Gene regulatory networks on transfer entropy (GRNTE): a novel approach to reconstruct gene regulatory interactions applied to a case study ... View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Juan Camilo Castro, Ivan Valdés, Laura Natalia Gonzalez-García, Giovanna Danies, Silvia Cañas, Flavia Vischi Winck, Carlos Eduardo Ñústez, Silvia Restrepo, Diego Mauricio Riaño-Pachón

ABSTRACT

BACKGROUND: The increasing amounts of genomics data have helped in the understanding of the molecular dynamics of complex systems such as plant and animal diseases. However, transcriptional regulation, although playing a central role in the decision-making process of cellular systems, is still poorly understood. In this study, we linked expression data with mathematical models to infer gene regulatory networks (GRN). We present a simple yet effective method to estimate transcription factors' GRNs from transcriptional data. METHOD: We defined interactions between pairs of genes (edges in the GRN) as the partial mutual information between these genes that takes into account time and possible lags in time from one gene in relation to another. We call this method Gene Regulatory Networks on Transfer Entropy (GRNTE) and it corresponds to Granger causality for Gaussian variables in an autoregressive model. To evaluate the reconstruction accuracy of our method, we generated several sub-networks from the GRN of the eukaryotic yeast model, Saccharomyces cerevisae. Then, we applied this method using experimental data of the plant pathogen Phytophthora infestans. We evaluated the transcriptional expression levels of 48 transcription factors of P. infestans during its interaction with one moderately resistant and one susceptible cultivar of yellow potato (Solanum tuberosum group Phureja), using RT-qPCR. With these data, we reconstructed the regulatory network of P. infestans during its interaction with these hosts. RESULTS: We first evaluated the performance of our method, based on the transfer entropy (GRNTE), on eukaryotic datasets from the GRNs of the yeast S. cerevisae. Results suggest that GRNTE is comparable with the state-of-the-art methods when the parameters for edge detection are properly tuned. In the case of P. infestans, most of the genes considered in this study, showed a significant change in expression from the onset of the interaction (0 h post inoculum - hpi) to the later time-points post inoculation. Hierarchical clustering of the expression data discriminated two distinct periods during the infection: from 12 to 36 hpi and from 48 to 72 hpi for both the moderately resistant and susceptible cultivars. These distinct periods could be associated with two phases of the life cycle of the pathogen when infecting the host plant: the biotrophic and necrotrophic phases. CONCLUSIONS: Here we presented an algorithmic solution to the problem of network reconstruction in time series data. This analytical perspective makes use of the dynamic nature of time series data as it relates to intrinsically dynamic processes such as transcription regulation, were multiple elements of the cell (e.g., transcription factors) act simultaneously and change over time. We applied the algorithm to study the regulatory network of P. infestans during its interaction with two hosts which differ in their level of resistance to the pathogen. Although the gene expression analysis did not show differences between the two hosts, the results of the GRN analyses evidenced rewiring of the genes' interactions according to the resistance level of the host. This suggests that different regulatory processes are activated in response to different environmental cues. Applications of our methodology showed that it could reliably predict where to place edges in the transcriptional networks and sub-networks. The experimental approach used here can help provide insights on the biological role of these interactions on complex processes such as pathogenicity. The code used is available at https://github.com/jccastrog/GRNTE under GNU general public license 3.0. More... »

PAGES

7

References to SciGraph publications

  • 2012-01. Communities, modules and large-scale structure in networks in NATURE PHYSICS
  • 2012-01. The network takeover in NATURE PHYSICS
  • 2000-02. Genetic mapping from field tests of qualitative and quantitative resistance to Phytophthora infestans in a population derived from Solanum tuberosum and Solanum berthaultii in MOLECULAR BREEDING
  • 2013-06. Data-driven reconstruction of directed networks in THE EUROPEAN PHYSICAL JOURNAL B
  • 2015. Hill Equation in Modeling Transcriptional Regulation in SYSTEMS AND SYNTHETIC BIOLOGY
  • 2009-01. RNA-Seq: a revolutionary tool for transcriptomics in NATURE REVIEWS GENETICS
  • 2016. An Introduction to Transfer Entropy in NONE
  • 2008-12. QuantPrime – a flexible tool for reliable high-throughput primer design for quantitative PCR in BMC BIOINFORMATICS
  • 2009-09. Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans in NATURE
  • 2004-09. Genomic analysis of regulatory network dynamics reveals large topological changes in NATURE
  • 2018-12. dynGENIE3: dynamical GENIE3 for the inference of gene networks from time series expression data in SCIENTIFIC REPORTS
  • 2004-02. Network biology: understanding the cell's functional organization in NATURE REVIEWS GENETICS
  • 2001-03. Exploring complex networks in NATURE
  • 2005-01. Assessing computational tools for the discovery of transcription factor binding sites in NATURE BIOTECHNOLOGY
  • 2006-03. ARACNE: An Algorithm for the Reconstruction of Gene Regulatory Networks in a Mammalian Cellular Context in BMC BIOINFORMATICS
  • 2010-12. TimeDelay-ARACNE: Reverse engineering of gene networks from time-course data by an information theoretic approach in BMC BIOINFORMATICS
  • 2015-08. Understanding the influence of all nodes in a network in SCIENTIFIC REPORTS
  • 2007-05. Genetic reconstruction of a functional transcriptional regulatory network in NATURE GENETICS
  • 2002-05. Topological and causal structure of the yeast transcriptional regulatory network in NATURE GENETICS
  • 2012-08. Wisdom of crowds for robust gene network inference in NATURE METHODS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s12976-019-0103-7

    DOI

    http://dx.doi.org/10.1186/s12976-019-0103-7

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1113300231

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30961611


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Universidad de Los Andes", 
              "id": "https://www.grid.ac/institutes/grid.7247.6", 
              "name": [
                "Department of Biological Sciences, Universidad de los Andes, Bogot\u00e1 D.C, Colombia."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Castro", 
            "givenName": "Juan Camilo", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Universidad de Los Andes", 
              "id": "https://www.grid.ac/institutes/grid.7247.6", 
              "name": [
                "Department of Biological Sciences, Universidad de los Andes, Bogot\u00e1 D.C, Colombia."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Vald\u00e9s", 
            "givenName": "Ivan", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Universidad de Los Andes", 
              "id": "https://www.grid.ac/institutes/grid.7247.6", 
              "name": [
                "Department of Biological Sciences, Universidad de los Andes, Bogot\u00e1 D.C, Colombia."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gonzalez-Garc\u00eda", 
            "givenName": "Laura Natalia", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Universidad de Los Andes", 
              "id": "https://www.grid.ac/institutes/grid.7247.6", 
              "name": [
                "Department of Design, Universidad de los Andes, Bogot\u00e1 D.C, Colombia."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Danies", 
            "givenName": "Giovanna", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Universidad de Los Andes", 
              "id": "https://www.grid.ac/institutes/grid.7247.6", 
              "name": [
                "Department of Biological Sciences, Universidad de los Andes, Bogot\u00e1 D.C, Colombia."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ca\u00f1as", 
            "givenName": "Silvia", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Sao Paulo", 
              "id": "https://www.grid.ac/institutes/grid.11899.38", 
              "name": [
                "Regulatory Systems Biology Laboratory, Department of Biochemistry, Institute of Chemistry, Universidade de S\u00e3o Paulo, S\u00e3o Paulo, SP, Brazil."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Winck", 
            "givenName": "Flavia Vischi", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National University of Colombia", 
              "id": "https://www.grid.ac/institutes/grid.10689.36", 
              "name": [
                "School of Agricultural Sciences, Universidad Nacional de Colombia, Bogot\u00e1 D.C, Colombia."
              ], 
              "type": "Organization"
            }, 
            "familyName": "\u00d1\u00fastez", 
            "givenName": "Carlos Eduardo", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Universidad de Los Andes", 
              "id": "https://www.grid.ac/institutes/grid.7247.6", 
              "name": [
                "Department of Biological Sciences, Universidad de los Andes, Bogot\u00e1 D.C, Colombia."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Restrepo", 
            "givenName": "Silvia", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Sao Paulo", 
              "id": "https://www.grid.ac/institutes/grid.11899.38", 
              "name": [
                "Computational, Evolutionary and Systems Biology Laboratory, Center for Nuclear Energy in Agriculture, Universidade de S\u00e3o Paulo, Piracicaba, SP, Brazil. diego.riano@cena.usp.br."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ria\u00f1o-Pach\u00f3n", 
            "givenName": "Diego Mauricio", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1126/science.1075090", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001953109"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.sbi.2004.05.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003820027"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1004784891", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-43222-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004784891", 
              "https://doi.org/10.1007/978-3-319-43222-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-017-9514-2_5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005000062", 
              "https://doi.org/10.1007/978-94-017-9514-2_5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng2012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005200656", 
              "https://doi.org/10.1038/ng2012"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng2012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005200656", 
              "https://doi.org/10.1038/ng2012"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35065725", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005249327", 
              "https://doi.org/10.1038/35065725"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35065725", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005249327", 
              "https://doi.org/10.1038/35065725"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1087-1845(03)00063-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007828006"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1087-1845(03)00063-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007828006"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.74.47", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008594690"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.74.47", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008594690"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0031526", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010599287"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/ec.00155-12", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010609259"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ipm.2009.03.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012321154"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys2162", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013107385", 
              "https://doi.org/10.1038/nphys2162"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3390/genes2040689", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015002389"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0601602103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016125157"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0012776", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016959201"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1364-3703.2007.00465.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017580115"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg1272", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018231980", 
              "https://doi.org/10.1038/nrg1272"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg1272", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018231980", 
              "https://doi.org/10.1038/nrg1272"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.122653799", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018411012"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0502024102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019703441"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep08665", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021419058", 
              "https://doi.org/10.1038/srep08665"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.2016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023029250", 
              "https://doi.org/10.1038/nmeth.2016"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-9-465", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024450931", 
              "https://doi.org/10.1186/1471-2105-9-465"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tcbb.2015.2450740", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024799942"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btg1069", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025271253"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.1309933111", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025347782"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08358", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025806080", 
              "https://doi.org/10.1038/nature08358"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08358", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025806080", 
              "https://doi.org/10.1038/nature08358"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1155/2015/347273", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027158994"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jtbi.2008.11.026", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030685580"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg2484", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030687647", 
              "https://doi.org/10.1038/nrg2484"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/29.9.e45", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030834024"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt1053", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030939237", 
              "https://doi.org/10.1038/nbt1053"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt1053", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030939237", 
              "https://doi.org/10.1038/nbt1053"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys2188", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032520587", 
              "https://doi.org/10.1038/nphys2188"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btr373", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033014701"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature02782", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033803529", 
              "https://doi.org/10.1038/nature02782"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature02782", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033803529", 
              "https://doi.org/10.1038/nature02782"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1677/jme.1.01755", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034001178"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1146/annurev.phyto.44.070505.143436", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035920979"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.80.056117", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036660715"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.80.056117", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036660715"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/1742-5468/2008/10/p10008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037912856"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1009648408198", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038023302", 
              "https://doi.org/10.1023/a:1009648408198"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0508637103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038436724"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0040246", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040193854"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.riam.2012.09.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042977900"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1140/epjb/e2013-31111-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043923778", 
              "https://doi.org/10.1140/epjb/e2013-31111-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0111841", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045564949"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng873", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046040073", 
              "https://doi.org/10.1038/ng873"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng873", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046040073", 
              "https://doi.org/10.1038/ng873"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-11-154", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048562011", 
              "https://doi.org/10.1186/1471-2105-11-154"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-11-154", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048562011", 
              "https://doi.org/10.1186/1471-2105-11-154"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0016835", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049220167"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.85.461", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050376104"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.85.461", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050376104"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0807404105", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051155891"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.ppat.1002940", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051265373"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-7-s1-s7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051833905", 
              "https://doi.org/10.1186/1471-2105-7-s1-s7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1365-313x.2010.04160.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052876910"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1365-313x.2010.04160.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052876910"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0913357107", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053354672"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1089/cmb.2008.09tt", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059245759"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1094/mpmi-21-4-0433", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060078731"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1094/phyto-99-1-0082", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060100729"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.103.238701", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060756333"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.103.238701", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060756333"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.99.204101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060834878"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.99.204101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060834878"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tpami.2005.159", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061742820"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tpami.2005.159", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061742820"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/040608635", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062845023"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4161/psb.5.6.11778", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072309343"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1171347", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1077935333"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cbms.2007.60", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094548090"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.1710936115", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100995726"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-018-21715-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101059625", 
              "https://doi.org/10.1038/s41598-018-21715-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-018-21715-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101059625", 
              "https://doi.org/10.1038/s41598-018-21715-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-018-21715-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101059625", 
              "https://doi.org/10.1038/s41598-018-21715-0"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-12", 
        "datePublishedReg": "2019-12-01", 
        "description": "BACKGROUND: The increasing amounts of genomics data have helped in the understanding of the molecular dynamics of complex systems such as plant and animal diseases. However, transcriptional regulation, although playing a central role in the decision-making process of cellular systems, is still poorly understood. In this study, we linked expression data with mathematical models to infer gene regulatory networks (GRN). We present a simple yet effective method to estimate transcription factors' GRNs from transcriptional data.\nMETHOD: We defined interactions between pairs of genes (edges in the GRN) as the partial mutual information between these genes that takes into account time and possible lags in time from one gene in relation to another. We call this method Gene Regulatory Networks on Transfer Entropy (GRNTE) and it corresponds to Granger causality for Gaussian variables in an autoregressive model. To evaluate the reconstruction accuracy of our method, we generated several sub-networks from the GRN of the eukaryotic yeast model, Saccharomyces cerevisae. Then, we applied this method using experimental data of the plant pathogen Phytophthora infestans. We evaluated the transcriptional expression levels of 48 transcription factors of P. infestans during its interaction with one moderately resistant and one susceptible cultivar of yellow potato (Solanum tuberosum group Phureja), using RT-qPCR. With these data, we reconstructed the regulatory network of P. infestans during its interaction with these hosts.\nRESULTS: We first evaluated the performance of our method, based on the transfer entropy (GRNTE), on eukaryotic datasets from the GRNs of the yeast S. cerevisae. Results suggest that GRNTE is comparable with the state-of-the-art methods when the parameters for edge detection are properly tuned. In the case of P. infestans, most of the genes considered in this study, showed a significant change in expression from the onset of the interaction (0\u2009h post inoculum - hpi) to the later time-points post inoculation. Hierarchical clustering of the expression data discriminated two distinct periods during the infection: from 12 to 36 hpi and from 48 to 72 hpi for both the moderately resistant and susceptible cultivars. These distinct periods could be associated with two phases of the life cycle of the pathogen when infecting the host plant: the biotrophic and necrotrophic phases.\nCONCLUSIONS: Here we presented an algorithmic solution to the problem of network reconstruction in time series data. This analytical perspective makes use of the dynamic nature of time series data as it relates to intrinsically dynamic processes such as transcription regulation, were multiple elements of the cell (e.g., transcription factors) act simultaneously and change over time. We applied the algorithm to study the regulatory network of P. infestans during its interaction with two hosts which differ in their level of resistance to the pathogen. Although the gene expression analysis did not show differences between the two hosts, the results of the GRN analyses evidenced rewiring of the genes' interactions according to the resistance level of the host. This suggests that different regulatory processes are activated in response to different environmental cues. Applications of our methodology showed that it could reliably predict where to place edges in the transcriptional networks and sub-networks. The experimental approach used here can help provide insights on the biological role of these interactions on complex processes such as pathogenicity. The code used is available at https://github.com/jccastrog/GRNTE under GNU general public license 3.0.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1186/s12976-019-0103-7", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1034054", 
            "issn": [
              "1742-4682"
            ], 
            "name": "Theoretical Biology and Medical Modelling", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "16"
          }
        ], 
        "name": "Gene regulatory networks on transfer entropy (GRNTE): a novel approach to reconstruct gene regulatory interactions applied to a case study for the plant pathogen Phytophthora infestans.", 
        "pagination": "7", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s12976-019-0103-7"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1113300231"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101224383"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30961611"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s12976-019-0103-7", 
          "https://app.dimensions.ai/details/publication/pub.1113300231"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-15T09:04", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000375_0000000375/records_91466_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://tbiomed.biomedcentral.com/articles/10.1186/s12976-019-0103-7"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12976-019-0103-7'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12976-019-0103-7'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12976-019-0103-7'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12976-019-0103-7'


     

    This table displays all metadata directly associated to this object as RDF triples.

    336 TRIPLES      21 PREDICATES      94 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s12976-019-0103-7 schema:about anzsrc-for:06
    2 anzsrc-for:0604
    3 schema:author N3f0596e566eb449eb194bf73d8df814c
    4 schema:citation sg:pub.10.1007/978-3-319-43222-9
    5 sg:pub.10.1007/978-94-017-9514-2_5
    6 sg:pub.10.1023/a:1009648408198
    7 sg:pub.10.1038/35065725
    8 sg:pub.10.1038/nature02782
    9 sg:pub.10.1038/nature08358
    10 sg:pub.10.1038/nbt1053
    11 sg:pub.10.1038/ng2012
    12 sg:pub.10.1038/ng873
    13 sg:pub.10.1038/nmeth.2016
    14 sg:pub.10.1038/nphys2162
    15 sg:pub.10.1038/nphys2188
    16 sg:pub.10.1038/nrg1272
    17 sg:pub.10.1038/nrg2484
    18 sg:pub.10.1038/s41598-018-21715-0
    19 sg:pub.10.1038/srep08665
    20 sg:pub.10.1140/epjb/e2013-31111-8
    21 sg:pub.10.1186/1471-2105-11-154
    22 sg:pub.10.1186/1471-2105-7-s1-s7
    23 sg:pub.10.1186/1471-2105-9-465
    24 https://app.dimensions.ai/details/publication/pub.1004784891
    25 https://doi.org/10.1016/j.ipm.2009.03.002
    26 https://doi.org/10.1016/j.jtbi.2008.11.026
    27 https://doi.org/10.1016/j.riam.2012.09.005
    28 https://doi.org/10.1016/j.sbi.2004.05.004
    29 https://doi.org/10.1016/s1087-1845(03)00063-x
    30 https://doi.org/10.1073/pnas.0502024102
    31 https://doi.org/10.1073/pnas.0508637103
    32 https://doi.org/10.1073/pnas.0601602103
    33 https://doi.org/10.1073/pnas.0807404105
    34 https://doi.org/10.1073/pnas.0913357107
    35 https://doi.org/10.1073/pnas.122653799
    36 https://doi.org/10.1073/pnas.1309933111
    37 https://doi.org/10.1073/pnas.1710936115
    38 https://doi.org/10.1088/1742-5468/2008/10/p10008
    39 https://doi.org/10.1089/cmb.2008.09tt
    40 https://doi.org/10.1093/bioinformatics/btg1069
    41 https://doi.org/10.1093/bioinformatics/btr373
    42 https://doi.org/10.1093/nar/29.9.e45
    43 https://doi.org/10.1094/mpmi-21-4-0433
    44 https://doi.org/10.1094/phyto-99-1-0082
    45 https://doi.org/10.1103/physreve.80.056117
    46 https://doi.org/10.1103/physrevlett.103.238701
    47 https://doi.org/10.1103/physrevlett.85.461
    48 https://doi.org/10.1103/physrevlett.99.204101
    49 https://doi.org/10.1103/revmodphys.74.47
    50 https://doi.org/10.1109/cbms.2007.60
    51 https://doi.org/10.1109/tcbb.2015.2450740
    52 https://doi.org/10.1109/tpami.2005.159
    53 https://doi.org/10.1111/j.1364-3703.2007.00465.x
    54 https://doi.org/10.1111/j.1365-313x.2010.04160.x
    55 https://doi.org/10.1126/science.1075090
    56 https://doi.org/10.1126/science.1171347
    57 https://doi.org/10.1128/ec.00155-12
    58 https://doi.org/10.1137/040608635
    59 https://doi.org/10.1146/annurev.phyto.44.070505.143436
    60 https://doi.org/10.1155/2015/347273
    61 https://doi.org/10.1371/journal.pone.0012776
    62 https://doi.org/10.1371/journal.pone.0016835
    63 https://doi.org/10.1371/journal.pone.0031526
    64 https://doi.org/10.1371/journal.pone.0040246
    65 https://doi.org/10.1371/journal.pone.0111841
    66 https://doi.org/10.1371/journal.ppat.1002940
    67 https://doi.org/10.1677/jme.1.01755
    68 https://doi.org/10.3390/genes2040689
    69 https://doi.org/10.4161/psb.5.6.11778
    70 schema:datePublished 2019-12
    71 schema:datePublishedReg 2019-12-01
    72 schema:description BACKGROUND: The increasing amounts of genomics data have helped in the understanding of the molecular dynamics of complex systems such as plant and animal diseases. However, transcriptional regulation, although playing a central role in the decision-making process of cellular systems, is still poorly understood. In this study, we linked expression data with mathematical models to infer gene regulatory networks (GRN). We present a simple yet effective method to estimate transcription factors' GRNs from transcriptional data. METHOD: We defined interactions between pairs of genes (edges in the GRN) as the partial mutual information between these genes that takes into account time and possible lags in time from one gene in relation to another. We call this method Gene Regulatory Networks on Transfer Entropy (GRNTE) and it corresponds to Granger causality for Gaussian variables in an autoregressive model. To evaluate the reconstruction accuracy of our method, we generated several sub-networks from the GRN of the eukaryotic yeast model, Saccharomyces cerevisae. Then, we applied this method using experimental data of the plant pathogen Phytophthora infestans. We evaluated the transcriptional expression levels of 48 transcription factors of P. infestans during its interaction with one moderately resistant and one susceptible cultivar of yellow potato (Solanum tuberosum group Phureja), using RT-qPCR. With these data, we reconstructed the regulatory network of P. infestans during its interaction with these hosts. RESULTS: We first evaluated the performance of our method, based on the transfer entropy (GRNTE), on eukaryotic datasets from the GRNs of the yeast S. cerevisae. Results suggest that GRNTE is comparable with the state-of-the-art methods when the parameters for edge detection are properly tuned. In the case of P. infestans, most of the genes considered in this study, showed a significant change in expression from the onset of the interaction (0 h post inoculum - hpi) to the later time-points post inoculation. Hierarchical clustering of the expression data discriminated two distinct periods during the infection: from 12 to 36 hpi and from 48 to 72 hpi for both the moderately resistant and susceptible cultivars. These distinct periods could be associated with two phases of the life cycle of the pathogen when infecting the host plant: the biotrophic and necrotrophic phases. CONCLUSIONS: Here we presented an algorithmic solution to the problem of network reconstruction in time series data. This analytical perspective makes use of the dynamic nature of time series data as it relates to intrinsically dynamic processes such as transcription regulation, were multiple elements of the cell (e.g., transcription factors) act simultaneously and change over time. We applied the algorithm to study the regulatory network of P. infestans during its interaction with two hosts which differ in their level of resistance to the pathogen. Although the gene expression analysis did not show differences between the two hosts, the results of the GRN analyses evidenced rewiring of the genes' interactions according to the resistance level of the host. This suggests that different regulatory processes are activated in response to different environmental cues. Applications of our methodology showed that it could reliably predict where to place edges in the transcriptional networks and sub-networks. The experimental approach used here can help provide insights on the biological role of these interactions on complex processes such as pathogenicity. The code used is available at https://github.com/jccastrog/GRNTE under GNU general public license 3.0.
    73 schema:genre research_article
    74 schema:inLanguage en
    75 schema:isAccessibleForFree true
    76 schema:isPartOf N3ce8fdbc4cab42f8b25ab1fc5c542b70
    77 N779b41f411cb473d8f05fa80509b9077
    78 sg:journal.1034054
    79 schema:name Gene regulatory networks on transfer entropy (GRNTE): a novel approach to reconstruct gene regulatory interactions applied to a case study for the plant pathogen Phytophthora infestans.
    80 schema:pagination 7
    81 schema:productId N27e3d5e233974d61b3f24895791a7826
    82 N54caa207a0324f96a345a16111747db5
    83 N56fbc2a444c44c0a8a010f65f8f890a8
    84 N8af726a037b54805bc34036fca069e32
    85 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113300231
    86 https://doi.org/10.1186/s12976-019-0103-7
    87 schema:sdDatePublished 2019-04-15T09:04
    88 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    89 schema:sdPublisher N821b45d4ff814e7ca1a86cfd001a61b9
    90 schema:url https://tbiomed.biomedcentral.com/articles/10.1186/s12976-019-0103-7
    91 sgo:license sg:explorer/license/
    92 sgo:sdDataset articles
    93 rdf:type schema:ScholarlyArticle
    94 N0b4125e66c0e4d939c654777661a7b03 schema:affiliation https://www.grid.ac/institutes/grid.7247.6
    95 schema:familyName Danies
    96 schema:givenName Giovanna
    97 rdf:type schema:Person
    98 N1aafd702e7e746b1a180f93e6473f3f6 rdf:first Nf41925c044264fdb866dc499ef20885c
    99 rdf:rest N3553dd9b8b884d53af46f79eb1d36f77
    100 N1db402c03c6e4746b1e9a29b7d4fb8b9 schema:affiliation https://www.grid.ac/institutes/grid.7247.6
    101 schema:familyName Castro
    102 schema:givenName Juan Camilo
    103 rdf:type schema:Person
    104 N27e3d5e233974d61b3f24895791a7826 schema:name pubmed_id
    105 schema:value 30961611
    106 rdf:type schema:PropertyValue
    107 N3553dd9b8b884d53af46f79eb1d36f77 rdf:first Ned2d12e80e5143df833fbba5dbb02f7d
    108 rdf:rest Nce6ef668e4c5467687cc4d690ca5426c
    109 N3ce8fdbc4cab42f8b25ab1fc5c542b70 schema:volumeNumber 16
    110 rdf:type schema:PublicationVolume
    111 N3e684db3b3224e70a18bd107b5c0940b rdf:first N6ec887b9dc7246b59c2fede85fcf75a7
    112 rdf:rest N1aafd702e7e746b1a180f93e6473f3f6
    113 N3f0596e566eb449eb194bf73d8df814c rdf:first N1db402c03c6e4746b1e9a29b7d4fb8b9
    114 rdf:rest Nb8fa0aacc53d4debb3d9d82bfc45b199
    115 N4fee7bad753a4907b09b2e9252dbc450 schema:affiliation https://www.grid.ac/institutes/grid.11899.38
    116 schema:familyName Riaño-Pachón
    117 schema:givenName Diego Mauricio
    118 rdf:type schema:Person
    119 N54caa207a0324f96a345a16111747db5 schema:name doi
    120 schema:value 10.1186/s12976-019-0103-7
    121 rdf:type schema:PropertyValue
    122 N56fbc2a444c44c0a8a010f65f8f890a8 schema:name nlm_unique_id
    123 schema:value 101224383
    124 rdf:type schema:PropertyValue
    125 N6ec887b9dc7246b59c2fede85fcf75a7 schema:affiliation https://www.grid.ac/institutes/grid.7247.6
    126 schema:familyName Cañas
    127 schema:givenName Silvia
    128 rdf:type schema:Person
    129 N779b41f411cb473d8f05fa80509b9077 schema:issueNumber 1
    130 rdf:type schema:PublicationIssue
    131 N7fb570ce9e5543aaab8f398707425421 rdf:first N0b4125e66c0e4d939c654777661a7b03
    132 rdf:rest N3e684db3b3224e70a18bd107b5c0940b
    133 N821b45d4ff814e7ca1a86cfd001a61b9 schema:name Springer Nature - SN SciGraph project
    134 rdf:type schema:Organization
    135 N8af726a037b54805bc34036fca069e32 schema:name dimensions_id
    136 schema:value pub.1113300231
    137 rdf:type schema:PropertyValue
    138 Na2fcfda8ffb64321bddaab1c5e4000f0 schema:affiliation https://www.grid.ac/institutes/grid.7247.6
    139 schema:familyName Restrepo
    140 schema:givenName Silvia
    141 rdf:type schema:Person
    142 Na52b002de6e4440a9ea280f057c935da schema:affiliation https://www.grid.ac/institutes/grid.7247.6
    143 schema:familyName Valdés
    144 schema:givenName Ivan
    145 rdf:type schema:Person
    146 Nb8fa0aacc53d4debb3d9d82bfc45b199 rdf:first Na52b002de6e4440a9ea280f057c935da
    147 rdf:rest Nf11a74c62d3b485cb99bfc2a154494a6
    148 Nce6ef668e4c5467687cc4d690ca5426c rdf:first Na2fcfda8ffb64321bddaab1c5e4000f0
    149 rdf:rest Nf8ebe47f58b74b39994984347597ef2c
    150 Ncf79b5681f254f998bae8c4a6b7177d7 schema:affiliation https://www.grid.ac/institutes/grid.7247.6
    151 schema:familyName Gonzalez-García
    152 schema:givenName Laura Natalia
    153 rdf:type schema:Person
    154 Ned2d12e80e5143df833fbba5dbb02f7d schema:affiliation https://www.grid.ac/institutes/grid.10689.36
    155 schema:familyName Ñústez
    156 schema:givenName Carlos Eduardo
    157 rdf:type schema:Person
    158 Nf11a74c62d3b485cb99bfc2a154494a6 rdf:first Ncf79b5681f254f998bae8c4a6b7177d7
    159 rdf:rest N7fb570ce9e5543aaab8f398707425421
    160 Nf41925c044264fdb866dc499ef20885c schema:affiliation https://www.grid.ac/institutes/grid.11899.38
    161 schema:familyName Winck
    162 schema:givenName Flavia Vischi
    163 rdf:type schema:Person
    164 Nf8ebe47f58b74b39994984347597ef2c rdf:first N4fee7bad753a4907b09b2e9252dbc450
    165 rdf:rest rdf:nil
    166 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    167 schema:name Biological Sciences
    168 rdf:type schema:DefinedTerm
    169 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    170 schema:name Genetics
    171 rdf:type schema:DefinedTerm
    172 sg:journal.1034054 schema:issn 1742-4682
    173 schema:name Theoretical Biology and Medical Modelling
    174 rdf:type schema:Periodical
    175 sg:pub.10.1007/978-3-319-43222-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004784891
    176 https://doi.org/10.1007/978-3-319-43222-9
    177 rdf:type schema:CreativeWork
    178 sg:pub.10.1007/978-94-017-9514-2_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005000062
    179 https://doi.org/10.1007/978-94-017-9514-2_5
    180 rdf:type schema:CreativeWork
    181 sg:pub.10.1023/a:1009648408198 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038023302
    182 https://doi.org/10.1023/a:1009648408198
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1038/35065725 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005249327
    185 https://doi.org/10.1038/35065725
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1038/nature02782 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033803529
    188 https://doi.org/10.1038/nature02782
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1038/nature08358 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025806080
    191 https://doi.org/10.1038/nature08358
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1038/nbt1053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030939237
    194 https://doi.org/10.1038/nbt1053
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1038/ng2012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005200656
    197 https://doi.org/10.1038/ng2012
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1038/ng873 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046040073
    200 https://doi.org/10.1038/ng873
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1038/nmeth.2016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023029250
    203 https://doi.org/10.1038/nmeth.2016
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1038/nphys2162 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013107385
    206 https://doi.org/10.1038/nphys2162
    207 rdf:type schema:CreativeWork
    208 sg:pub.10.1038/nphys2188 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032520587
    209 https://doi.org/10.1038/nphys2188
    210 rdf:type schema:CreativeWork
    211 sg:pub.10.1038/nrg1272 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018231980
    212 https://doi.org/10.1038/nrg1272
    213 rdf:type schema:CreativeWork
    214 sg:pub.10.1038/nrg2484 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030687647
    215 https://doi.org/10.1038/nrg2484
    216 rdf:type schema:CreativeWork
    217 sg:pub.10.1038/s41598-018-21715-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101059625
    218 https://doi.org/10.1038/s41598-018-21715-0
    219 rdf:type schema:CreativeWork
    220 sg:pub.10.1038/srep08665 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021419058
    221 https://doi.org/10.1038/srep08665
    222 rdf:type schema:CreativeWork
    223 sg:pub.10.1140/epjb/e2013-31111-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043923778
    224 https://doi.org/10.1140/epjb/e2013-31111-8
    225 rdf:type schema:CreativeWork
    226 sg:pub.10.1186/1471-2105-11-154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048562011
    227 https://doi.org/10.1186/1471-2105-11-154
    228 rdf:type schema:CreativeWork
    229 sg:pub.10.1186/1471-2105-7-s1-s7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051833905
    230 https://doi.org/10.1186/1471-2105-7-s1-s7
    231 rdf:type schema:CreativeWork
    232 sg:pub.10.1186/1471-2105-9-465 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024450931
    233 https://doi.org/10.1186/1471-2105-9-465
    234 rdf:type schema:CreativeWork
    235 https://app.dimensions.ai/details/publication/pub.1004784891 schema:CreativeWork
    236 https://doi.org/10.1016/j.ipm.2009.03.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012321154
    237 rdf:type schema:CreativeWork
    238 https://doi.org/10.1016/j.jtbi.2008.11.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030685580
    239 rdf:type schema:CreativeWork
    240 https://doi.org/10.1016/j.riam.2012.09.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042977900
    241 rdf:type schema:CreativeWork
    242 https://doi.org/10.1016/j.sbi.2004.05.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003820027
    243 rdf:type schema:CreativeWork
    244 https://doi.org/10.1016/s1087-1845(03)00063-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1007828006
    245 rdf:type schema:CreativeWork
    246 https://doi.org/10.1073/pnas.0502024102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019703441
    247 rdf:type schema:CreativeWork
    248 https://doi.org/10.1073/pnas.0508637103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038436724
    249 rdf:type schema:CreativeWork
    250 https://doi.org/10.1073/pnas.0601602103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016125157
    251 rdf:type schema:CreativeWork
    252 https://doi.org/10.1073/pnas.0807404105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051155891
    253 rdf:type schema:CreativeWork
    254 https://doi.org/10.1073/pnas.0913357107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053354672
    255 rdf:type schema:CreativeWork
    256 https://doi.org/10.1073/pnas.122653799 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018411012
    257 rdf:type schema:CreativeWork
    258 https://doi.org/10.1073/pnas.1309933111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025347782
    259 rdf:type schema:CreativeWork
    260 https://doi.org/10.1073/pnas.1710936115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100995726
    261 rdf:type schema:CreativeWork
    262 https://doi.org/10.1088/1742-5468/2008/10/p10008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037912856
    263 rdf:type schema:CreativeWork
    264 https://doi.org/10.1089/cmb.2008.09tt schema:sameAs https://app.dimensions.ai/details/publication/pub.1059245759
    265 rdf:type schema:CreativeWork
    266 https://doi.org/10.1093/bioinformatics/btg1069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025271253
    267 rdf:type schema:CreativeWork
    268 https://doi.org/10.1093/bioinformatics/btr373 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033014701
    269 rdf:type schema:CreativeWork
    270 https://doi.org/10.1093/nar/29.9.e45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030834024
    271 rdf:type schema:CreativeWork
    272 https://doi.org/10.1094/mpmi-21-4-0433 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060078731
    273 rdf:type schema:CreativeWork
    274 https://doi.org/10.1094/phyto-99-1-0082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060100729
    275 rdf:type schema:CreativeWork
    276 https://doi.org/10.1103/physreve.80.056117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036660715
    277 rdf:type schema:CreativeWork
    278 https://doi.org/10.1103/physrevlett.103.238701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060756333
    279 rdf:type schema:CreativeWork
    280 https://doi.org/10.1103/physrevlett.85.461 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050376104
    281 rdf:type schema:CreativeWork
    282 https://doi.org/10.1103/physrevlett.99.204101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060834878
    283 rdf:type schema:CreativeWork
    284 https://doi.org/10.1103/revmodphys.74.47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008594690
    285 rdf:type schema:CreativeWork
    286 https://doi.org/10.1109/cbms.2007.60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094548090
    287 rdf:type schema:CreativeWork
    288 https://doi.org/10.1109/tcbb.2015.2450740 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024799942
    289 rdf:type schema:CreativeWork
    290 https://doi.org/10.1109/tpami.2005.159 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061742820
    291 rdf:type schema:CreativeWork
    292 https://doi.org/10.1111/j.1364-3703.2007.00465.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1017580115
    293 rdf:type schema:CreativeWork
    294 https://doi.org/10.1111/j.1365-313x.2010.04160.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1052876910
    295 rdf:type schema:CreativeWork
    296 https://doi.org/10.1126/science.1075090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001953109
    297 rdf:type schema:CreativeWork
    298 https://doi.org/10.1126/science.1171347 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077935333
    299 rdf:type schema:CreativeWork
    300 https://doi.org/10.1128/ec.00155-12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010609259
    301 rdf:type schema:CreativeWork
    302 https://doi.org/10.1137/040608635 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062845023
    303 rdf:type schema:CreativeWork
    304 https://doi.org/10.1146/annurev.phyto.44.070505.143436 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035920979
    305 rdf:type schema:CreativeWork
    306 https://doi.org/10.1155/2015/347273 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027158994
    307 rdf:type schema:CreativeWork
    308 https://doi.org/10.1371/journal.pone.0012776 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016959201
    309 rdf:type schema:CreativeWork
    310 https://doi.org/10.1371/journal.pone.0016835 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049220167
    311 rdf:type schema:CreativeWork
    312 https://doi.org/10.1371/journal.pone.0031526 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010599287
    313 rdf:type schema:CreativeWork
    314 https://doi.org/10.1371/journal.pone.0040246 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040193854
    315 rdf:type schema:CreativeWork
    316 https://doi.org/10.1371/journal.pone.0111841 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045564949
    317 rdf:type schema:CreativeWork
    318 https://doi.org/10.1371/journal.ppat.1002940 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051265373
    319 rdf:type schema:CreativeWork
    320 https://doi.org/10.1677/jme.1.01755 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034001178
    321 rdf:type schema:CreativeWork
    322 https://doi.org/10.3390/genes2040689 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015002389
    323 rdf:type schema:CreativeWork
    324 https://doi.org/10.4161/psb.5.6.11778 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072309343
    325 rdf:type schema:CreativeWork
    326 https://www.grid.ac/institutes/grid.10689.36 schema:alternateName National University of Colombia
    327 schema:name School of Agricultural Sciences, Universidad Nacional de Colombia, Bogotá D.C, Colombia.
    328 rdf:type schema:Organization
    329 https://www.grid.ac/institutes/grid.11899.38 schema:alternateName University of Sao Paulo
    330 schema:name Computational, Evolutionary and Systems Biology Laboratory, Center for Nuclear Energy in Agriculture, Universidade de São Paulo, Piracicaba, SP, Brazil. diego.riano@cena.usp.br.
    331 Regulatory Systems Biology Laboratory, Department of Biochemistry, Institute of Chemistry, Universidade de São Paulo, São Paulo, SP, Brazil.
    332 rdf:type schema:Organization
    333 https://www.grid.ac/institutes/grid.7247.6 schema:alternateName Universidad de Los Andes
    334 schema:name Department of Biological Sciences, Universidad de los Andes, Bogotá D.C, Colombia.
    335 Department of Design, Universidad de los Andes, Bogotá D.C, Colombia.
    336 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...