    46 schema:sdDatePublished 2019-04-15T09:02
    47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    48 schema:sdPublisher N133a2482dfa74075b47a659557f5295e
    49 schema:url https://jneuroengrehab.biomedcentral.com/articles/10.1186/s12984-019-0516-x
    50 sgo:license sg:explorer/license/
    51 sgo:sdDataset articles
    52 rdf:type schema:ScholarlyArticle
    53 N133a2482dfa74075b47a659557f5295e schema:name Springer Nature - SN SciGraph project
    54 rdf:type schema:Organization
    55 N2d7d921bff874c90b543d27e34a8c9b6 schema:name nlm_unique_id
    56 schema:value 101232233
    57 rdf:type schema:PropertyValue
    58 N40a7fa3518ca4bce96e51935c8545ce3 schema:affiliation https://www.grid.ac/institutes/grid.22937.3d
    59 schema:familyName Aszmann
    60 schema:givenName Oskar C
    61 rdf:type schema:Person
    62 N6062db43d4754401ba4d46aed1b83370 schema:affiliation https://www.grid.ac/institutes/grid.15276.37
    63 schema:familyName Principe
    64 schema:givenName Jose
    65 rdf:type schema:Person
    66 N60a7546affa740f583fa8e7635101135 schema:name dimensions_id
    67 schema:value pub.1113262114
    68 rdf:type schema:PropertyValue
    69 N88ab09c4c7c54750892f2667659e9c6c rdf:first Nb8a6bf1bc4f74fe99e4318a55df2f8d7
    70 rdf:rest N8d6d88e61d794e05838f3d4bf0996352
    71 N8d04c54739da4e4280b16cac42057eb8 rdf:first Nc11def121d6d4ceab9aba964dcd82ae0
    72 rdf:rest Ncfb0132705334432a9922b11473eca37
    73 N8d6d88e61d794e05838f3d4bf0996352 rdf:first Nbbaa7f95a37a460f9d8d7443ec9e8440
    74 rdf:rest N9491869fa1f54a43a1f0900c8220f992
    75 N9491869fa1f54a43a1f0900c8220f992 rdf:first N40a7fa3518ca4bce96e51935c8545ce3
    76 rdf:rest Na28fdc5f13e44f28807c0b517828d39b
    77 Na28fdc5f13e44f28807c0b517828d39b rdf:first N6062db43d4754401ba4d46aed1b83370
    78 rdf:rest Ndf5f1cdab7014750b2cb0d86d14d1bd7
    79 Na2bf5b910b944c0a9a932cef78a06e39 schema:volumeNumber 16
    80 rdf:type schema:PublicationVolume
    81 Nb8a6bf1bc4f74fe99e4318a55df2f8d7 schema:affiliation https://www.grid.ac/institutes/grid.46078.3d
    82 schema:familyName Jiang
    83 schema:givenName Ning
    84 rdf:type schema:Person
    85 Nbb88c9a2752545a7a0c290bd275d1af2 schema:affiliation https://www.grid.ac/institutes/grid.5373.2
    86 schema:familyName Vujaklija
    87 schema:givenName Ivan
    88 rdf:type schema:Person
    89 Nbbaa7f95a37a460f9d8d7443ec9e8440 schema:affiliation https://www.grid.ac/institutes/grid.7637.5
    90 schema:familyName Negro
    91 schema:givenName Francesco
    92 rdf:type schema:Person
    93 Nc11def121d6d4ceab9aba964dcd82ae0 schema:affiliation https://www.grid.ac/institutes/grid.411984.1
    94 schema:familyName Kapelner
    95 schema:givenName Tamás
    96 rdf:type schema:Person
    97 Nc86069088da0464c9f60f51bbfe1409d schema:affiliation https://www.grid.ac/institutes/grid.7445.2
    98 schema:familyName Farina
    99 schema:givenName Dario
    100 rdf:type schema:Person
    101 Ncfb0132705334432a9922b11473eca37 rdf:first Nbb88c9a2752545a7a0c290bd275d1af2
    102 rdf:rest N88ab09c4c7c54750892f2667659e9c6c
    103 Ndc22725867ec4a0692ef4c9801ca6d02 schema:name doi
    104 schema:value 10.1186/s12984-019-0516-x
    105 rdf:type schema:PropertyValue
    106 Ndf5f1cdab7014750b2cb0d86d14d1bd7 rdf:first Nc86069088da0464c9f60f51bbfe1409d
    107 rdf:rest rdf:nil
    108 Ne0bcf28eb7ed4de48ac3c9a4dec187a0 schema:name pubmed_id
    109 schema:value 30953528
    110 rdf:type schema:PropertyValue
    111 Ne4e91af9e97e4b058ac1c74adfae4456 schema:issueNumber 1
    112 rdf:type schema:PublicationIssue
    113 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    114 schema:name Information and Computing Sciences
    115 rdf:type schema:DefinedTerm
    116 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    117 schema:name Artificial Intelligence and Image Processing
    118 rdf:type schema:DefinedTerm
    119 sg:grant.3788381 http://pending.schema.org/fundedItem sg:pub.10.1186/s12984-019-0516-x
    120 rdf:type schema:MonetaryGrant
    121 sg:grant.6623712 http://pending.schema.org/fundedItem sg:pub.10.1186/s12984-019-0516-x
    122 rdf:type schema:MonetaryGrant
    123 sg:journal.1034479 schema:issn 1743-0003
    124 schema:name Journal of NeuroEngineering and Rehabilitation
    125 rdf:type schema:Periodical
    126 sg:pub.10.1007/bf00337255 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025482073
    127 https://doi.org/10.1007/bf00337255
    128 rdf:type schema:CreativeWork
    129 sg:pub.10.1186/s12984-018-0363-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101516757
    130 https://doi.org/10.1186/s12984-018-0363-1
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1016/0166-2236(94)90064-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040639617
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1016/0304-3940(91)90867-s schema:sameAs https://app.dimensions.ai/details/publication/pub.1008597724
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1016/0924-980x(95)00188-q schema:sameAs https://app.dimensions.ai/details/publication/pub.1024289845
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1016/j.biomaterials.2004.06.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011475587
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1016/j.bios.2010.05.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035206519
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1088/1741-2560/13/2/026027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059161962
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1109/10.204774 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061084148
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1109/jproc.2015.2498665 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061298113
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1109/ner.2015.7146702 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095462784
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1109/tbme.2008.2008171 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061527412
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1109/tnsre.2008.2006207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061740309
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1109/tnsre.2011.2163529 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061740550
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1109/tnsre.2013.2247631 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061740720
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1109/tnsre.2013.2287383 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061740791
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.1109/tnsre.2014.2305520 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003695510
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.1109/tsp.2007.896108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061800679
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.1113/jphysiol.2014.273581 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022230195
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.1152/jn.00555.2014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022122926
    167 rdf:type schema:CreativeWork
    168 https://doi.org/10.1152/jn.00793.2001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023506335
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.1152/jn.00855.2010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029365684
    171 rdf:type schema:CreativeWork
    172 https://doi.org/10.1152/jn.01060.2010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039078449
    173 rdf:type schema:CreativeWork
    174 https://doi.org/10.2147/orr.s71468 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040348996
    175 rdf:type schema:CreativeWork
    176 https://doi.org/10.3389/fnbot.2017.00007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083817677
    177 rdf:type schema:CreativeWork
    178 https://www.grid.ac/institutes/grid.15276.37 schema:alternateName University of Florida
    179 schema:name Department of Electrical and Computer Engineering, University of Florida, Gainesville, USA.
    180 rdf:type schema:Organization
    181 https://www.grid.ac/institutes/grid.22937.3d schema:alternateName Medical University of Vienna
    182 schema:name Christian Doppler Laboratory for Restoration of Extremity Function and Division of Plastic and Reconstructive Surgery, Department of Surgery, Medical University of Vienna, Wien, Austria.
    183 rdf:type schema:Organization
    184 https://www.grid.ac/institutes/grid.411984.1 schema:alternateName Universitätsmedizin Göttingen
    185 schema:name Institute of Neurorehabilitation Systems, University Medical Center Göttingen, Göttingen, Germany.
    186 rdf:type schema:Organization
    187 https://www.grid.ac/institutes/grid.46078.3d schema:alternateName University of Waterloo
    188 schema:name Department of Systems Design Engineering, University of Waterloo, Waterloo, Canada.
    189 rdf:type schema:Organization
    190 https://www.grid.ac/institutes/grid.5373.2 schema:alternateName Aalto University
    191 schema:name Department of Electrical Engineering and Automation, Aalto University, Espoo, Finland.
    192 rdf:type schema:Organization
    193 https://www.grid.ac/institutes/grid.7445.2 schema:alternateName Imperial College London
    194 schema:name Department of Bioengineering, Imperial College London, London, UK. d.farina@imperial.ac.uk.
    195 rdf:type schema:Organization
    196 https://www.grid.ac/institutes/grid.7637.5 schema:alternateName University of Brescia
    197 schema:name Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy.
    198 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...