Gene regulatory networks on transfer entropy (GRNTE): a novel approach to reconstruct gene regulatory interactions applied to a case study ... View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Juan Camilo Castro, Ivan Valdés, Laura Natalia Gonzalez-García, Giovanna Danies, Silvia Cañas, Flavia Vischi Winck, Carlos Eduardo Ñústez, Silvia Restrepo, Diego Mauricio Riaño-Pachón

ABSTRACT

BACKGROUND: The increasing amounts of genomics data have helped in the understanding of the molecular dynamics of complex systems such as plant and animal diseases. However, transcriptional regulation, although playing a central role in the decision-making process of cellular systems, is still poorly understood. In this study, we linked expression data with mathematical models to infer gene regulatory networks (GRN). We present a simple yet effective method to estimate transcription factors' GRNs from transcriptional data. METHOD: We defined interactions between pairs of genes (edges in the GRN) as the partial mutual information between these genes that takes into account time and possible lags in time from one gene in relation to another. We call this method Gene Regulatory Networks on Transfer Entropy (GRNTE) and it corresponds to Granger causality for Gaussian variables in an autoregressive model. To evaluate the reconstruction accuracy of our method, we generated several sub-networks from the GRN of the eukaryotic yeast model, Saccharomyces cerevisae. Then, we applied this method using experimental data of the plant pathogen Phytophthora infestans. We evaluated the transcriptional expression levels of 48 transcription factors of P. infestans during its interaction with one moderately resistant and one susceptible cultivar of yellow potato (Solanum tuberosum group Phureja), using RT-qPCR. With these data, we reconstructed the regulatory network of P. infestans during its interaction with these hosts. RESULTS: We first evaluated the performance of our method, based on the transfer entropy (GRNTE), on eukaryotic datasets from the GRNs of the yeast S. cerevisae. Results suggest that GRNTE is comparable with the state-of-the-art methods when the parameters for edge detection are properly tuned. In the case of P. infestans, most of the genes considered in this study, showed a significant change in expression from the onset of the interaction (0 h post inoculum - hpi) to the later time-points post inoculation. Hierarchical clustering of the expression data discriminated two distinct periods during the infection: from 12 to 36 hpi and from 48 to 72 hpi for both the moderately resistant and susceptible cultivars. These distinct periods could be associated with two phases of the life cycle of the pathogen when infecting the host plant: the biotrophic and necrotrophic phases. CONCLUSIONS: Here we presented an algorithmic solution to the problem of network reconstruction in time series data. This analytical perspective makes use of the dynamic nature of time series data as it relates to intrinsically dynamic processes such as transcription regulation, were multiple elements of the cell (e.g., transcription factors) act simultaneously and change over time. We applied the algorithm to study the regulatory network of P. infestans during its interaction with two hosts which differ in their level of resistance to the pathogen. Although the gene expression analysis did not show differences between the two hosts, the results of the GRN analyses evidenced rewiring of the genes' interactions according to the resistance level of the host. This suggests that different regulatory processes are activated in response to different environmental cues. Applications of our methodology showed that it could reliably predict where to place edges in the transcriptional networks and sub-networks. The experimental approach used here can help provide insights on the biological role of these interactions on complex processes such as pathogenicity. The code used is available at https://github.com/jccastrog/GRNTE under GNU general public license 3.0. More... »

PAGES

7

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12976-019-0103-7

DOI

http://dx.doi.org/10.1186/s12976-019-0103-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113300231

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30961611


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Universidad de Los Andes", 
          "id": "https://www.grid.ac/institutes/grid.7247.6", 
          "name": [
            "Department of Biological Sciences, Universidad de los Andes, Bogot\u00e1 D.C, Colombia."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Castro", 
        "givenName": "Juan Camilo", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universidad de Los Andes", 
          "id": "https://www.grid.ac/institutes/grid.7247.6", 
          "name": [
            "Department of Biological Sciences, Universidad de los Andes, Bogot\u00e1 D.C, Colombia."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vald\u00e9s", 
        "givenName": "Ivan", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universidad de Los Andes", 
          "id": "https://www.grid.ac/institutes/grid.7247.6", 
          "name": [
            "Department of Biological Sciences, Universidad de los Andes, Bogot\u00e1 D.C, Colombia."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gonzalez-Garc\u00eda", 
        "givenName": "Laura Natalia", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universidad de Los Andes", 
          "id": "https://www.grid.ac/institutes/grid.7247.6", 
          "name": [
            "Department of Design, Universidad de los Andes, Bogot\u00e1 D.C, Colombia."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Danies", 
        "givenName": "Giovanna", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universidad de Los Andes", 
          "id": "https://www.grid.ac/institutes/grid.7247.6", 
          "name": [
            "Department of Biological Sciences, Universidad de los Andes, Bogot\u00e1 D.C, Colombia."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ca\u00f1as", 
        "givenName": "Silvia", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Sao Paulo", 
          "id": "https://www.grid.ac/institutes/grid.11899.38", 
          "name": [
            "Regulatory Systems Biology Laboratory, Department of Biochemistry, Institute of Chemistry, Universidade de S\u00e3o Paulo, S\u00e3o Paulo, SP, Brazil."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Winck", 
        "givenName": "Flavia Vischi", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University of Colombia", 
          "id": "https://www.grid.ac/institutes/grid.10689.36", 
          "name": [
            "School of Agricultural Sciences, Universidad Nacional de Colombia, Bogot\u00e1 D.C, Colombia."
          ], 
          "type": "Organization"
        }, 
        "familyName": "\u00d1\u00fastez", 
        "givenName": "Carlos Eduardo", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universidad de Los Andes", 
          "id": "https://www.grid.ac/institutes/grid.7247.6", 
          "name": [
            "Department of Biological Sciences, Universidad de los Andes, Bogot\u00e1 D.C, Colombia."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Restrepo", 
        "givenName": "Silvia", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Sao Paulo", 
          "id": "https://www.grid.ac/institutes/grid.11899.38", 
          "name": [
            "Computational, Evolutionary and Systems Biology Laboratory, Center for Nuclear Energy in Agriculture, Universidade de S\u00e3o Paulo, Piracicaba, SP, Brazil. diego.riano@cena.usp.br."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ria\u00f1o-Pach\u00f3n", 
        "givenName": "Diego Mauricio", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1126/science.1075090", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001953109"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.sbi.2004.05.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003820027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1004784891", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-43222-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004784891", 
          "https://doi.org/10.1007/978-3-319-43222-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-017-9514-2_5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005000062", 
          "https://doi.org/10.1007/978-94-017-9514-2_5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng2012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005200656", 
          "https://doi.org/10.1038/ng2012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng2012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005200656", 
          "https://doi.org/10.1038/ng2012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35065725", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005249327", 
          "https://doi.org/10.1038/35065725"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35065725", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005249327", 
          "https://doi.org/10.1038/35065725"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1087-1845(03)00063-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007828006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1087-1845(03)00063-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007828006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.74.47", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008594690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.74.47", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008594690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0031526", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010599287"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/ec.00155-12", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010609259"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ipm.2009.03.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012321154"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys2162", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013107385", 
          "https://doi.org/10.1038/nphys2162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/genes2040689", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015002389"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0601602103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016125157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0012776", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016959201"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1364-3703.2007.00465.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017580115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg1272", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018231980", 
          "https://doi.org/10.1038/nrg1272"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg1272", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018231980", 
          "https://doi.org/10.1038/nrg1272"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.122653799", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018411012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0502024102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019703441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep08665", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021419058", 
          "https://doi.org/10.1038/srep08665"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.2016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023029250", 
          "https://doi.org/10.1038/nmeth.2016"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-9-465", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024450931", 
          "https://doi.org/10.1186/1471-2105-9-465"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcbb.2015.2450740", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024799942"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btg1069", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025271253"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1309933111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025347782"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08358", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025806080", 
          "https://doi.org/10.1038/nature08358"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08358", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025806080", 
          "https://doi.org/10.1038/nature08358"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2015/347273", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027158994"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jtbi.2008.11.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030685580"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg2484", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030687647", 
          "https://doi.org/10.1038/nrg2484"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/29.9.e45", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030834024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030939237", 
          "https://doi.org/10.1038/nbt1053"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030939237", 
          "https://doi.org/10.1038/nbt1053"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys2188", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032520587", 
          "https://doi.org/10.1038/nphys2188"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btr373", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033014701"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02782", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033803529", 
          "https://doi.org/10.1038/nature02782"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02782", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033803529", 
          "https://doi.org/10.1038/nature02782"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1677/jme.1.01755", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034001178"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.phyto.44.070505.143436", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035920979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.80.056117", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036660715"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.80.056117", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036660715"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1742-5468/2008/10/p10008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037912856"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1009648408198", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038023302", 
          "https://doi.org/10.1023/a:1009648408198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0508637103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038436724"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0040246", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040193854"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.riam.2012.09.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042977900"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjb/e2013-31111-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043923778", 
          "https://doi.org/10.1140/epjb/e2013-31111-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0111841", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045564949"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng873", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046040073", 
          "https://doi.org/10.1038/ng873"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng873", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046040073", 
          "https://doi.org/10.1038/ng873"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-11-154", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048562011", 
          "https://doi.org/10.1186/1471-2105-11-154"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-11-154", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048562011", 
          "https://doi.org/10.1186/1471-2105-11-154"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0016835", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049220167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.85.461", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050376104"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.85.461", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050376104"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0807404105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051155891"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.ppat.1002940", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051265373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-7-s1-s7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051833905", 
          "https://doi.org/10.1186/1471-2105-7-s1-s7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-313x.2010.04160.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052876910"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-313x.2010.04160.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052876910"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0913357107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053354672"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/cmb.2008.09tt", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059245759"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1094/mpmi-21-4-0433", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060078731"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1094/phyto-99-1-0082", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060100729"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.103.238701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060756333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.103.238701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060756333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.204101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060834878"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.204101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060834878"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2005.159", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061742820"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2005.159", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061742820"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/040608635", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062845023"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4161/psb.5.6.11778", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072309343"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1171347", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077935333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cbms.2007.60", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094548090"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1710936115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100995726"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-018-21715-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101059625", 
          "https://doi.org/10.1038/s41598-018-21715-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-018-21715-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101059625", 
          "https://doi.org/10.1038/s41598-018-21715-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-018-21715-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101059625", 
          "https://doi.org/10.1038/s41598-018-21715-0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "BACKGROUND: The increasing amounts of genomics data have helped in the understanding of the molecular dynamics of complex systems such as plant and animal diseases. However, transcriptional regulation, although playing a central role in the decision-making process of cellular systems, is still poorly understood. In this study, we linked expression data with mathematical models to infer gene regulatory networks (GRN). We present a simple yet effective method to estimate transcription factors' GRNs from transcriptional data.\nMETHOD: We defined interactions between pairs of genes (edges in the GRN) as the partial mutual information between these genes that takes into account time and possible lags in time from one gene in relation to another. We call this method Gene Regulatory Networks on Transfer Entropy (GRNTE) and it corresponds to Granger causality for Gaussian variables in an autoregressive model. To evaluate the reconstruction accuracy of our method, we generated several sub-networks from the GRN of the eukaryotic yeast model, Saccharomyces cerevisae. Then, we applied this method using experimental data of the plant pathogen Phytophthora infestans. We evaluated the transcriptional expression levels of 48 transcription factors of P. infestans during its interaction with one moderately resistant and one susceptible cultivar of yellow potato (Solanum tuberosum group Phureja), using RT-qPCR. With these data, we reconstructed the regulatory network of P. infestans during its interaction with these hosts.\nRESULTS: We first evaluated the performance of our method, based on the transfer entropy (GRNTE), on eukaryotic datasets from the GRNs of the yeast S. cerevisae. Results suggest that GRNTE is comparable with the state-of-the-art methods when the parameters for edge detection are properly tuned. In the case of P. infestans, most of the genes considered in this study, showed a significant change in expression from the onset of the interaction (0\u2009h post inoculum - hpi) to the later time-points post inoculation. Hierarchical clustering of the expression data discriminated two distinct periods during the infection: from 12 to 36 hpi and from 48 to 72 hpi for both the moderately resistant and susceptible cultivars. These distinct periods could be associated with two phases of the life cycle of the pathogen when infecting the host plant: the biotrophic and necrotrophic phases.\nCONCLUSIONS: Here we presented an algorithmic solution to the problem of network reconstruction in time series data. This analytical perspective makes use of the dynamic nature of time series data as it relates to intrinsically dynamic processes such as transcription regulation, were multiple elements of the cell (e.g., transcription factors) act simultaneously and change over time. We applied the algorithm to study the regulatory network of P. infestans during its interaction with two hosts which differ in their level of resistance to the pathogen. Although the gene expression analysis did not show differences between the two hosts, the results of the GRN analyses evidenced rewiring of the genes' interactions according to the resistance level of the host. This suggests that different regulatory processes are activated in response to different environmental cues. Applications of our methodology showed that it could reliably predict where to place edges in the transcriptional networks and sub-networks. The experimental approach used here can help provide insights on the biological role of these interactions on complex processes such as pathogenicity. The code used is available at https://github.com/jccastrog/GRNTE under GNU general public license 3.0.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12976-019-0103-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1034054", 
        "issn": [
          "1742-4682"
        ], 
        "name": "Theoretical Biology and Medical Modelling", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "16"
      }
    ], 
    "name": "Gene regulatory networks on transfer entropy (GRNTE): a novel approach to reconstruct gene regulatory interactions applied to a case study for the plant pathogen Phytophthora infestans.", 
    "pagination": "7", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12976-019-0103-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113300231"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101224383"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30961611"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12976-019-0103-7", 
      "https://app.dimensions.ai/details/publication/pub.1113300231"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-15T09:04", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000375_0000000375/records_91466_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://tbiomed.biomedcentral.com/articles/10.1186/s12976-019-0103-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12976-019-0103-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12976-019-0103-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12976-019-0103-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12976-019-0103-7'


 

This table displays all metadata directly associated to this object as RDF triples.

336 TRIPLES      21 PREDICATES      94 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12976-019-0103-7 schema:about anzsrc-for:06
2 anzsrc-for:0604
3 schema:author Nd11410d0d5b740d7b16ec27ad73019eb
4 schema:citation sg:pub.10.1007/978-3-319-43222-9
5 sg:pub.10.1007/978-94-017-9514-2_5
6 sg:pub.10.1023/a:1009648408198
7 sg:pub.10.1038/35065725
8 sg:pub.10.1038/nature02782
9 sg:pub.10.1038/nature08358
10 sg:pub.10.1038/nbt1053
11 sg:pub.10.1038/ng2012
12 sg:pub.10.1038/ng873
13 sg:pub.10.1038/nmeth.2016
14 sg:pub.10.1038/nphys2162
15 sg:pub.10.1038/nphys2188
16 sg:pub.10.1038/nrg1272
17 sg:pub.10.1038/nrg2484
18 sg:pub.10.1038/s41598-018-21715-0
19 sg:pub.10.1038/srep08665
20 sg:pub.10.1140/epjb/e2013-31111-8
21 sg:pub.10.1186/1471-2105-11-154
22 sg:pub.10.1186/1471-2105-7-s1-s7
23 sg:pub.10.1186/1471-2105-9-465
24 https://app.dimensions.ai/details/publication/pub.1004784891
25 https://doi.org/10.1016/j.ipm.2009.03.002
26 https://doi.org/10.1016/j.jtbi.2008.11.026
27 https://doi.org/10.1016/j.riam.2012.09.005
28 https://doi.org/10.1016/j.sbi.2004.05.004
29 https://doi.org/10.1016/s1087-1845(03)00063-x
30 https://doi.org/10.1073/pnas.0502024102
31 https://doi.org/10.1073/pnas.0508637103
32 https://doi.org/10.1073/pnas.0601602103
33 https://doi.org/10.1073/pnas.0807404105
34 https://doi.org/10.1073/pnas.0913357107
35 https://doi.org/10.1073/pnas.122653799
36 https://doi.org/10.1073/pnas.1309933111
37 https://doi.org/10.1073/pnas.1710936115
38 https://doi.org/10.1088/1742-5468/2008/10/p10008
39 https://doi.org/10.1089/cmb.2008.09tt
40 https://doi.org/10.1093/bioinformatics/btg1069
41 https://doi.org/10.1093/bioinformatics/btr373
42 https://doi.org/10.1093/nar/29.9.e45
43 https://doi.org/10.1094/mpmi-21-4-0433
44 https://doi.org/10.1094/phyto-99-1-0082
45 https://doi.org/10.1103/physreve.80.056117
46 https://doi.org/10.1103/physrevlett.103.238701
47 https://doi.org/10.1103/physrevlett.85.461
48 https://doi.org/10.1103/physrevlett.99.204101
49 https://doi.org/10.1103/revmodphys.74.47
50 https://doi.org/10.1109/cbms.2007.60
51 https://doi.org/10.1109/tcbb.2015.2450740
52 https://doi.org/10.1109/tpami.2005.159
53 https://doi.org/10.1111/j.1364-3703.2007.00465.x
54 https://doi.org/10.1111/j.1365-313x.2010.04160.x
55 https://doi.org/10.1126/science.1075090
56 https://doi.org/10.1126/science.1171347
57 https://doi.org/10.1128/ec.00155-12
58 https://doi.org/10.1137/040608635
59 https://doi.org/10.1146/annurev.phyto.44.070505.143436
60 https://doi.org/10.1155/2015/347273
61 https://doi.org/10.1371/journal.pone.0012776
62 https://doi.org/10.1371/journal.pone.0016835
63 https://doi.org/10.1371/journal.pone.0031526
64 https://doi.org/10.1371/journal.pone.0040246
65 https://doi.org/10.1371/journal.pone.0111841
66 https://doi.org/10.1371/journal.ppat.1002940
67 https://doi.org/10.1677/jme.1.01755
68 https://doi.org/10.3390/genes2040689
69 https://doi.org/10.4161/psb.5.6.11778
70 schema:datePublished 2019-12
71 schema:datePublishedReg 2019-12-01
72 schema:description BACKGROUND: The increasing amounts of genomics data have helped in the understanding of the molecular dynamics of complex systems such as plant and animal diseases. However, transcriptional regulation, although playing a central role in the decision-making process of cellular systems, is still poorly understood. In this study, we linked expression data with mathematical models to infer gene regulatory networks (GRN). We present a simple yet effective method to estimate transcription factors' GRNs from transcriptional data. METHOD: We defined interactions between pairs of genes (edges in the GRN) as the partial mutual information between these genes that takes into account time and possible lags in time from one gene in relation to another. We call this method Gene Regulatory Networks on Transfer Entropy (GRNTE) and it corresponds to Granger causality for Gaussian variables in an autoregressive model. To evaluate the reconstruction accuracy of our method, we generated several sub-networks from the GRN of the eukaryotic yeast model, Saccharomyces cerevisae. Then, we applied this method using experimental data of the plant pathogen Phytophthora infestans. We evaluated the transcriptional expression levels of 48 transcription factors of P. infestans during its interaction with one moderately resistant and one susceptible cultivar of yellow potato (Solanum tuberosum group Phureja), using RT-qPCR. With these data, we reconstructed the regulatory network of P. infestans during its interaction with these hosts. RESULTS: We first evaluated the performance of our method, based on the transfer entropy (GRNTE), on eukaryotic datasets from the GRNs of the yeast S. cerevisae. Results suggest that GRNTE is comparable with the state-of-the-art methods when the parameters for edge detection are properly tuned. In the case of P. infestans, most of the genes considered in this study, showed a significant change in expression from the onset of the interaction (0 h post inoculum - hpi) to the later time-points post inoculation. Hierarchical clustering of the expression data discriminated two distinct periods during the infection: from 12 to 36 hpi and from 48 to 72 hpi for both the moderately resistant and susceptible cultivars. These distinct periods could be associated with two phases of the life cycle of the pathogen when infecting the host plant: the biotrophic and necrotrophic phases. CONCLUSIONS: Here we presented an algorithmic solution to the problem of network reconstruction in time series data. This analytical perspective makes use of the dynamic nature of time series data as it relates to intrinsically dynamic processes such as transcription regulation, were multiple elements of the cell (e.g., transcription factors) act simultaneously and change over time. We applied the algorithm to study the regulatory network of P. infestans during its interaction with two hosts which differ in their level of resistance to the pathogen. Although the gene expression analysis did not show differences between the two hosts, the results of the GRN analyses evidenced rewiring of the genes' interactions according to the resistance level of the host. This suggests that different regulatory processes are activated in response to different environmental cues. Applications of our methodology showed that it could reliably predict where to place edges in the transcriptional networks and sub-networks. The experimental approach used here can help provide insights on the biological role of these interactions on complex processes such as pathogenicity. The code used is available at https://github.com/jccastrog/GRNTE under GNU general public license 3.0.
73 schema:genre research_article
74 schema:inLanguage en
75 schema:isAccessibleForFree true
76 schema:isPartOf N14bf0e5c5f76461db10d1b18d7bc32d3
77 N1af6808ee26e42a8a27a041b60705351
78 sg:journal.1034054
79 schema:name Gene regulatory networks on transfer entropy (GRNTE): a novel approach to reconstruct gene regulatory interactions applied to a case study for the plant pathogen Phytophthora infestans.
80 schema:pagination 7
81 schema:productId N0002ec278ad94e28bafcef3554c0de48
82 N489d88ab295642548837d9343151f665
83 N5c2dd8e9d1e14a3e97f4f8c7a0e5a974
84 N60b2e65b3e314ce4a75e0eb7294ffaf1
85 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113300231
86 https://doi.org/10.1186/s12976-019-0103-7
87 schema:sdDatePublished 2019-04-15T09:04
88 schema:sdLicense https://scigraph.springernature.com/explorer/license/
89 schema:sdPublisher Ncac11806d51448a990b3cb2450a96727
90 schema:url https://tbiomed.biomedcentral.com/articles/10.1186/s12976-019-0103-7
91 sgo:license sg:explorer/license/
92 sgo:sdDataset articles
93 rdf:type schema:ScholarlyArticle
94 N0002ec278ad94e28bafcef3554c0de48 schema:name pubmed_id
95 schema:value 30961611
96 rdf:type schema:PropertyValue
97 N04d18ac2a19e41b7bef8f0a41bacedb1 schema:affiliation https://www.grid.ac/institutes/grid.7247.6
98 schema:familyName Restrepo
99 schema:givenName Silvia
100 rdf:type schema:Person
101 N0dd4ea693f2f467da61a1dac1ad0a552 rdf:first N04d18ac2a19e41b7bef8f0a41bacedb1
102 rdf:rest Nc4fc24f7b290497cad37ec07ce88b6fe
103 N0e06f98ffa8e4295809be53ad9fb2426 schema:affiliation https://www.grid.ac/institutes/grid.7247.6
104 schema:familyName Danies
105 schema:givenName Giovanna
106 rdf:type schema:Person
107 N14bf0e5c5f76461db10d1b18d7bc32d3 schema:issueNumber 1
108 rdf:type schema:PublicationIssue
109 N1af6808ee26e42a8a27a041b60705351 schema:volumeNumber 16
110 rdf:type schema:PublicationVolume
111 N27119daa97e64cd6842b83d7b4490171 schema:affiliation https://www.grid.ac/institutes/grid.7247.6
112 schema:familyName Valdés
113 schema:givenName Ivan
114 rdf:type schema:Person
115 N390645a0214b46f6b0a4a8fc3fdb4fbd rdf:first N8d3b6e6c99b743ef80e7047750e35852
116 rdf:rest N4aa2c0dc593d4bb8924ca349e13f9364
117 N489d88ab295642548837d9343151f665 schema:name dimensions_id
118 schema:value pub.1113300231
119 rdf:type schema:PropertyValue
120 N4aa2c0dc593d4bb8924ca349e13f9364 rdf:first Nffa581763aa74d8389c8279bce1cee6e
121 rdf:rest N0dd4ea693f2f467da61a1dac1ad0a552
122 N5c2dd8e9d1e14a3e97f4f8c7a0e5a974 schema:name nlm_unique_id
123 schema:value 101224383
124 rdf:type schema:PropertyValue
125 N60b2e65b3e314ce4a75e0eb7294ffaf1 schema:name doi
126 schema:value 10.1186/s12976-019-0103-7
127 rdf:type schema:PropertyValue
128 N673c773da78a4eec8d784f820e54fd2a rdf:first N0e06f98ffa8e4295809be53ad9fb2426
129 rdf:rest Nba6d40e4729f405dac56a593d9c744d1
130 N6998c37a45ec4d81bb5b946e64f66682 schema:affiliation https://www.grid.ac/institutes/grid.7247.6
131 schema:familyName Gonzalez-García
132 schema:givenName Laura Natalia
133 rdf:type schema:Person
134 N8d3b6e6c99b743ef80e7047750e35852 schema:affiliation https://www.grid.ac/institutes/grid.11899.38
135 schema:familyName Winck
136 schema:givenName Flavia Vischi
137 rdf:type schema:Person
138 N98e4cc9ed82843618585ddaac48aa889 schema:affiliation https://www.grid.ac/institutes/grid.7247.6
139 schema:familyName Castro
140 schema:givenName Juan Camilo
141 rdf:type schema:Person
142 Nba6d40e4729f405dac56a593d9c744d1 rdf:first Ndd41585e7f7242528f0029f696f73210
143 rdf:rest N390645a0214b46f6b0a4a8fc3fdb4fbd
144 Nc4fc24f7b290497cad37ec07ce88b6fe rdf:first Ne41f1b6fe7c244e888b1ca4bf6745e12
145 rdf:rest rdf:nil
146 Ncac11806d51448a990b3cb2450a96727 schema:name Springer Nature - SN SciGraph project
147 rdf:type schema:Organization
148 Nd11410d0d5b740d7b16ec27ad73019eb rdf:first N98e4cc9ed82843618585ddaac48aa889
149 rdf:rest Ne56a4e00c48341d197cdc1611330a579
150 Ndd41585e7f7242528f0029f696f73210 schema:affiliation https://www.grid.ac/institutes/grid.7247.6
151 schema:familyName Cañas
152 schema:givenName Silvia
153 rdf:type schema:Person
154 Ne13b75235a2946a3a0dfa66fd9057f02 rdf:first N6998c37a45ec4d81bb5b946e64f66682
155 rdf:rest N673c773da78a4eec8d784f820e54fd2a
156 Ne41f1b6fe7c244e888b1ca4bf6745e12 schema:affiliation https://www.grid.ac/institutes/grid.11899.38
157 schema:familyName Riaño-Pachón
158 schema:givenName Diego Mauricio
159 rdf:type schema:Person
160 Ne56a4e00c48341d197cdc1611330a579 rdf:first N27119daa97e64cd6842b83d7b4490171
161 rdf:rest Ne13b75235a2946a3a0dfa66fd9057f02
162 Nffa581763aa74d8389c8279bce1cee6e schema:affiliation https://www.grid.ac/institutes/grid.10689.36
163 schema:familyName Ñústez
164 schema:givenName Carlos Eduardo
165 rdf:type schema:Person
166 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
167 schema:name Biological Sciences
168 rdf:type schema:DefinedTerm
169 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
170 schema:name Genetics
171 rdf:type schema:DefinedTerm
172 sg:journal.1034054 schema:issn 1742-4682
173 schema:name Theoretical Biology and Medical Modelling
174 rdf:type schema:Periodical
175 sg:pub.10.1007/978-3-319-43222-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004784891
176 https://doi.org/10.1007/978-3-319-43222-9
177 rdf:type schema:CreativeWork
178 sg:pub.10.1007/978-94-017-9514-2_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005000062
179 https://doi.org/10.1007/978-94-017-9514-2_5
180 rdf:type schema:CreativeWork
181 sg:pub.10.1023/a:1009648408198 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038023302
182 https://doi.org/10.1023/a:1009648408198
183 rdf:type schema:CreativeWork
184 sg:pub.10.1038/35065725 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005249327
185 https://doi.org/10.1038/35065725
186 rdf:type schema:CreativeWork
187 sg:pub.10.1038/nature02782 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033803529
188 https://doi.org/10.1038/nature02782
189 rdf:type schema:CreativeWork
190 sg:pub.10.1038/nature08358 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025806080
191 https://doi.org/10.1038/nature08358
192 rdf:type schema:CreativeWork
193 sg:pub.10.1038/nbt1053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030939237
194 https://doi.org/10.1038/nbt1053
195 rdf:type schema:CreativeWork
196 sg:pub.10.1038/ng2012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005200656
197 https://doi.org/10.1038/ng2012
198 rdf:type schema:CreativeWork
199 sg:pub.10.1038/ng873 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046040073
200 https://doi.org/10.1038/ng873
201 rdf:type schema:CreativeWork
202 sg:pub.10.1038/nmeth.2016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023029250
203 https://doi.org/10.1038/nmeth.2016
204 rdf:type schema:CreativeWork
205 sg:pub.10.1038/nphys2162 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013107385
206 https://doi.org/10.1038/nphys2162
207 rdf:type schema:CreativeWork
208 sg:pub.10.1038/nphys2188 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032520587
209 https://doi.org/10.1038/nphys2188
210 rdf:type schema:CreativeWork
211 sg:pub.10.1038/nrg1272 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018231980
212 https://doi.org/10.1038/nrg1272
213 rdf:type schema:CreativeWork
214 sg:pub.10.1038/nrg2484 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030687647
215 https://doi.org/10.1038/nrg2484
216 rdf:type schema:CreativeWork
217 sg:pub.10.1038/s41598-018-21715-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101059625
218 https://doi.org/10.1038/s41598-018-21715-0
219 rdf:type schema:CreativeWork
220 sg:pub.10.1038/srep08665 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021419058
221 https://doi.org/10.1038/srep08665
222 rdf:type schema:CreativeWork
223 sg:pub.10.1140/epjb/e2013-31111-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043923778
224 https://doi.org/10.1140/epjb/e2013-31111-8
225 rdf:type schema:CreativeWork
226 sg:pub.10.1186/1471-2105-11-154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048562011
227 https://doi.org/10.1186/1471-2105-11-154
228 rdf:type schema:CreativeWork
229 sg:pub.10.1186/1471-2105-7-s1-s7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051833905
230 https://doi.org/10.1186/1471-2105-7-s1-s7
231 rdf:type schema:CreativeWork
232 sg:pub.10.1186/1471-2105-9-465 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024450931
233 https://doi.org/10.1186/1471-2105-9-465
234 rdf:type schema:CreativeWork
235 https://app.dimensions.ai/details/publication/pub.1004784891 schema:CreativeWork
236 https://doi.org/10.1016/j.ipm.2009.03.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012321154
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1016/j.jtbi.2008.11.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030685580
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1016/j.riam.2012.09.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042977900
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1016/j.sbi.2004.05.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003820027
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1016/s1087-1845(03)00063-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1007828006
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1073/pnas.0502024102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019703441
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1073/pnas.0508637103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038436724
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1073/pnas.0601602103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016125157
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1073/pnas.0807404105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051155891
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1073/pnas.0913357107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053354672
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1073/pnas.122653799 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018411012
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1073/pnas.1309933111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025347782
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1073/pnas.1710936115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100995726
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1088/1742-5468/2008/10/p10008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037912856
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1089/cmb.2008.09tt schema:sameAs https://app.dimensions.ai/details/publication/pub.1059245759
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1093/bioinformatics/btg1069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025271253
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1093/bioinformatics/btr373 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033014701
269 rdf:type schema:CreativeWork
270 https://doi.org/10.1093/nar/29.9.e45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030834024
271 rdf:type schema:CreativeWork
272 https://doi.org/10.1094/mpmi-21-4-0433 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060078731
273 rdf:type schema:CreativeWork
274 https://doi.org/10.1094/phyto-99-1-0082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060100729
275 rdf:type schema:CreativeWork
276 https://doi.org/10.1103/physreve.80.056117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036660715
277 rdf:type schema:CreativeWork
278 https://doi.org/10.1103/physrevlett.103.238701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060756333
279 rdf:type schema:CreativeWork
280 https://doi.org/10.1103/physrevlett.85.461 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050376104
281 rdf:type schema:CreativeWork
282 https://doi.org/10.1103/physrevlett.99.204101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060834878
283 rdf:type schema:CreativeWork
284 https://doi.org/10.1103/revmodphys.74.47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008594690
285 rdf:type schema:CreativeWork
286 https://doi.org/10.1109/cbms.2007.60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094548090
287 rdf:type schema:CreativeWork
288 https://doi.org/10.1109/tcbb.2015.2450740 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024799942
289 rdf:type schema:CreativeWork
290 https://doi.org/10.1109/tpami.2005.159 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061742820
291 rdf:type schema:CreativeWork
292 https://doi.org/10.1111/j.1364-3703.2007.00465.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1017580115
293 rdf:type schema:CreativeWork
294 https://doi.org/10.1111/j.1365-313x.2010.04160.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1052876910
295 rdf:type schema:CreativeWork
296 https://doi.org/10.1126/science.1075090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001953109
297 rdf:type schema:CreativeWork
298 https://doi.org/10.1126/science.1171347 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077935333
299 rdf:type schema:CreativeWork
300 https://doi.org/10.1128/ec.00155-12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010609259
301 rdf:type schema:CreativeWork
302 https://doi.org/10.1137/040608635 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062845023
303 rdf:type schema:CreativeWork
304 https://doi.org/10.1146/annurev.phyto.44.070505.143436 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035920979
305 rdf:type schema:CreativeWork
306 https://doi.org/10.1155/2015/347273 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027158994
307 rdf:type schema:CreativeWork
308 https://doi.org/10.1371/journal.pone.0012776 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016959201
309 rdf:type schema:CreativeWork
310 https://doi.org/10.1371/journal.pone.0016835 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049220167
311 rdf:type schema:CreativeWork
312 https://doi.org/10.1371/journal.pone.0031526 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010599287
313 rdf:type schema:CreativeWork
314 https://doi.org/10.1371/journal.pone.0040246 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040193854
315 rdf:type schema:CreativeWork
316 https://doi.org/10.1371/journal.pone.0111841 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045564949
317 rdf:type schema:CreativeWork
318 https://doi.org/10.1371/journal.ppat.1002940 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051265373
319 rdf:type schema:CreativeWork
320 https://doi.org/10.1677/jme.1.01755 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034001178
321 rdf:type schema:CreativeWork
322 https://doi.org/10.3390/genes2040689 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015002389
323 rdf:type schema:CreativeWork
324 https://doi.org/10.4161/psb.5.6.11778 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072309343
325 rdf:type schema:CreativeWork
326 https://www.grid.ac/institutes/grid.10689.36 schema:alternateName National University of Colombia
327 schema:name School of Agricultural Sciences, Universidad Nacional de Colombia, Bogotá D.C, Colombia.
328 rdf:type schema:Organization
329 https://www.grid.ac/institutes/grid.11899.38 schema:alternateName University of Sao Paulo
330 schema:name Computational, Evolutionary and Systems Biology Laboratory, Center for Nuclear Energy in Agriculture, Universidade de São Paulo, Piracicaba, SP, Brazil. diego.riano@cena.usp.br.
331 Regulatory Systems Biology Laboratory, Department of Biochemistry, Institute of Chemistry, Universidade de São Paulo, São Paulo, SP, Brazil.
332 rdf:type schema:Organization
333 https://www.grid.ac/institutes/grid.7247.6 schema:alternateName Universidad de Los Andes
334 schema:name Department of Biological Sciences, Universidad de los Andes, Bogotá D.C, Colombia.
335 Department of Design, Universidad de los Andes, Bogotá D.C, Colombia.
336 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...