Hippocampal glucose uptake as a surrogate of metabolic change of microglia in Alzheimer’s disease View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-08-31

AUTHORS

Hongyoon Choi, Yoori Choi, Eun Ji Lee, Hyun Kim, Youngsun Lee, Seokjun Kwon, Do Won Hwang, Dong Soo Lee

ABSTRACT

BackgroundDynamically altered microglia play an important role in the progression of Alzheimer’s disease (AD). Here, we found a close association of the metabolic reconfiguration of microglia with increased hippocampal glucose uptake on [18F]fluorodeoxyglucose (FDG) PET.MethodsWe used an AD animal model, 5xFAD, to analyze hippocampal glucose metabolism using both animal FDG PET and ex vivo FDG uptake test. Cells of the hippocampus were isolated to perform single-cell RNA-sequencing (scRNA-seq). The molecular features of cells associated with glucose metabolism were analyzed at a single-cell level. In order to apply our findings to human brain imaging study, brain FDG PET data obtained from the Alzheimer’s Disease Neuroimaging Initiative were analyzed. FDG uptake in the hippocampus was compared according to the diagnosis, AD, mild cognitive impairment, and controls. The correlation analysis between hippocampal FDG uptake and soluble TREM2 in cerebrospinal fluid was performed.ResultsIn the animal study, 8- and 12-month-old 5xFAD mice showed higher FDG uptake in the hippocampus than wild-type mice. Cellular FDG uptake tests showed that FDG activity in hippocampal microglia was increased in the AD model, while FDG activity in non-microglial cells of the hippocampus was not different between the AD model and wild-type. scRNA-seq data showed that changes in glucose metabolism signatures including glucose transporters, glycolysis and oxidative phosphorylation, mainly occurred in microglia. A subset of microglia with higher glucose transporters with defective glycolysis and oxidative phosphorylation was increased according to disease progression. In the human imaging study, we found a positive association between soluble TREM2 and hippocampal FDG uptake. FDG uptake in the hippocampus at the baseline scan predicted mild cognitive impairment conversion to AD.ConclusionsWe identified the reconfiguration of microglial glucose metabolism in the hippocampus of AD, which could be evaluated by FDG PET as a feasible surrogate imaging biomarker for microglia-mediated inflammation. More... »

PAGES

190

References to SciGraph publications

  • 2018-05-21. Identification and therapeutic modulation of a pro-inflammatory subset of disease-associated-microglia in Alzheimer’s disease in MOLECULAR NEURODEGENERATION
  • 2016-01-12. Increased cerebrospinal fluid soluble TREM2 concentration in Alzheimer’s disease in MOLECULAR NEURODEGENERATION
  • 2010-12-31. Amyloid-β and tau — a toxic pas de deux in Alzheimer's disease in NATURE REVIEWS NEUROSCIENCE
  • 2014-09-30. Cortical hypermetabolism in MCI subjects: a compensatory mechanism? in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2015-04-13. Spatial reconstruction of single-cell gene expression data in NATURE BIOTECHNOLOGY
  • 2017-01-30. [18F]FDG PET signal is driven by astroglial glutamate transport in NATURE NEUROSCIENCE
  • 2018-09-28. TREM2 — a key player in microglial biology and Alzheimer disease in NATURE REVIEWS NEUROLOGY
  • 2019-07-02. Author Correction: Soluble TREM2 ameliorates pathological phenotypes by modulating microglial functions in an Alzheimer’s disease model in NATURE COMMUNICATIONS
  • 2016-01-18. Microglial brain region−dependent diversity and selective regional sensitivities to aging in NATURE NEUROSCIENCE
  • 2019-01-02. Double-slit photoelectron interference in strong-field ionization of the neon dimer in NATURE COMMUNICATIONS
  • 2017-09-01. Microglia emerge as central players in brain disease in NATURE MEDICINE
  • 2016-04-04. Near-optimal probabilistic RNA-seq quantification in NATURE BIOTECHNOLOGY
  • 2016-03-07. Broad defects in the energy metabolism of leukocytes underlie immunoparalysis in sepsis in NATURE IMMUNOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s12974-021-02244-6

    DOI

    http://dx.doi.org/10.1186/s12974-021-02244-6

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1140783132

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/34465358


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Clinical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Neurosciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Alzheimer Disease", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cognitive Dysfunction", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Disease Models, Animal", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Glucose", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Hippocampus", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Mice", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Microglia", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Neuroimaging", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Positron-Emission Tomography", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, 03080, Seoul, Jongo-Gu, Republic of Korea", 
              "id": "http://www.grid.ac/institutes/grid.31501.36", 
              "name": [
                "Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-Gu, 03080, Seoul, Seoul, Republic of Korea", 
                "Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, 03080, Seoul, Jongo-Gu, Republic of Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Choi", 
            "givenName": "Hongyoon", 
            "id": "sg:person.0631257534.28", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0631257534.28"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, 101 Daehak-ro, Jongno-Gu, 03080, Seoul, Seoul, Republic of Korea", 
              "id": "http://www.grid.ac/institutes/grid.31501.36", 
              "name": [
                "Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-Gu, 03080, Seoul, Seoul, Republic of Korea", 
                "Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, 101 Daehak-ro, Jongno-Gu, 03080, Seoul, Seoul, Republic of Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Choi", 
            "givenName": "Yoori", 
            "id": "sg:person.01332005273.03", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01332005273.03"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, 101 Daehak-ro, Jongno-Gu, 03080, Seoul, Seoul, Republic of Korea", 
              "id": "http://www.grid.ac/institutes/grid.31501.36", 
              "name": [
                "Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-Gu, 03080, Seoul, Seoul, Republic of Korea", 
                "Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, 101 Daehak-ro, Jongno-Gu, 03080, Seoul, Seoul, Republic of Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lee", 
            "givenName": "Eun Ji", 
            "id": "sg:person.01032224726.06", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01032224726.06"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, 101 Daehak-ro, Jongno-Gu, 03080, Seoul, Seoul, Republic of Korea", 
              "id": "http://www.grid.ac/institutes/grid.31501.36", 
              "name": [
                "Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-Gu, 03080, Seoul, Seoul, Republic of Korea", 
                "Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, 101 Daehak-ro, Jongno-Gu, 03080, Seoul, Seoul, Republic of Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kim", 
            "givenName": "Hyun", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, 101 Daehak-ro, Jongno-Gu, 03080, Seoul, Seoul, Republic of Korea", 
              "id": "http://www.grid.ac/institutes/grid.31501.36", 
              "name": [
                "Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-Gu, 03080, Seoul, Seoul, Republic of Korea", 
                "Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, 101 Daehak-ro, Jongno-Gu, 03080, Seoul, Seoul, Republic of Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lee", 
            "givenName": "Youngsun", 
            "id": "sg:person.015443125067.04", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015443125067.04"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, 101 Daehak-ro, Jongno-Gu, 03080, Seoul, Seoul, Republic of Korea", 
              "id": "http://www.grid.ac/institutes/grid.31501.36", 
              "name": [
                "Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-Gu, 03080, Seoul, Seoul, Republic of Korea", 
                "Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, 101 Daehak-ro, Jongno-Gu, 03080, Seoul, Seoul, Republic of Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kwon", 
            "givenName": "Seokjun", 
            "id": "sg:person.012523336267.28", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012523336267.28"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, 101 Daehak-ro, Jongno-Gu, 03080, Seoul, Seoul, Republic of Korea", 
              "id": "http://www.grid.ac/institutes/grid.31501.36", 
              "name": [
                "Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-Gu, 03080, Seoul, Seoul, Republic of Korea", 
                "Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, 101 Daehak-ro, Jongno-Gu, 03080, Seoul, Seoul, Republic of Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hwang", 
            "givenName": "Do Won", 
            "id": "sg:person.0627125000.90", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0627125000.90"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, 101 Daehak-ro, Jongno-Gu, 03080, Seoul, Seoul, Republic of Korea", 
              "id": "http://www.grid.ac/institutes/grid.31501.36", 
              "name": [
                "Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-Gu, 03080, Seoul, Seoul, Republic of Korea", 
                "Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, 03080, Seoul, Jongo-Gu, Republic of Korea", 
                "Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, 101 Daehak-ro, Jongno-Gu, 03080, Seoul, Seoul, Republic of Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lee", 
            "givenName": "Dong Soo", 
            "id": "sg:person.015617314175.88", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015617314175.88"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nrn2967", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000024338", 
              "https://doi.org/10.1038/nrn2967"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-019-10950-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1117705005", 
              "https://doi.org/10.1038/s41467-019-10950-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nm.4397", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091505587", 
              "https://doi.org/10.1038/nm.4397"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ni.3398", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043334409", 
              "https://doi.org/10.1038/ni.3398"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13024-018-0254-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104135784", 
              "https://doi.org/10.1186/s13024-018-0254-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.3519", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024493480", 
              "https://doi.org/10.1038/nbt.3519"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-018-07882-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1110929190", 
              "https://doi.org/10.1038/s41467-018-07882-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-014-2919-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022418234", 
              "https://doi.org/10.1007/s00259-014-2919-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13024-016-0071-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033781975", 
              "https://doi.org/10.1186/s13024-016-0071-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.3192", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009318815", 
              "https://doi.org/10.1038/nbt.3192"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nn.4222", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030559985", 
              "https://doi.org/10.1038/nn.4222"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41582-018-0072-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107294980", 
              "https://doi.org/10.1038/s41582-018-0072-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nn.4492", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1074246920", 
              "https://doi.org/10.1038/nn.4492"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2021-08-31", 
        "datePublishedReg": "2021-08-31", 
        "description": "BackgroundDynamically altered microglia play an important role in the progression of Alzheimer\u2019s disease (AD). Here, we found a close association of the metabolic reconfiguration of microglia with increased hippocampal glucose uptake on [18F]fluorodeoxyglucose (FDG) PET.MethodsWe used an AD animal model, 5xFAD, to analyze hippocampal glucose metabolism using both animal FDG PET and ex vivo FDG uptake test. Cells of the hippocampus were isolated to perform single-cell RNA-sequencing (scRNA-seq). The molecular features of cells associated with glucose metabolism were analyzed at a single-cell level. In order to apply our findings to human brain imaging study, brain FDG PET data obtained from the Alzheimer\u2019s Disease Neuroimaging Initiative were analyzed. FDG uptake in the hippocampus was compared according to the diagnosis, AD, mild cognitive impairment, and controls. The correlation analysis between hippocampal FDG uptake and soluble TREM2 in cerebrospinal fluid was performed.ResultsIn the animal study, 8- and 12-month-old 5xFAD mice showed higher FDG uptake in the hippocampus than wild-type mice. Cellular FDG uptake tests showed that FDG activity in hippocampal microglia was increased in the AD model, while FDG activity in non-microglial cells of the hippocampus was not different between the AD model and wild-type. scRNA-seq data showed that changes in glucose metabolism signatures including glucose transporters, glycolysis and oxidative phosphorylation, mainly occurred in microglia. A subset of microglia with higher glucose transporters with defective glycolysis and oxidative phosphorylation was increased according to disease progression. In the human imaging study, we found a positive association between soluble TREM2 and hippocampal FDG uptake. FDG uptake in the hippocampus at the baseline scan predicted mild cognitive impairment conversion to AD.ConclusionsWe identified the reconfiguration of microglial glucose metabolism in the hippocampus of AD, which could be evaluated by FDG PET as a feasible surrogate imaging biomarker for microglia-mediated inflammation.", 
        "genre": "article", 
        "id": "sg:pub.10.1186/s12974-021-02244-6", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.7132465", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2687006", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1034001", 
            "issn": [
              "1742-2094"
            ], 
            "name": "Journal of Neuroinflammation", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "18"
          }
        ], 
        "keywords": [
          "hippocampal glucose uptake", 
          "FDG uptake", 
          "Alzheimer's disease", 
          "glucose metabolism", 
          "FDG-PET", 
          "FDG activity", 
          "soluble TREM2", 
          "Disease Neuroimaging Initiative", 
          "AD model", 
          "imaging studies", 
          "hippocampus of AD", 
          "glucose uptake", 
          "hippocampal glucose metabolism", 
          "subset of microglia", 
          "AD animal models", 
          "high FDG uptake", 
          "wild-type mice", 
          "non-microglial cells", 
          "Mild Cognitive Impairment Conversion", 
          "human brain imaging studies", 
          "FDG-PET data", 
          "human imaging studies", 
          "mild cognitive impairment", 
          "brain imaging studies", 
          "uptake test", 
          "Alzheimer's Disease Neuroimaging Initiative", 
          "hippocampal microglia", 
          "disease progression", 
          "glucose transporter", 
          "baseline scan", 
          "microglia", 
          "cerebrospinal fluid", 
          "animal models", 
          "animal studies", 
          "hippocampus", 
          "cognitive impairment", 
          "single-cell RNA sequencing", 
          "metabolic changes", 
          "disease", 
          "oxidative phosphorylation", 
          "positive association", 
          "TREM2", 
          "molecular features", 
          "FDG", 
          "mice", 
          "defective glycolysis", 
          "progression", 
          "RNA sequencing", 
          "metabolism", 
          "single-cell level", 
          "cells", 
          "association", 
          "PET data", 
          "PET", 
          "uptake", 
          "close association", 
          "glycolysis", 
          "inflammation", 
          "transporters", 
          "MethodsWe", 
          "phosphorylation", 
          "ResultsIn", 
          "diagnosis", 
          "impairment", 
          "biomarkers", 
          "important role", 
          "study", 
          "correlation analysis", 
          "scans", 
          "activity", 
          "ConclusionsWe", 
          "test", 
          "changes", 
          "findings", 
          "metabolic reconfiguration", 
          "subset", 
          "levels", 
          "data", 
          "control", 
          "surrogate", 
          "role", 
          "fluid", 
          "model", 
          "analysis", 
          "features", 
          "initiatives", 
          "scRNA-seq data", 
          "signatures", 
          "conversion", 
          "order", 
          "reconfiguration"
        ], 
        "name": "Hippocampal glucose uptake as a surrogate of metabolic change of microglia in Alzheimer\u2019s disease", 
        "pagination": "190", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1140783132"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s12974-021-02244-6"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "34465358"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s12974-021-02244-6", 
          "https://app.dimensions.ai/details/publication/pub.1140783132"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:42", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_901.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1186/s12974-021-02244-6"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12974-021-02244-6'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12974-021-02244-6'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12974-021-02244-6'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12974-021-02244-6'


     

    This table displays all metadata directly associated to this object as RDF triples.

    306 TRIPLES      21 PREDICATES      141 URIs      119 LITERALS      18 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s12974-021-02244-6 schema:about N1dc54c35812f4e0b940e2198806030d6
    2 N4fe14fdfae404c86ad34386d02a517a0
    3 N5125ca10c4064206b016b389bef1c8eb
    4 N67484b8500c2425297fd937344a7d3fc
    5 N67a27cb5ffda4c26b05aded2e0a48220
    6 N7cffd818070448c697dddceabb0bdd48
    7 N7f754920bf984b94945d7d1df121b8cf
    8 N899da1d30e4c4669b3305aea72372a05
    9 N8dccf8130ea248629f9fac4a35f51026
    10 N92b2699f83a4479bb1d9b48124305cdc
    11 Na85bd52126cc481bb545b23ed71efd64
    12 anzsrc-for:11
    13 anzsrc-for:1103
    14 anzsrc-for:1109
    15 schema:author N01e9520e78c346e9bdcfbd042a8d5799
    16 schema:citation sg:pub.10.1007/s00259-014-2919-z
    17 sg:pub.10.1038/nbt.3192
    18 sg:pub.10.1038/nbt.3519
    19 sg:pub.10.1038/ni.3398
    20 sg:pub.10.1038/nm.4397
    21 sg:pub.10.1038/nn.4222
    22 sg:pub.10.1038/nn.4492
    23 sg:pub.10.1038/nrn2967
    24 sg:pub.10.1038/s41467-018-07882-8
    25 sg:pub.10.1038/s41467-019-10950-2
    26 sg:pub.10.1038/s41582-018-0072-1
    27 sg:pub.10.1186/s13024-016-0071-x
    28 sg:pub.10.1186/s13024-018-0254-8
    29 schema:datePublished 2021-08-31
    30 schema:datePublishedReg 2021-08-31
    31 schema:description BackgroundDynamically altered microglia play an important role in the progression of Alzheimer’s disease (AD). Here, we found a close association of the metabolic reconfiguration of microglia with increased hippocampal glucose uptake on [18F]fluorodeoxyglucose (FDG) PET.MethodsWe used an AD animal model, 5xFAD, to analyze hippocampal glucose metabolism using both animal FDG PET and ex vivo FDG uptake test. Cells of the hippocampus were isolated to perform single-cell RNA-sequencing (scRNA-seq). The molecular features of cells associated with glucose metabolism were analyzed at a single-cell level. In order to apply our findings to human brain imaging study, brain FDG PET data obtained from the Alzheimer’s Disease Neuroimaging Initiative were analyzed. FDG uptake in the hippocampus was compared according to the diagnosis, AD, mild cognitive impairment, and controls. The correlation analysis between hippocampal FDG uptake and soluble TREM2 in cerebrospinal fluid was performed.ResultsIn the animal study, 8- and 12-month-old 5xFAD mice showed higher FDG uptake in the hippocampus than wild-type mice. Cellular FDG uptake tests showed that FDG activity in hippocampal microglia was increased in the AD model, while FDG activity in non-microglial cells of the hippocampus was not different between the AD model and wild-type. scRNA-seq data showed that changes in glucose metabolism signatures including glucose transporters, glycolysis and oxidative phosphorylation, mainly occurred in microglia. A subset of microglia with higher glucose transporters with defective glycolysis and oxidative phosphorylation was increased according to disease progression. In the human imaging study, we found a positive association between soluble TREM2 and hippocampal FDG uptake. FDG uptake in the hippocampus at the baseline scan predicted mild cognitive impairment conversion to AD.ConclusionsWe identified the reconfiguration of microglial glucose metabolism in the hippocampus of AD, which could be evaluated by FDG PET as a feasible surrogate imaging biomarker for microglia-mediated inflammation.
    32 schema:genre article
    33 schema:isAccessibleForFree true
    34 schema:isPartOf N4c5c8b82e5a54d238e0b370b710b6640
    35 Nac6c35b6f4df4c779939b4845d76d2c2
    36 sg:journal.1034001
    37 schema:keywords AD animal models
    38 AD model
    39 Alzheimer's Disease Neuroimaging Initiative
    40 Alzheimer's disease
    41 ConclusionsWe
    42 Disease Neuroimaging Initiative
    43 FDG
    44 FDG activity
    45 FDG uptake
    46 FDG-PET
    47 FDG-PET data
    48 MethodsWe
    49 Mild Cognitive Impairment Conversion
    50 PET
    51 PET data
    52 RNA sequencing
    53 ResultsIn
    54 TREM2
    55 activity
    56 analysis
    57 animal models
    58 animal studies
    59 association
    60 baseline scan
    61 biomarkers
    62 brain imaging studies
    63 cells
    64 cerebrospinal fluid
    65 changes
    66 close association
    67 cognitive impairment
    68 control
    69 conversion
    70 correlation analysis
    71 data
    72 defective glycolysis
    73 diagnosis
    74 disease
    75 disease progression
    76 features
    77 findings
    78 fluid
    79 glucose metabolism
    80 glucose transporter
    81 glucose uptake
    82 glycolysis
    83 high FDG uptake
    84 hippocampal glucose metabolism
    85 hippocampal glucose uptake
    86 hippocampal microglia
    87 hippocampus
    88 hippocampus of AD
    89 human brain imaging studies
    90 human imaging studies
    91 imaging studies
    92 impairment
    93 important role
    94 inflammation
    95 initiatives
    96 levels
    97 metabolic changes
    98 metabolic reconfiguration
    99 metabolism
    100 mice
    101 microglia
    102 mild cognitive impairment
    103 model
    104 molecular features
    105 non-microglial cells
    106 order
    107 oxidative phosphorylation
    108 phosphorylation
    109 positive association
    110 progression
    111 reconfiguration
    112 role
    113 scRNA-seq data
    114 scans
    115 signatures
    116 single-cell RNA sequencing
    117 single-cell level
    118 soluble TREM2
    119 study
    120 subset
    121 subset of microglia
    122 surrogate
    123 test
    124 transporters
    125 uptake
    126 uptake test
    127 wild-type mice
    128 schema:name Hippocampal glucose uptake as a surrogate of metabolic change of microglia in Alzheimer’s disease
    129 schema:pagination 190
    130 schema:productId N37d6a8b144264499802c8b6def37149f
    131 N9086382c060e4d959b22ae39040476cd
    132 Neb8c1385d1684e31966a7b672c7a768c
    133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1140783132
    134 https://doi.org/10.1186/s12974-021-02244-6
    135 schema:sdDatePublished 2022-12-01T06:42
    136 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    137 schema:sdPublisher Nefce29d73741424dac93adf15b64f96e
    138 schema:url https://doi.org/10.1186/s12974-021-02244-6
    139 sgo:license sg:explorer/license/
    140 sgo:sdDataset articles
    141 rdf:type schema:ScholarlyArticle
    142 N01e9520e78c346e9bdcfbd042a8d5799 rdf:first sg:person.0631257534.28
    143 rdf:rest N5784da7e231f490cb5e514edfb4da768
    144 N121dc96b41614aeb8b541e06667daf74 rdf:first sg:person.012523336267.28
    145 rdf:rest Nc51fd86b80044b6789df3414e6cb8f93
    146 N16a5782722d84e15b24065eeae980e2b rdf:first sg:person.015617314175.88
    147 rdf:rest rdf:nil
    148 N1dc54c35812f4e0b940e2198806030d6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    149 schema:name Microglia
    150 rdf:type schema:DefinedTerm
    151 N1dfa52d1cb4a449abc2526f39849e13f schema:affiliation grid-institutes:grid.31501.36
    152 schema:familyName Kim
    153 schema:givenName Hyun
    154 rdf:type schema:Person
    155 N3374e776a4a54803b4b39e067ba682d4 rdf:first sg:person.015443125067.04
    156 rdf:rest N121dc96b41614aeb8b541e06667daf74
    157 N37d6a8b144264499802c8b6def37149f schema:name pubmed_id
    158 schema:value 34465358
    159 rdf:type schema:PropertyValue
    160 N49904fbf72ee44cd9c69f0e46aca10c2 rdf:first N1dfa52d1cb4a449abc2526f39849e13f
    161 rdf:rest N3374e776a4a54803b4b39e067ba682d4
    162 N4c5c8b82e5a54d238e0b370b710b6640 schema:issueNumber 1
    163 rdf:type schema:PublicationIssue
    164 N4fe14fdfae404c86ad34386d02a517a0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    165 schema:name Animals
    166 rdf:type schema:DefinedTerm
    167 N5125ca10c4064206b016b389bef1c8eb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    168 schema:name Alzheimer Disease
    169 rdf:type schema:DefinedTerm
    170 N5784da7e231f490cb5e514edfb4da768 rdf:first sg:person.01332005273.03
    171 rdf:rest Nc912f98ca0d9433db7a084102408afab
    172 N67484b8500c2425297fd937344a7d3fc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    173 schema:name Glucose
    174 rdf:type schema:DefinedTerm
    175 N67a27cb5ffda4c26b05aded2e0a48220 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    176 schema:name Neuroimaging
    177 rdf:type schema:DefinedTerm
    178 N7cffd818070448c697dddceabb0bdd48 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    179 schema:name Humans
    180 rdf:type schema:DefinedTerm
    181 N7f754920bf984b94945d7d1df121b8cf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    182 schema:name Hippocampus
    183 rdf:type schema:DefinedTerm
    184 N899da1d30e4c4669b3305aea72372a05 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    185 schema:name Mice
    186 rdf:type schema:DefinedTerm
    187 N8dccf8130ea248629f9fac4a35f51026 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    188 schema:name Disease Models, Animal
    189 rdf:type schema:DefinedTerm
    190 N9086382c060e4d959b22ae39040476cd schema:name doi
    191 schema:value 10.1186/s12974-021-02244-6
    192 rdf:type schema:PropertyValue
    193 N92b2699f83a4479bb1d9b48124305cdc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    194 schema:name Cognitive Dysfunction
    195 rdf:type schema:DefinedTerm
    196 Na85bd52126cc481bb545b23ed71efd64 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    197 schema:name Positron-Emission Tomography
    198 rdf:type schema:DefinedTerm
    199 Nac6c35b6f4df4c779939b4845d76d2c2 schema:volumeNumber 18
    200 rdf:type schema:PublicationVolume
    201 Nc51fd86b80044b6789df3414e6cb8f93 rdf:first sg:person.0627125000.90
    202 rdf:rest N16a5782722d84e15b24065eeae980e2b
    203 Nc912f98ca0d9433db7a084102408afab rdf:first sg:person.01032224726.06
    204 rdf:rest N49904fbf72ee44cd9c69f0e46aca10c2
    205 Neb8c1385d1684e31966a7b672c7a768c schema:name dimensions_id
    206 schema:value pub.1140783132
    207 rdf:type schema:PropertyValue
    208 Nefce29d73741424dac93adf15b64f96e schema:name Springer Nature - SN SciGraph project
    209 rdf:type schema:Organization
    210 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    211 schema:name Medical and Health Sciences
    212 rdf:type schema:DefinedTerm
    213 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
    214 schema:name Clinical Sciences
    215 rdf:type schema:DefinedTerm
    216 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
    217 schema:name Neurosciences
    218 rdf:type schema:DefinedTerm
    219 sg:grant.2687006 http://pending.schema.org/fundedItem sg:pub.10.1186/s12974-021-02244-6
    220 rdf:type schema:MonetaryGrant
    221 sg:grant.7132465 http://pending.schema.org/fundedItem sg:pub.10.1186/s12974-021-02244-6
    222 rdf:type schema:MonetaryGrant
    223 sg:journal.1034001 schema:issn 1742-2094
    224 schema:name Journal of Neuroinflammation
    225 schema:publisher Springer Nature
    226 rdf:type schema:Periodical
    227 sg:person.01032224726.06 schema:affiliation grid-institutes:grid.31501.36
    228 schema:familyName Lee
    229 schema:givenName Eun Ji
    230 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01032224726.06
    231 rdf:type schema:Person
    232 sg:person.012523336267.28 schema:affiliation grid-institutes:grid.31501.36
    233 schema:familyName Kwon
    234 schema:givenName Seokjun
    235 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012523336267.28
    236 rdf:type schema:Person
    237 sg:person.01332005273.03 schema:affiliation grid-institutes:grid.31501.36
    238 schema:familyName Choi
    239 schema:givenName Yoori
    240 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01332005273.03
    241 rdf:type schema:Person
    242 sg:person.015443125067.04 schema:affiliation grid-institutes:grid.31501.36
    243 schema:familyName Lee
    244 schema:givenName Youngsun
    245 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015443125067.04
    246 rdf:type schema:Person
    247 sg:person.015617314175.88 schema:affiliation grid-institutes:grid.31501.36
    248 schema:familyName Lee
    249 schema:givenName Dong Soo
    250 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015617314175.88
    251 rdf:type schema:Person
    252 sg:person.0627125000.90 schema:affiliation grid-institutes:grid.31501.36
    253 schema:familyName Hwang
    254 schema:givenName Do Won
    255 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0627125000.90
    256 rdf:type schema:Person
    257 sg:person.0631257534.28 schema:affiliation grid-institutes:grid.31501.36
    258 schema:familyName Choi
    259 schema:givenName Hongyoon
    260 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0631257534.28
    261 rdf:type schema:Person
    262 sg:pub.10.1007/s00259-014-2919-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1022418234
    263 https://doi.org/10.1007/s00259-014-2919-z
    264 rdf:type schema:CreativeWork
    265 sg:pub.10.1038/nbt.3192 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009318815
    266 https://doi.org/10.1038/nbt.3192
    267 rdf:type schema:CreativeWork
    268 sg:pub.10.1038/nbt.3519 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024493480
    269 https://doi.org/10.1038/nbt.3519
    270 rdf:type schema:CreativeWork
    271 sg:pub.10.1038/ni.3398 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043334409
    272 https://doi.org/10.1038/ni.3398
    273 rdf:type schema:CreativeWork
    274 sg:pub.10.1038/nm.4397 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091505587
    275 https://doi.org/10.1038/nm.4397
    276 rdf:type schema:CreativeWork
    277 sg:pub.10.1038/nn.4222 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030559985
    278 https://doi.org/10.1038/nn.4222
    279 rdf:type schema:CreativeWork
    280 sg:pub.10.1038/nn.4492 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074246920
    281 https://doi.org/10.1038/nn.4492
    282 rdf:type schema:CreativeWork
    283 sg:pub.10.1038/nrn2967 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000024338
    284 https://doi.org/10.1038/nrn2967
    285 rdf:type schema:CreativeWork
    286 sg:pub.10.1038/s41467-018-07882-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110929190
    287 https://doi.org/10.1038/s41467-018-07882-8
    288 rdf:type schema:CreativeWork
    289 sg:pub.10.1038/s41467-019-10950-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1117705005
    290 https://doi.org/10.1038/s41467-019-10950-2
    291 rdf:type schema:CreativeWork
    292 sg:pub.10.1038/s41582-018-0072-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107294980
    293 https://doi.org/10.1038/s41582-018-0072-1
    294 rdf:type schema:CreativeWork
    295 sg:pub.10.1186/s13024-016-0071-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1033781975
    296 https://doi.org/10.1186/s13024-016-0071-x
    297 rdf:type schema:CreativeWork
    298 sg:pub.10.1186/s13024-018-0254-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104135784
    299 https://doi.org/10.1186/s13024-018-0254-8
    300 rdf:type schema:CreativeWork
    301 grid-institutes:grid.31501.36 schema:alternateName Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, 101 Daehak-ro, Jongno-Gu, 03080, Seoul, Seoul, Republic of Korea
    302 Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, 03080, Seoul, Jongo-Gu, Republic of Korea
    303 schema:name Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, 101 Daehak-ro, Jongno-Gu, 03080, Seoul, Seoul, Republic of Korea
    304 Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, 03080, Seoul, Jongo-Gu, Republic of Korea
    305 Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-Gu, 03080, Seoul, Seoul, Republic of Korea
    306 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...