An ancient retroviral RNA element hidden in mammalian genomes and its involvement in co-opted retroviral gene regulation View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-11-10

AUTHORS

Koichi Kitao, So Nakagawa, Takayuki Miyazawa

ABSTRACT

BackgroundRetroviruses utilize multiple unique RNA elements to control RNA processing and translation. However, it is unclear what functional RNA elements are present in endogenous retroviruses (ERVs). Gene co-option from ERVs sometimes entails the conservation of viral cis-elements required for gene expression, which might reveal the RNA regulation in ERVs.ResultsHere, we characterized an RNA element found in ERVs consisting of three specific sequence motifs, called SPRE. The SPRE-like elements were found in different ERV families but not in any exogenous viral sequences examined. We observed more than a thousand of copies of the SPRE-like elements in several mammalian genomes; in human and marmoset genomes, they overlapped with lineage-specific ERVs. SPRE was originally found in human syncytin-1 and syncytin-2. Indeed, several mammalian syncytin genes: mac-syncytin-3 of macaque, syncytin-Ten1 of tenrec, and syncytin-Car1 of Carnivora, contained the SPRE-like elements. A reporter assay revealed that the enhancement of gene expression by SPRE depended on the reporter genes. Mutation of SPRE impaired the wild-type syncytin-2 expression while the same mutation did not affect codon-optimized syncytin-2, suggesting that SPRE activity depends on the coding sequence.ConclusionsThese results indicate multiple independent invasions of various mammalian genomes by retroviruses harboring SPRE-like elements. Functional SPRE-like elements are found in several syncytin genes derived from these retroviruses. This element may facilitate the expression of viral genes, which were suppressed due to inefficient codon frequency or repressive elements within the coding sequences. These findings provide new insights into the long-term evolution of RNA elements and molecular mechanisms of gene expression in retroviruses. More... »

PAGES

36

References to SciGraph publications

  • 2020-02-01. Identification and characterization of ERV-W-like sequences in Platyrrhini species provides new insights into the evolutionary history of ERV-W in primates in MOBILE DNA
  • 2009-04-15. Analysis of transcribed human endogenous retrovirus W env loci clarifies the origin of multiple sclerosis-associated retrovirus envsequences in RETROVIROLOGY
  • 2018-01-19. HERV-W group evolutionary history in non-human primates: characterization of ERV-W orthologs in Catarrhini and related ERV groups in Platyrrhini in BMC ECOLOGY AND EVOLUTION
  • 2009-04-19. The regulated retrotransposon transcriptome of mammalian cells in NATURE GENETICS
  • 2013-02-10. Endogenous retroviruses function as species-specific enhancer elements in the placenta in NATURE GENETICS
  • 2016-01-22. Classification and characterization of human endogenous retroviruses; mosaic forms are common in RETROVIROLOGY
  • 2016-09-09. Contribution of type W human endogenous retroviruses to the human genome: characterization of HERV-W proviral insertions and processed pseudogenes in RETROVIROLOGY
  • 2014-01-29. Poly(A)-tail profiling reveals an embryonic switch in translational control in NATURE
  • 2000-02. Syncytin is a captive retroviral envelope protein involved in human placental morphogenesis in NATURE
  • 2017-11-06. Short poly(A) tails are a conserved feature of highly expressed genes in NATURE STRUCTURAL & MOLECULAR BIOLOGY
  • 2009-11-27. Identification of an endogenous retroviral envelope gene with fusogenic activity and placenta-specific expression in the rabbit: a new "syncytin" in a third order of mammals in RETROVIROLOGY
  • 1989-12. Specific binding of HIV-1 recombinant Rev protein to the Rev-responsive element in vitro in NATURE
  • 2016-11-21. Regulatory activities of transposable elements: from conflicts to benefits in NATURE REVIEWS GENETICS
  • 2000-06-01. Plat-E: an efficient and stable system for transient packaging of retroviruses in GENE THERAPY
  • 2004-10-11. Identification of endogenous retroviral reading frames in the human genome in RETROVIROLOGY
  • 2021-01-12. The Dfam community resource of transposable element families, sequence models, and genome annotations in MOBILE DNA
  • 1989-12. Sequence-specific RNA binding by the HIV-1 Rev protein in NATURE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s12977-021-00580-2

    DOI

    http://dx.doi.org/10.1186/s12977-021-00580-2

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1142452281

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/34753509


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Clinical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Callithrix", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Endogenous Retroviruses", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Evolution, Molecular", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Expression Regulation, Viral", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Products, env", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genome", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Macaca", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Mammals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Pregnancy Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "RNA, Viral", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Laboratory of Virus-Host Coevolution, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, 606-8507, Kyoto, Japan", 
              "id": "http://www.grid.ac/institutes/grid.258799.8", 
              "name": [
                "Laboratory of Virus-Host Coevolution, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, 606-8507, Kyoto, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kitao", 
            "givenName": "Koichi", 
            "id": "sg:person.015024453563.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015024453563.22"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Molecular Life Science, Tokai University School of Medicine, 259-1193, Isehara, Kanagawa, Japan", 
              "id": "http://www.grid.ac/institutes/grid.265061.6", 
              "name": [
                "Department of Molecular Life Science, Tokai University School of Medicine, 259-1193, Isehara, Kanagawa, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Nakagawa", 
            "givenName": "So", 
            "id": "sg:person.014747222722.84", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014747222722.84"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Laboratory of Virus-Host Coevolution, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, 606-8507, Kyoto, Japan", 
              "id": "http://www.grid.ac/institutes/grid.258799.8", 
              "name": [
                "Laboratory of Virus-Host Coevolution, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, 606-8507, Kyoto, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Miyazawa", 
            "givenName": "Takayuki", 
            "id": "sg:person.0775172041.42", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0775172041.42"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1186/s12977-016-0301-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018501425", 
              "https://doi.org/10.1186/s12977-016-0301-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35001608", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038551066", 
              "https://doi.org/10.1038/35001608"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13100-020-00230-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1134515506", 
              "https://doi.org/10.1186/s13100-020-00230-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/342816a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043689896", 
              "https://doi.org/10.1038/342816a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/342714a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018212492", 
              "https://doi.org/10.1038/342714a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature13007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039828985", 
              "https://doi.org/10.1038/nature13007"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg.2016.139", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034466564", 
              "https://doi.org/10.1038/nrg.2016.139"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1742-4690-6-107", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010287069", 
              "https://doi.org/10.1186/1742-4690-6-107"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12977-015-0232-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006533342", 
              "https://doi.org/10.1186/s12977-015-0232-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.2553", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050701683", 
              "https://doi.org/10.1038/ng.2553"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.gt.3301206", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032864882", 
              "https://doi.org/10.1038/sj.gt.3301206"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13100-020-0203-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1124485283", 
              "https://doi.org/10.1186/s13100-020-0203-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12862-018-1125-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100483161", 
              "https://doi.org/10.1186/s12862-018-1125-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.368", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027476610", 
              "https://doi.org/10.1038/ng.368"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1742-4690-1-32", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006239508", 
              "https://doi.org/10.1186/1742-4690-1-32"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1742-4690-6-37", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033837016", 
              "https://doi.org/10.1186/1742-4690-6-37"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nsmb.3499", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092545920", 
              "https://doi.org/10.1038/nsmb.3499"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2021-11-10", 
        "datePublishedReg": "2021-11-10", 
        "description": "BackgroundRetroviruses utilize multiple unique RNA elements to control RNA processing and translation. However, it is unclear what functional RNA elements are present in endogenous retroviruses (ERVs). Gene co-option from ERVs sometimes entails the conservation of viral cis-elements required for gene expression, which might reveal the RNA regulation in ERVs.ResultsHere, we characterized an RNA element found in ERVs consisting of three specific sequence motifs, called SPRE. The SPRE-like elements were found in different ERV families but not in any exogenous viral sequences examined. We observed more than a thousand of copies of the SPRE-like elements in several mammalian genomes; in human and marmoset genomes, they overlapped with lineage-specific ERVs. SPRE was originally found in human syncytin-1 and syncytin-2. Indeed, several mammalian syncytin genes: mac-syncytin-3 of macaque, syncytin-Ten1 of tenrec, and syncytin-Car1 of Carnivora, contained the SPRE-like elements. A reporter assay revealed that the enhancement of gene expression by SPRE depended on the reporter genes. Mutation of SPRE impaired the wild-type syncytin-2 expression while the same mutation did not affect codon-optimized syncytin-2, suggesting that SPRE activity depends on the coding sequence.ConclusionsThese results indicate multiple independent invasions of various mammalian genomes by retroviruses harboring SPRE-like elements. Functional SPRE-like elements are found in several syncytin genes derived from these retroviruses. This element may facilitate the expression of viral genes, which were suppressed due to inefficient codon frequency or repressive elements within the coding sequences. These findings provide new insights into the long-term evolution of RNA elements and molecular mechanisms of gene expression in retroviruses.", 
        "genre": "article", 
        "id": "sg:pub.10.1186/s12977-021-00580-2", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.9316881", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1033800", 
            "issn": [
              "1742-4690"
            ], 
            "name": "Retrovirology", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "18"
          }
        ], 
        "keywords": [
          "mammalian genomes", 
          "RNA elements", 
          "gene expression", 
          "endogenous retroviruses", 
          "syncytin genes", 
          "syncytin-2", 
          "multiple independent invasions", 
          "functional RNA elements", 
          "specific sequence motifs", 
          "human syncytin-1", 
          "Syncytin-2 expression", 
          "independent invasions", 
          "RNA regulation", 
          "RNA processing", 
          "gene regulation", 
          "ERV families", 
          "sequence motifs", 
          "exogenous viral sequences", 
          "marmoset genome", 
          "repressive elements", 
          "codon frequencies", 
          "reporter gene", 
          "genome", 
          "molecular mechanisms", 
          "viral genes", 
          "genes", 
          "syncytin-1", 
          "viral sequences", 
          "SprE", 
          "retroviruses", 
          "same mutation", 
          "expression", 
          "new insights", 
          "sequence", 
          "mutations", 
          "regulation", 
          "Carnivora", 
          "tenrecs", 
          "reporter", 
          "motif", 
          "conservation", 
          "copies", 
          "invasion", 
          "ResultsHere", 
          "family", 
          "translation", 
          "evolution", 
          "humans", 
          "insights", 
          "mechanism", 
          "elements", 
          "ConclusionsThese results", 
          "activity", 
          "macaques", 
          "involvement", 
          "long-term evolution", 
          "findings", 
          "results", 
          "processing", 
          "frequency", 
          "enhancement"
        ], 
        "name": "An ancient retroviral RNA element hidden in mammalian genomes and its involvement in co-opted retroviral gene regulation", 
        "pagination": "36", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1142452281"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s12977-021-00580-2"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "34753509"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s12977-021-00580-2", 
          "https://app.dimensions.ai/details/publication/pub.1142452281"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-10-01T06:48", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_880.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1186/s12977-021-00580-2"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12977-021-00580-2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12977-021-00580-2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12977-021-00580-2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12977-021-00580-2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    256 TRIPLES      21 PREDICATES      115 URIs      90 LITERALS      19 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s12977-021-00580-2 schema:about N37af57856a4a462c9008317792f28941
    2 N3cf041a71b5949498caf2b27b7bad493
    3 N490a9bc8f1ec4f3bba193958eafbd831
    4 N49535d3009764db1a5db87f04b97806a
    5 N5054df9b531c415bb036b474efee7e56
    6 N55987ebfe63049ef8998e5bdc48e4199
    7 N6f168c4536254d6c8bf4e4cb7f4dce86
    8 N9069704fc9d34891b2f282f1e7590bdb
    9 N97494c9c8413433caa65d552d9b25e37
    10 Ncd26aad5ae6a444fb4149c143edb03ce
    11 Ndf8b5840a3364b32be1d1fd70190e301
    12 Nfc94e1ee0e65467d9ee0bc8f1748e403
    13 anzsrc-for:11
    14 anzsrc-for:1103
    15 schema:author N530f69c08d5f44c082ecf9808ff9992b
    16 schema:citation sg:pub.10.1038/342714a0
    17 sg:pub.10.1038/342816a0
    18 sg:pub.10.1038/35001608
    19 sg:pub.10.1038/nature13007
    20 sg:pub.10.1038/ng.2553
    21 sg:pub.10.1038/ng.368
    22 sg:pub.10.1038/nrg.2016.139
    23 sg:pub.10.1038/nsmb.3499
    24 sg:pub.10.1038/sj.gt.3301206
    25 sg:pub.10.1186/1742-4690-1-32
    26 sg:pub.10.1186/1742-4690-6-107
    27 sg:pub.10.1186/1742-4690-6-37
    28 sg:pub.10.1186/s12862-018-1125-1
    29 sg:pub.10.1186/s12977-015-0232-y
    30 sg:pub.10.1186/s12977-016-0301-x
    31 sg:pub.10.1186/s13100-020-00230-y
    32 sg:pub.10.1186/s13100-020-0203-2
    33 schema:datePublished 2021-11-10
    34 schema:datePublishedReg 2021-11-10
    35 schema:description BackgroundRetroviruses utilize multiple unique RNA elements to control RNA processing and translation. However, it is unclear what functional RNA elements are present in endogenous retroviruses (ERVs). Gene co-option from ERVs sometimes entails the conservation of viral cis-elements required for gene expression, which might reveal the RNA regulation in ERVs.ResultsHere, we characterized an RNA element found in ERVs consisting of three specific sequence motifs, called SPRE. The SPRE-like elements were found in different ERV families but not in any exogenous viral sequences examined. We observed more than a thousand of copies of the SPRE-like elements in several mammalian genomes; in human and marmoset genomes, they overlapped with lineage-specific ERVs. SPRE was originally found in human syncytin-1 and syncytin-2. Indeed, several mammalian syncytin genes: mac-syncytin-3 of macaque, syncytin-Ten1 of tenrec, and syncytin-Car1 of Carnivora, contained the SPRE-like elements. A reporter assay revealed that the enhancement of gene expression by SPRE depended on the reporter genes. Mutation of SPRE impaired the wild-type syncytin-2 expression while the same mutation did not affect codon-optimized syncytin-2, suggesting that SPRE activity depends on the coding sequence.ConclusionsThese results indicate multiple independent invasions of various mammalian genomes by retroviruses harboring SPRE-like elements. Functional SPRE-like elements are found in several syncytin genes derived from these retroviruses. This element may facilitate the expression of viral genes, which were suppressed due to inefficient codon frequency or repressive elements within the coding sequences. These findings provide new insights into the long-term evolution of RNA elements and molecular mechanisms of gene expression in retroviruses.
    36 schema:genre article
    37 schema:isAccessibleForFree true
    38 schema:isPartOf N0760cc5fcef64197b329e503675863f4
    39 Nd72f2d1b24794aa79a79cc5815037c9e
    40 sg:journal.1033800
    41 schema:keywords Carnivora
    42 ConclusionsThese results
    43 ERV families
    44 RNA elements
    45 RNA processing
    46 RNA regulation
    47 ResultsHere
    48 SprE
    49 Syncytin-2 expression
    50 activity
    51 codon frequencies
    52 conservation
    53 copies
    54 elements
    55 endogenous retroviruses
    56 enhancement
    57 evolution
    58 exogenous viral sequences
    59 expression
    60 family
    61 findings
    62 frequency
    63 functional RNA elements
    64 gene expression
    65 gene regulation
    66 genes
    67 genome
    68 human syncytin-1
    69 humans
    70 independent invasions
    71 insights
    72 invasion
    73 involvement
    74 long-term evolution
    75 macaques
    76 mammalian genomes
    77 marmoset genome
    78 mechanism
    79 molecular mechanisms
    80 motif
    81 multiple independent invasions
    82 mutations
    83 new insights
    84 processing
    85 regulation
    86 reporter
    87 reporter gene
    88 repressive elements
    89 results
    90 retroviruses
    91 same mutation
    92 sequence
    93 sequence motifs
    94 specific sequence motifs
    95 syncytin genes
    96 syncytin-1
    97 syncytin-2
    98 tenrecs
    99 translation
    100 viral genes
    101 viral sequences
    102 schema:name An ancient retroviral RNA element hidden in mammalian genomes and its involvement in co-opted retroviral gene regulation
    103 schema:pagination 36
    104 schema:productId N7729bcb8989646a4aaaf6707d9028e1a
    105 N7b27cb45367f490da92c2e07ddb199a4
    106 Nb6f35c948c894d4c894a45d86712a3ea
    107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1142452281
    108 https://doi.org/10.1186/s12977-021-00580-2
    109 schema:sdDatePublished 2022-10-01T06:48
    110 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    111 schema:sdPublisher N8466cc9c2aef4085996b187b874f1214
    112 schema:url https://doi.org/10.1186/s12977-021-00580-2
    113 sgo:license sg:explorer/license/
    114 sgo:sdDataset articles
    115 rdf:type schema:ScholarlyArticle
    116 N0760cc5fcef64197b329e503675863f4 schema:volumeNumber 18
    117 rdf:type schema:PublicationVolume
    118 N37af57856a4a462c9008317792f28941 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    119 schema:name Evolution, Molecular
    120 rdf:type schema:DefinedTerm
    121 N3cf041a71b5949498caf2b27b7bad493 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    122 schema:name Pregnancy Proteins
    123 rdf:type schema:DefinedTerm
    124 N490a9bc8f1ec4f3bba193958eafbd831 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    125 schema:name Gene Expression Regulation, Viral
    126 rdf:type schema:DefinedTerm
    127 N49535d3009764db1a5db87f04b97806a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    128 schema:name Endogenous Retroviruses
    129 rdf:type schema:DefinedTerm
    130 N5054df9b531c415bb036b474efee7e56 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    131 schema:name RNA, Viral
    132 rdf:type schema:DefinedTerm
    133 N52511eab84ef468897b47055cb8ea139 rdf:first sg:person.0775172041.42
    134 rdf:rest rdf:nil
    135 N530f69c08d5f44c082ecf9808ff9992b rdf:first sg:person.015024453563.22
    136 rdf:rest Nfb90ec09e551442d94a78d3d43b5fa32
    137 N55987ebfe63049ef8998e5bdc48e4199 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    138 schema:name Genome
    139 rdf:type schema:DefinedTerm
    140 N6f168c4536254d6c8bf4e4cb7f4dce86 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    141 schema:name Animals
    142 rdf:type schema:DefinedTerm
    143 N7729bcb8989646a4aaaf6707d9028e1a schema:name doi
    144 schema:value 10.1186/s12977-021-00580-2
    145 rdf:type schema:PropertyValue
    146 N7b27cb45367f490da92c2e07ddb199a4 schema:name dimensions_id
    147 schema:value pub.1142452281
    148 rdf:type schema:PropertyValue
    149 N8466cc9c2aef4085996b187b874f1214 schema:name Springer Nature - SN SciGraph project
    150 rdf:type schema:Organization
    151 N9069704fc9d34891b2f282f1e7590bdb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    152 schema:name Callithrix
    153 rdf:type schema:DefinedTerm
    154 N97494c9c8413433caa65d552d9b25e37 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    155 schema:name Gene Products, env
    156 rdf:type schema:DefinedTerm
    157 Nb6f35c948c894d4c894a45d86712a3ea schema:name pubmed_id
    158 schema:value 34753509
    159 rdf:type schema:PropertyValue
    160 Ncd26aad5ae6a444fb4149c143edb03ce schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    161 schema:name Mammals
    162 rdf:type schema:DefinedTerm
    163 Nd72f2d1b24794aa79a79cc5815037c9e schema:issueNumber 1
    164 rdf:type schema:PublicationIssue
    165 Ndf8b5840a3364b32be1d1fd70190e301 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    166 schema:name Macaca
    167 rdf:type schema:DefinedTerm
    168 Nfb90ec09e551442d94a78d3d43b5fa32 rdf:first sg:person.014747222722.84
    169 rdf:rest N52511eab84ef468897b47055cb8ea139
    170 Nfc94e1ee0e65467d9ee0bc8f1748e403 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    171 schema:name Humans
    172 rdf:type schema:DefinedTerm
    173 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    174 schema:name Medical and Health Sciences
    175 rdf:type schema:DefinedTerm
    176 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
    177 schema:name Clinical Sciences
    178 rdf:type schema:DefinedTerm
    179 sg:grant.9316881 http://pending.schema.org/fundedItem sg:pub.10.1186/s12977-021-00580-2
    180 rdf:type schema:MonetaryGrant
    181 sg:journal.1033800 schema:issn 1742-4690
    182 schema:name Retrovirology
    183 schema:publisher Springer Nature
    184 rdf:type schema:Periodical
    185 sg:person.014747222722.84 schema:affiliation grid-institutes:grid.265061.6
    186 schema:familyName Nakagawa
    187 schema:givenName So
    188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014747222722.84
    189 rdf:type schema:Person
    190 sg:person.015024453563.22 schema:affiliation grid-institutes:grid.258799.8
    191 schema:familyName Kitao
    192 schema:givenName Koichi
    193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015024453563.22
    194 rdf:type schema:Person
    195 sg:person.0775172041.42 schema:affiliation grid-institutes:grid.258799.8
    196 schema:familyName Miyazawa
    197 schema:givenName Takayuki
    198 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0775172041.42
    199 rdf:type schema:Person
    200 sg:pub.10.1038/342714a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018212492
    201 https://doi.org/10.1038/342714a0
    202 rdf:type schema:CreativeWork
    203 sg:pub.10.1038/342816a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043689896
    204 https://doi.org/10.1038/342816a0
    205 rdf:type schema:CreativeWork
    206 sg:pub.10.1038/35001608 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038551066
    207 https://doi.org/10.1038/35001608
    208 rdf:type schema:CreativeWork
    209 sg:pub.10.1038/nature13007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039828985
    210 https://doi.org/10.1038/nature13007
    211 rdf:type schema:CreativeWork
    212 sg:pub.10.1038/ng.2553 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050701683
    213 https://doi.org/10.1038/ng.2553
    214 rdf:type schema:CreativeWork
    215 sg:pub.10.1038/ng.368 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027476610
    216 https://doi.org/10.1038/ng.368
    217 rdf:type schema:CreativeWork
    218 sg:pub.10.1038/nrg.2016.139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034466564
    219 https://doi.org/10.1038/nrg.2016.139
    220 rdf:type schema:CreativeWork
    221 sg:pub.10.1038/nsmb.3499 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092545920
    222 https://doi.org/10.1038/nsmb.3499
    223 rdf:type schema:CreativeWork
    224 sg:pub.10.1038/sj.gt.3301206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032864882
    225 https://doi.org/10.1038/sj.gt.3301206
    226 rdf:type schema:CreativeWork
    227 sg:pub.10.1186/1742-4690-1-32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006239508
    228 https://doi.org/10.1186/1742-4690-1-32
    229 rdf:type schema:CreativeWork
    230 sg:pub.10.1186/1742-4690-6-107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010287069
    231 https://doi.org/10.1186/1742-4690-6-107
    232 rdf:type schema:CreativeWork
    233 sg:pub.10.1186/1742-4690-6-37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033837016
    234 https://doi.org/10.1186/1742-4690-6-37
    235 rdf:type schema:CreativeWork
    236 sg:pub.10.1186/s12862-018-1125-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100483161
    237 https://doi.org/10.1186/s12862-018-1125-1
    238 rdf:type schema:CreativeWork
    239 sg:pub.10.1186/s12977-015-0232-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1006533342
    240 https://doi.org/10.1186/s12977-015-0232-y
    241 rdf:type schema:CreativeWork
    242 sg:pub.10.1186/s12977-016-0301-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1018501425
    243 https://doi.org/10.1186/s12977-016-0301-x
    244 rdf:type schema:CreativeWork
    245 sg:pub.10.1186/s13100-020-00230-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1134515506
    246 https://doi.org/10.1186/s13100-020-00230-y
    247 rdf:type schema:CreativeWork
    248 sg:pub.10.1186/s13100-020-0203-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1124485283
    249 https://doi.org/10.1186/s13100-020-0203-2
    250 rdf:type schema:CreativeWork
    251 grid-institutes:grid.258799.8 schema:alternateName Laboratory of Virus-Host Coevolution, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, 606-8507, Kyoto, Japan
    252 schema:name Laboratory of Virus-Host Coevolution, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, 606-8507, Kyoto, Japan
    253 rdf:type schema:Organization
    254 grid-institutes:grid.265061.6 schema:alternateName Department of Molecular Life Science, Tokai University School of Medicine, 259-1193, Isehara, Kanagawa, Japan
    255 schema:name Department of Molecular Life Science, Tokai University School of Medicine, 259-1193, Isehara, Kanagawa, Japan
    256 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...