Physiological and kinematic effects of a soft exosuit on arm movements View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Michele Xiloyannis, Domenico Chiaradia, Antonio Frisoli, Lorenzo Masia

ABSTRACT

BACKGROUND: Soft wearable robots (exosuits), being lightweight, ergonomic and low power-demanding, are attractive for a variety of applications, ranging from strength augmentation in industrial scenarios, to medical assistance for people with motor impairments. Understanding how these devices affect the physiology and mechanics of human movements is fundamental for quantifying their benefits and drawbacks, assessing their suitability for different applications and guiding a continuous design refinement. METHODS: We present a novel wearable exosuit for assistance/augmentation of the elbow and introduce a controller that compensates for gravitational forces acting on the limb while allowing the suit to cooperatively move with its wearer. Eight healthy subjects wore the exosuit and performed elbow movements in two conditions: with assistance from the device (powered) and without assistance (unpowered). The test included a dynamic task, to evaluate the impact of the assistance on the kinematics and dynamics of human movement, and an isometric task, to assess its influence on the onset of muscular fatigue. RESULTS: Powered movements showed a low but significant degradation in accuracy and smoothness when compared to the unpowered ones. The degradation in kinematics was accompanied by an average reduction of 59.20±5.58% (mean ± standard error) of the biological torque and 64.8±7.66% drop in muscular effort when the exosuit assisted its wearer. Furthermore, an analysis of the electromyographic signals of the biceps brachii during the isometric task revealed that the exosuit delays the onset of muscular fatigue. CONCLUSIONS: The study examined the effects of an exosuit on the characteristics of human movements. The suit supports most of the power needed to move and reduces the effort that the subject needs to exert to counteract gravity in a static posture, delaying the onset of muscular fatigue. We interpret the decline in kinematic performance as a technical limitation of the current device. This work suggests that a powered exosuit can be a good candidate for industrial and clinical applications, where task efficiency and hardware transparency are paramount. More... »

PAGES

29

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12984-019-0495-y

DOI

http://dx.doi.org/10.1186/s12984-019-0495-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112292037

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30791919


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0903", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biomedical Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Twente", 
          "id": "https://www.grid.ac/institutes/grid.6214.1", 
          "name": [
            "Nanyang Technological University, Robotics Research Center, School of Mechanical & Aerospace Engineering, 639798, Singapore, Singapore", 
            "Nanyang Technological University, Interdisciplinary Graduate School, 639798, Singapore, Singapore", 
            "Department of Biomechanical Engineering, Faculty of Engineering and Technology, University of Twente, Enschede, Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xiloyannis", 
        "givenName": "Michele", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sant'Anna School of Advanced Studies", 
          "id": "https://www.grid.ac/institutes/grid.263145.7", 
          "name": [
            "Scuola Superiore Sant\u2019Anna, TeCIP Institute, PERCRO Laboratory, Pisa, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chiaradia", 
        "givenName": "Domenico", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sant'Anna School of Advanced Studies", 
          "id": "https://www.grid.ac/institutes/grid.263145.7", 
          "name": [
            "Scuola Superiore Sant\u2019Anna, TeCIP Institute, PERCRO Laboratory, Pisa, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Frisoli", 
        "givenName": "Antonio", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Heidelberg University", 
          "id": "https://www.grid.ac/institutes/grid.7700.0", 
          "name": [
            "Institut f\u00fcr Technische Informatik (ZITI), Faculty of Physics and Astronomy, Heidelberg Universit, Heidelberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Masia", 
        "givenName": "Lorenzo", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/1743-0003-6-22", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001735784", 
          "https://doi.org/10.1186/1743-0003-6-22"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fnbot.2016.00013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002144764"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0021-9290(86)90155-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005098706"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1743-0003-11-80", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006160847", 
          "https://doi.org/10.1186/1743-0003-11-80"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-46532-6_15", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010916059", 
          "https://doi.org/10.1007/978-3-319-46532-6_15"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1024484615192", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014065885", 
          "https://doi.org/10.1023/a:1024484615192"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/phm.0b013e318269d9a3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015581081"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/phm.0b013e318269d9a3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015581081"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/29406", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017369037", 
          "https://doi.org/10.1038/29406"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/29406", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017369037", 
          "https://doi.org/10.1038/29406"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.robot.2014.08.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018191802"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.robot.2014.08.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018191802"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.robot.2014.08.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018191802"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.robot.2014.08.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018191802"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.concog.2015.06.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021234462"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.concog.2015.06.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021234462"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.concog.2015.06.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021234462"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.concog.2015.06.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021234462"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.clinbiomech.2004.03.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022229908"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/09638280802240290", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025125059"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1050-6411(00)00027-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025172379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.plrev.2015.11.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025434108"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1050-6411(01)00033-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026397778"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1743-0003-9-36", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027647533", 
          "https://doi.org/10.1186/1743-0003-9-36"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuropsychologia.2010.05.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028445924"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jbiomech.2006.12.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036425873"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jn.00473.2005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036837332"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12984-015-0090-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037073567", 
          "https://doi.org/10.1186/s12984-015-0090-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature14288", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041059533", 
          "https://doi.org/10.1038/nature14288"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.robot.2014.09.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041497100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1743-0003-6-18", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045458011", 
          "https://doi.org/10.1186/1743-0003-6-18"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12984-016-0117-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050190006", 
          "https://doi.org/10.1186/s12984-016-0117-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/soro.2013.0001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050931185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/mspec.2005.1515961", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061429021"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmech.2015.2465849", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061693592"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnsre.2010.2056388", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061740482"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnsre.2016.2523250", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061741071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tro.2009.2019147", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061785032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1243/pime_proc_1996_210_420_02", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064470608"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1243/pime_proc_1996_210_420_02", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064470608"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/2055668316680315", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074242076"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/2055668316680315", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074242076"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1076340083", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icorr.2013.6650455", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078807723"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1523/jneurosci.05-07-01688.1985", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1080085642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jn.1997.77.3.1644", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083065391"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/lra.2017.2668473", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083832942"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/lra.2017.2669366", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083936318"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.robot.2017.03.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084106774"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0173730", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084300888"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/scirobotics.aah4416", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084685501"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.aal5054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086134503"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/lra.2017.2722900", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090838006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/scitranslmed.aai9084", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090905290"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fnins.2017.00597", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092341480"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fnbot.2017.00057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092405760"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10255842.2017.1382835", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092429708"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/detc2015-47871", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092824702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/robot.2004.1307433", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093420243"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iros.2005.1545451", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093736165"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/robot.2005.1570790", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094634674"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/robot.2010.5509346", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095001931"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iros.1995.525827", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095484896"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4271/670088", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096566923"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/scirobotics.aar5438", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101276732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnsre.2018.2815656", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101541371"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/frobt.2018.00044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104039654"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.23919/acc.2004.1384410", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104278254"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.23919/acc.2004.1384410", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104278254"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/robosoft.2018.8405386", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105428242"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/robosoft.2018.8405387", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105437359"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1748-3190/aad8d4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106055259"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/biorob.2018.8487907", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107558184"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "BACKGROUND: Soft wearable robots (exosuits), being lightweight, ergonomic and low power-demanding, are attractive for a variety of applications, ranging from strength augmentation in industrial scenarios, to medical assistance for people with motor impairments. Understanding how these devices affect the physiology and mechanics of human movements is fundamental for quantifying their benefits and drawbacks, assessing their suitability for different applications and guiding a continuous design refinement.\nMETHODS: We present a novel wearable exosuit for assistance/augmentation of the elbow and introduce a controller that compensates for gravitational forces acting on the limb while allowing the suit to cooperatively move with its wearer. Eight healthy subjects wore the exosuit and performed elbow movements in two conditions: with assistance from the device (powered) and without assistance (unpowered). The test included a dynamic task, to evaluate the impact of the assistance on the kinematics and dynamics of human movement, and an isometric task, to assess its influence on the onset of muscular fatigue.\nRESULTS: Powered movements showed a low but significant degradation in accuracy and smoothness when compared to the unpowered ones. The degradation in kinematics was accompanied by an average reduction of 59.20\u00b15.58% (mean \u00b1 standard error) of the biological torque and 64.8\u00b17.66% drop in muscular effort when the exosuit assisted its wearer. Furthermore, an analysis of the electromyographic signals of the biceps brachii during the isometric task revealed that the exosuit delays the onset of muscular fatigue.\nCONCLUSIONS: The study examined the effects of an exosuit on the characteristics of human movements. The suit supports most of the power needed to move and reduces the effort that the subject needs to exert to counteract gravity in a static posture, delaying the onset of muscular fatigue. We interpret the decline in kinematic performance as a technical limitation of the current device. This work suggests that a powered exosuit can be a good candidate for industrial and clinical applications, where task efficiency and hardware transparency are paramount.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12984-019-0495-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1034479", 
        "issn": [
          "1743-0003"
        ], 
        "name": "Journal of NeuroEngineering and Rehabilitation", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "16"
      }
    ], 
    "name": "Physiological and kinematic effects of a soft exosuit on arm movements", 
    "pagination": "29", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "aa1d1a2ed3260fe88c01679e51bfe59feb0715842e6fae8903b17461f46ff48d"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30791919"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101232233"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12984-019-0495-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112292037"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12984-019-0495-y", 
      "https://app.dimensions.ai/details/publication/pub.1112292037"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:58", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000359_0000000359/records_29222_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs12984-019-0495-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12984-019-0495-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12984-019-0495-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12984-019-0495-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12984-019-0495-y'


 

This table displays all metadata directly associated to this object as RDF triples.

288 TRIPLES      21 PREDICATES      91 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12984-019-0495-y schema:about anzsrc-for:09
2 anzsrc-for:0903
3 schema:author Nbfa6b6d0d31244f385753b725cc932c7
4 schema:citation sg:pub.10.1007/978-3-319-46532-6_15
5 sg:pub.10.1023/a:1024484615192
6 sg:pub.10.1038/29406
7 sg:pub.10.1038/nature14288
8 sg:pub.10.1186/1743-0003-11-80
9 sg:pub.10.1186/1743-0003-6-18
10 sg:pub.10.1186/1743-0003-6-22
11 sg:pub.10.1186/1743-0003-9-36
12 sg:pub.10.1186/s12984-015-0090-9
13 sg:pub.10.1186/s12984-016-0117-x
14 https://app.dimensions.ai/details/publication/pub.1076340083
15 https://doi.org/10.1016/0021-9290(86)90155-7
16 https://doi.org/10.1016/j.clinbiomech.2004.03.004
17 https://doi.org/10.1016/j.concog.2015.06.004
18 https://doi.org/10.1016/j.jbiomech.2006.12.006
19 https://doi.org/10.1016/j.neuropsychologia.2010.05.021
20 https://doi.org/10.1016/j.plrev.2015.11.006
21 https://doi.org/10.1016/j.robot.2014.08.014
22 https://doi.org/10.1016/j.robot.2014.09.025
23 https://doi.org/10.1016/j.robot.2017.03.012
24 https://doi.org/10.1016/s1050-6411(00)00027-4
25 https://doi.org/10.1016/s1050-6411(01)00033-5
26 https://doi.org/10.1080/09638280802240290
27 https://doi.org/10.1080/10255842.2017.1382835
28 https://doi.org/10.1088/1748-3190/aad8d4
29 https://doi.org/10.1089/soro.2013.0001
30 https://doi.org/10.1097/phm.0b013e318269d9a3
31 https://doi.org/10.1109/biorob.2018.8487907
32 https://doi.org/10.1109/icorr.2013.6650455
33 https://doi.org/10.1109/iros.1995.525827
34 https://doi.org/10.1109/iros.2005.1545451
35 https://doi.org/10.1109/lra.2017.2668473
36 https://doi.org/10.1109/lra.2017.2669366
37 https://doi.org/10.1109/lra.2017.2722900
38 https://doi.org/10.1109/mspec.2005.1515961
39 https://doi.org/10.1109/robosoft.2018.8405386
40 https://doi.org/10.1109/robosoft.2018.8405387
41 https://doi.org/10.1109/robot.2004.1307433
42 https://doi.org/10.1109/robot.2005.1570790
43 https://doi.org/10.1109/robot.2010.5509346
44 https://doi.org/10.1109/tmech.2015.2465849
45 https://doi.org/10.1109/tnsre.2010.2056388
46 https://doi.org/10.1109/tnsre.2016.2523250
47 https://doi.org/10.1109/tnsre.2018.2815656
48 https://doi.org/10.1109/tro.2009.2019147
49 https://doi.org/10.1115/detc2015-47871
50 https://doi.org/10.1126/science.aal5054
51 https://doi.org/10.1126/scirobotics.aah4416
52 https://doi.org/10.1126/scirobotics.aar5438
53 https://doi.org/10.1126/scitranslmed.aai9084
54 https://doi.org/10.1152/jn.00473.2005
55 https://doi.org/10.1152/jn.1997.77.3.1644
56 https://doi.org/10.1177/2055668316680315
57 https://doi.org/10.1243/pime_proc_1996_210_420_02
58 https://doi.org/10.1371/journal.pone.0173730
59 https://doi.org/10.1523/jneurosci.05-07-01688.1985
60 https://doi.org/10.23919/acc.2004.1384410
61 https://doi.org/10.3389/fnbot.2016.00013
62 https://doi.org/10.3389/fnbot.2017.00057
63 https://doi.org/10.3389/fnins.2017.00597
64 https://doi.org/10.3389/frobt.2018.00044
65 https://doi.org/10.4271/670088
66 schema:datePublished 2019-12
67 schema:datePublishedReg 2019-12-01
68 schema:description BACKGROUND: Soft wearable robots (exosuits), being lightweight, ergonomic and low power-demanding, are attractive for a variety of applications, ranging from strength augmentation in industrial scenarios, to medical assistance for people with motor impairments. Understanding how these devices affect the physiology and mechanics of human movements is fundamental for quantifying their benefits and drawbacks, assessing their suitability for different applications and guiding a continuous design refinement. METHODS: We present a novel wearable exosuit for assistance/augmentation of the elbow and introduce a controller that compensates for gravitational forces acting on the limb while allowing the suit to cooperatively move with its wearer. Eight healthy subjects wore the exosuit and performed elbow movements in two conditions: with assistance from the device (powered) and without assistance (unpowered). The test included a dynamic task, to evaluate the impact of the assistance on the kinematics and dynamics of human movement, and an isometric task, to assess its influence on the onset of muscular fatigue. RESULTS: Powered movements showed a low but significant degradation in accuracy and smoothness when compared to the unpowered ones. The degradation in kinematics was accompanied by an average reduction of 59.20±5.58% (mean ± standard error) of the biological torque and 64.8±7.66% drop in muscular effort when the exosuit assisted its wearer. Furthermore, an analysis of the electromyographic signals of the biceps brachii during the isometric task revealed that the exosuit delays the onset of muscular fatigue. CONCLUSIONS: The study examined the effects of an exosuit on the characteristics of human movements. The suit supports most of the power needed to move and reduces the effort that the subject needs to exert to counteract gravity in a static posture, delaying the onset of muscular fatigue. We interpret the decline in kinematic performance as a technical limitation of the current device. This work suggests that a powered exosuit can be a good candidate for industrial and clinical applications, where task efficiency and hardware transparency are paramount.
69 schema:genre research_article
70 schema:inLanguage en
71 schema:isAccessibleForFree true
72 schema:isPartOf N4b8daecc928a49349fea728470d5d56f
73 Ndece92ad5dc34246a0660cb950590a4a
74 sg:journal.1034479
75 schema:name Physiological and kinematic effects of a soft exosuit on arm movements
76 schema:pagination 29
77 schema:productId N471e016dfb7742e895386889701de994
78 Nc0c75c1652c74ac88611e0653d914240
79 Nd25bd32bfda34e85ad2ca3b80c504398
80 Ndd6dee8fba7b43bb810d3fcdae01766b
81 Nf56d7531b2cb4776be4b7c132048812d
82 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112292037
83 https://doi.org/10.1186/s12984-019-0495-y
84 schema:sdDatePublished 2019-04-11T11:58
85 schema:sdLicense https://scigraph.springernature.com/explorer/license/
86 schema:sdPublisher N8d3193730e37426791aa56b9c5f10635
87 schema:url https://link.springer.com/10.1186%2Fs12984-019-0495-y
88 sgo:license sg:explorer/license/
89 sgo:sdDataset articles
90 rdf:type schema:ScholarlyArticle
91 N39a80eab7b5f4b21bfac61dd54bdc57f rdf:first Nb8b34f91476c4886b9a0add961fbf1b4
92 rdf:rest rdf:nil
93 N471e016dfb7742e895386889701de994 schema:name dimensions_id
94 schema:value pub.1112292037
95 rdf:type schema:PropertyValue
96 N4b8daecc928a49349fea728470d5d56f schema:issueNumber 1
97 rdf:type schema:PublicationIssue
98 N5a0a7d3a60f14e938ef40fb131161cbf schema:affiliation https://www.grid.ac/institutes/grid.6214.1
99 schema:familyName Xiloyannis
100 schema:givenName Michele
101 rdf:type schema:Person
102 N8d3193730e37426791aa56b9c5f10635 schema:name Springer Nature - SN SciGraph project
103 rdf:type schema:Organization
104 N97b4128628264ac69f57792287cab227 rdf:first Nda7fbb0e88934f00a05f63f100fa3321
105 rdf:rest Nf0c436a0cc17440ca25fefad5de5ab7d
106 Nb8b34f91476c4886b9a0add961fbf1b4 schema:affiliation https://www.grid.ac/institutes/grid.7700.0
107 schema:familyName Masia
108 schema:givenName Lorenzo
109 rdf:type schema:Person
110 Nbfa6b6d0d31244f385753b725cc932c7 rdf:first N5a0a7d3a60f14e938ef40fb131161cbf
111 rdf:rest N97b4128628264ac69f57792287cab227
112 Nc0c75c1652c74ac88611e0653d914240 schema:name doi
113 schema:value 10.1186/s12984-019-0495-y
114 rdf:type schema:PropertyValue
115 Nc951ad27f3674f8098568075b6a82917 schema:affiliation https://www.grid.ac/institutes/grid.263145.7
116 schema:familyName Frisoli
117 schema:givenName Antonio
118 rdf:type schema:Person
119 Nd25bd32bfda34e85ad2ca3b80c504398 schema:name pubmed_id
120 schema:value 30791919
121 rdf:type schema:PropertyValue
122 Nda7fbb0e88934f00a05f63f100fa3321 schema:affiliation https://www.grid.ac/institutes/grid.263145.7
123 schema:familyName Chiaradia
124 schema:givenName Domenico
125 rdf:type schema:Person
126 Ndd6dee8fba7b43bb810d3fcdae01766b schema:name nlm_unique_id
127 schema:value 101232233
128 rdf:type schema:PropertyValue
129 Ndece92ad5dc34246a0660cb950590a4a schema:volumeNumber 16
130 rdf:type schema:PublicationVolume
131 Nf0c436a0cc17440ca25fefad5de5ab7d rdf:first Nc951ad27f3674f8098568075b6a82917
132 rdf:rest N39a80eab7b5f4b21bfac61dd54bdc57f
133 Nf56d7531b2cb4776be4b7c132048812d schema:name readcube_id
134 schema:value aa1d1a2ed3260fe88c01679e51bfe59feb0715842e6fae8903b17461f46ff48d
135 rdf:type schema:PropertyValue
136 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
137 schema:name Engineering
138 rdf:type schema:DefinedTerm
139 anzsrc-for:0903 schema:inDefinedTermSet anzsrc-for:
140 schema:name Biomedical Engineering
141 rdf:type schema:DefinedTerm
142 sg:journal.1034479 schema:issn 1743-0003
143 schema:name Journal of NeuroEngineering and Rehabilitation
144 rdf:type schema:Periodical
145 sg:pub.10.1007/978-3-319-46532-6_15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010916059
146 https://doi.org/10.1007/978-3-319-46532-6_15
147 rdf:type schema:CreativeWork
148 sg:pub.10.1023/a:1024484615192 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014065885
149 https://doi.org/10.1023/a:1024484615192
150 rdf:type schema:CreativeWork
151 sg:pub.10.1038/29406 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017369037
152 https://doi.org/10.1038/29406
153 rdf:type schema:CreativeWork
154 sg:pub.10.1038/nature14288 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041059533
155 https://doi.org/10.1038/nature14288
156 rdf:type schema:CreativeWork
157 sg:pub.10.1186/1743-0003-11-80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006160847
158 https://doi.org/10.1186/1743-0003-11-80
159 rdf:type schema:CreativeWork
160 sg:pub.10.1186/1743-0003-6-18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045458011
161 https://doi.org/10.1186/1743-0003-6-18
162 rdf:type schema:CreativeWork
163 sg:pub.10.1186/1743-0003-6-22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001735784
164 https://doi.org/10.1186/1743-0003-6-22
165 rdf:type schema:CreativeWork
166 sg:pub.10.1186/1743-0003-9-36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027647533
167 https://doi.org/10.1186/1743-0003-9-36
168 rdf:type schema:CreativeWork
169 sg:pub.10.1186/s12984-015-0090-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037073567
170 https://doi.org/10.1186/s12984-015-0090-9
171 rdf:type schema:CreativeWork
172 sg:pub.10.1186/s12984-016-0117-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1050190006
173 https://doi.org/10.1186/s12984-016-0117-x
174 rdf:type schema:CreativeWork
175 https://app.dimensions.ai/details/publication/pub.1076340083 schema:CreativeWork
176 https://doi.org/10.1016/0021-9290(86)90155-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005098706
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1016/j.clinbiomech.2004.03.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022229908
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1016/j.concog.2015.06.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021234462
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1016/j.jbiomech.2006.12.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036425873
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/j.neuropsychologia.2010.05.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028445924
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1016/j.plrev.2015.11.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025434108
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1016/j.robot.2014.08.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018191802
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1016/j.robot.2014.09.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041497100
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1016/j.robot.2017.03.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084106774
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1016/s1050-6411(00)00027-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025172379
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1016/s1050-6411(01)00033-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026397778
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1080/09638280802240290 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025125059
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1080/10255842.2017.1382835 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092429708
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1088/1748-3190/aad8d4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106055259
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1089/soro.2013.0001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050931185
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1097/phm.0b013e318269d9a3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015581081
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1109/biorob.2018.8487907 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107558184
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1109/icorr.2013.6650455 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078807723
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1109/iros.1995.525827 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095484896
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1109/iros.2005.1545451 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093736165
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1109/lra.2017.2668473 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083832942
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1109/lra.2017.2669366 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083936318
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1109/lra.2017.2722900 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090838006
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1109/mspec.2005.1515961 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061429021
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1109/robosoft.2018.8405386 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105428242
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1109/robosoft.2018.8405387 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105437359
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1109/robot.2004.1307433 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093420243
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1109/robot.2005.1570790 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094634674
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1109/robot.2010.5509346 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095001931
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1109/tmech.2015.2465849 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061693592
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1109/tnsre.2010.2056388 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061740482
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1109/tnsre.2016.2523250 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061741071
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1109/tnsre.2018.2815656 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101541371
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1109/tro.2009.2019147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061785032
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1115/detc2015-47871 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092824702
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1126/science.aal5054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086134503
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1126/scirobotics.aah4416 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084685501
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1126/scirobotics.aar5438 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101276732
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1126/scitranslmed.aai9084 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090905290
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1152/jn.00473.2005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036837332
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1152/jn.1997.77.3.1644 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083065391
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1177/2055668316680315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074242076
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1243/pime_proc_1996_210_420_02 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064470608
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1371/journal.pone.0173730 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084300888
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1523/jneurosci.05-07-01688.1985 schema:sameAs https://app.dimensions.ai/details/publication/pub.1080085642
265 rdf:type schema:CreativeWork
266 https://doi.org/10.23919/acc.2004.1384410 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104278254
267 rdf:type schema:CreativeWork
268 https://doi.org/10.3389/fnbot.2016.00013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002144764
269 rdf:type schema:CreativeWork
270 https://doi.org/10.3389/fnbot.2017.00057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092405760
271 rdf:type schema:CreativeWork
272 https://doi.org/10.3389/fnins.2017.00597 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092341480
273 rdf:type schema:CreativeWork
274 https://doi.org/10.3389/frobt.2018.00044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104039654
275 rdf:type schema:CreativeWork
276 https://doi.org/10.4271/670088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1096566923
277 rdf:type schema:CreativeWork
278 https://www.grid.ac/institutes/grid.263145.7 schema:alternateName Sant'Anna School of Advanced Studies
279 schema:name Scuola Superiore Sant’Anna, TeCIP Institute, PERCRO Laboratory, Pisa, Italy
280 rdf:type schema:Organization
281 https://www.grid.ac/institutes/grid.6214.1 schema:alternateName University of Twente
282 schema:name Department of Biomechanical Engineering, Faculty of Engineering and Technology, University of Twente, Enschede, Netherlands
283 Nanyang Technological University, Interdisciplinary Graduate School, 639798, Singapore, Singapore
284 Nanyang Technological University, Robotics Research Center, School of Mechanical & Aerospace Engineering, 639798, Singapore, Singapore
285 rdf:type schema:Organization
286 https://www.grid.ac/institutes/grid.7700.0 schema:alternateName Heidelberg University
287 schema:name Institut für Technische Informatik (ZITI), Faculty of Physics and Astronomy, Heidelberg Universit, Heidelberg, Germany
288 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...