Phenotypic clustering: a novel method for microglial morphology analysis View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-06-17

AUTHORS

Franck Verdonk, Pascal Roux, Patricia Flamant, Laurence Fiette, Fernando A. Bozza, Sébastien Simard, Marc Lemaire, Benoit Plaud, Spencer L. Shorte, Tarek Sharshar, Fabrice Chrétien, Anne Danckaert

ABSTRACT

BACKGROUND: Microglial cells are tissue-resident macrophages of the central nervous system. They are extremely dynamic, sensitive to their microenvironment and present a characteristic complex and heterogeneous morphology and distribution within the brain tissue. Many experimental clues highlight a strong link between their morphology and their function in response to aggression. However, due to their complex "dendritic-like" aspect that constitutes the major pool of murine microglial cells and their dense network, precise and powerful morphological studies are not easy to realize and complicate correlation with molecular or clinical parameters. METHODS: Using the knock-in mouse model CX3CR1(GFP/+), we developed a 3D automated confocal tissue imaging system coupled with morphological modelling of many thousands of microglial cells revealing precise and quantitative assessment of major cell features: cell density, cell body area, cytoplasm area and number of primary, secondary and tertiary processes. We determined two morphological criteria that are the complexity index (CI) and the covered environment area (CEA) allowing an innovative approach lying in (i) an accurate and objective study of morphological changes in healthy or pathological condition, (ii) an in situ mapping of the microglial distribution in different neuroanatomical regions and (iii) a study of the clustering of numerous cells, allowing us to discriminate different sub-populations. RESULTS: Our results on more than 20,000 cells by condition confirm at baseline a regional heterogeneity of the microglial distribution and phenotype that persists after induction of neuroinflammation by systemic injection of lipopolysaccharide (LPS). Using clustering analysis, we highlight that, at resting state, microglial cells are distributed in four microglial sub-populations defined by their CI and CEA with a regional pattern and a specific behaviour after challenge. CONCLUSIONS: Our results counteract the classical view of a homogenous regional resting state of the microglial cells within the brain. Microglial cells are distributed in different defined sub-populations that present specific behaviour after pathological challenge, allowing postulating for a cellular and functional specialization. Moreover, this new experimental approach will provide a support not only to neuropathological diagnosis but also to study microglial function in various disease models while reducing the number of animals needed to approach the international ethical statements. More... »

PAGES

153

References to SciGraph publications

  • 2012. Identifying Sub-Populations via Unsupervised Cluster Analysis on Multi-Edge Similarity Graphs in MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION – MICCAI 2012
  • 2005-05-15. ATP mediates rapid microglial response to local brain injury in vivo in NATURE NEUROSCIENCE
  • 2009-12-13. Microglia: biology and pathology in ACTA NEUROPATHOLOGICA
  • 2014-01-21. Morphometric characterization of microglial phenotypes in human cerebral cortex in JOURNAL OF NEUROINFLAMMATION
  • 2014-03-13. Microglia receptors and their implications in the response to amyloid β for Alzheimer’s disease pathogenesis in JOURNAL OF NEUROINFLAMMATION
  • 2013-03-24. Layer V cortical neurons require microglial support for survival during postnatal development in NATURE NEUROSCIENCE
  • 2007-01. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms in NATURE REVIEWS NEUROSCIENCE
  • 2014-10-25. Quantitative assessment of microglial morphology and density reveals remarkable consistency in the distribution and morphology of cells within the healthy prefrontal cortex of the rat in JOURNAL OF NEUROINFLAMMATION
  • 2015-11-04. Altered morphological dynamics of activated microglia after induction of status epilepticus in JOURNAL OF NEUROINFLAMMATION
  • 2012-02-28. OME Remote Objects (OMERO): a flexible, model-driven data management system for experimental biology in NATURE METHODS
  • 2015-09-15. IL-17A is implicated in lipopolysaccharide-induced neuroinflammation and cognitive impairment in aged rats via microglial activation in JOURNAL OF NEUROINFLAMMATION
  • 2012-06-28. Fiji: an open-source platform for biological-image analysis in NATURE METHODS
  • 2015-03-19. The induction of neuronal death by up-regulated microglial cathepsin H in LPS-induced neuroinflammation in JOURNAL OF NEUROINFLAMMATION
  • 2014-01-12. Transcriptome In Vivo Analysis (TIVA) of spatially defined single cells in intact live mouse and human brain tissue in NATURE METHODS
  • 2016-04-06. TAM receptors regulate multiple features of microglial physiology in NATURE
  • 2011-12-10. Temporal pattern of expression and colocalization of microglia/macrophage phenotype markers following brain ischemic injury in mice in JOURNAL OF NEUROINFLAMMATION
  • 2007-10-26. Microglia: active sensor and versatile effector cells in the normal and pathologic brain in NATURE NEUROSCIENCE
  • 2008-10-28. The brain expression of genes involved in inflammatory response, the ribosome, and learning and memory is altered by centrally injected lipopolysaccharide in mice in THE PHARMACOGENOMICS JOURNAL
  • 2007-01-15. Systemic infections and inflammation affect chronic neurodegeneration in NATURE REVIEWS IMMUNOLOGY
  • 1999. Central Nervous System in TRENDS IN CONTRAST MEDIA
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s12974-016-0614-7

    DOI

    http://dx.doi.org/10.1186/s12974-016-0614-7

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1018229516

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/27317566


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Neurosciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Brain", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Brain Chemistry", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cell Body", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cluster Analysis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cytoplasm", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Female", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Male", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Mice", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Mice, Inbred C57BL", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Mice, Transgenic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Microglia", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Microscopy, Confocal", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Phenotype", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "TRIGGERSEP, F-CRIN Network, Toulouse, France", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Human Histopathology and Animal Models Unit, Infection and Epidemiology Department, Institut Pasteur, Paris, France", 
                "Air Liquide Sant\u00e9 International, World Business Line Healthcare, Medical R&D, Paris-Saclay Research Center, 1 chemin de la Porte des Loges, Jouy-en-Josas, France", 
                "Paris Descartes University, Sorbonne Paris Cit\u00e9, Paris, France", 
                "TRIGGERSEP, F-CRIN Network, Toulouse, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Verdonk", 
            "givenName": "Franck", 
            "id": "sg:person.0775263360.52", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0775263360.52"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Imagopole - CITech, Institut Pasteur, Paris, France", 
              "id": "http://www.grid.ac/institutes/grid.428999.7", 
              "name": [
                "Imagopole - CITech, Institut Pasteur, Paris, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Roux", 
            "givenName": "Pascal", 
            "id": "sg:person.0677714474.13", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0677714474.13"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Human Histopathology and Animal Models Unit, Infection and Epidemiology Department, Institut Pasteur, Paris, France", 
              "id": "http://www.grid.ac/institutes/grid.428999.7", 
              "name": [
                "Human Histopathology and Animal Models Unit, Infection and Epidemiology Department, Institut Pasteur, Paris, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Flamant", 
            "givenName": "Patricia", 
            "id": "sg:person.01335506263.95", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01335506263.95"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Human Histopathology and Animal Models Unit, Infection and Epidemiology Department, Institut Pasteur, Paris, France", 
              "id": "http://www.grid.ac/institutes/grid.428999.7", 
              "name": [
                "Human Histopathology and Animal Models Unit, Infection and Epidemiology Department, Institut Pasteur, Paris, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fiette", 
            "givenName": "Laurence", 
            "id": "sg:person.01313017623.51", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01313017623.51"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "ICU, Instituto de Pesquisa Cl\u00ednica Evandro Chagas, Funda\u00e7\u00e3o Oswaldo Cruz, Rio de Janeiro, Brazil", 
              "id": "http://www.grid.ac/institutes/grid.418068.3", 
              "name": [
                "ICU, Instituto de Pesquisa Cl\u00ednica Evandro Chagas, Funda\u00e7\u00e3o Oswaldo Cruz, Rio de Janeiro, Brazil"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bozza", 
            "givenName": "Fernando A.", 
            "id": "sg:person.0623022020.90", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623022020.90"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Imagopole - CITech, Institut Pasteur, Paris, France", 
              "id": "http://www.grid.ac/institutes/grid.428999.7", 
              "name": [
                "Imagopole - CITech, Institut Pasteur, Paris, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Simard", 
            "givenName": "S\u00e9bastien", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Air Liquide Sant\u00e9 International, World Business Line Healthcare, Medical R&D, Paris-Saclay Research Center, 1 chemin de la Porte des Loges, Jouy-en-Josas, France", 
              "id": "http://www.grid.ac/institutes/grid.423839.7", 
              "name": [
                "Air Liquide Sant\u00e9 International, World Business Line Healthcare, Medical R&D, Paris-Saclay Research Center, 1 chemin de la Porte des Loges, Jouy-en-Josas, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lemaire", 
            "givenName": "Marc", 
            "id": "sg:person.01236520765.81", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01236520765.81"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Paris Diderot University, Paris, France", 
              "id": "http://www.grid.ac/institutes/grid.508487.6", 
              "name": [
                "Department of Anaesthesiology and Surgical Intensive Care, Saint-Louis University Hospital of Paris, Paris, France", 
                "Paris Diderot University, Paris, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Plaud", 
            "givenName": "Benoit", 
            "id": "sg:person.0637731735.86", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0637731735.86"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Imagopole - CITech, Institut Pasteur, Paris, France", 
              "id": "http://www.grid.ac/institutes/grid.428999.7", 
              "name": [
                "Imagopole - CITech, Institut Pasteur, Paris, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Shorte", 
            "givenName": "Spencer L.", 
            "id": "sg:person.01234612564.82", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01234612564.82"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "TRIGGERSEP, F-CRIN Network, Toulouse, France", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Human Histopathology and Animal Models Unit, Infection and Epidemiology Department, Institut Pasteur, Paris, France", 
                "Department of Intensive Care, Raymond Poincare University Hospital, Garches, France", 
                "Versailles Saint Quentin University, Versailles, France", 
                "TRIGGERSEP, F-CRIN Network, Toulouse, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sharshar", 
            "givenName": "Tarek", 
            "id": "sg:person.0734521005.23", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0734521005.23"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "TRIGGERSEP, F-CRIN Network, Toulouse, France", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Human Histopathology and Animal Models Unit, Infection and Epidemiology Department, Institut Pasteur, Paris, France", 
                "Laboratoire hospitalo-universitaire de Neuropathologie, Centre Hospitalier Sainte Anne, Paris, France", 
                "Paris Descartes University, Sorbonne Paris Cit\u00e9, Paris, France", 
                "TRIGGERSEP, F-CRIN Network, Toulouse, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chr\u00e9tien", 
            "givenName": "Fabrice", 
            "id": "sg:person.01254234270.77", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01254234270.77"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Imagopole - CITech, Institut Pasteur, Paris, France", 
              "id": "http://www.grid.ac/institutes/grid.428999.7", 
              "name": [
                "Imagopole - CITech, Institut Pasteur, Paris, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Danckaert", 
            "givenName": "Anne", 
            "id": "sg:person.0627766062.30", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0627766062.30"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1186/1742-2094-8-174", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012499641", 
              "https://doi.org/10.1186/1742-2094-8-174"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nn1472", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046138818", 
              "https://doi.org/10.1038/nn1472"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.2804", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012857313", 
              "https://doi.org/10.1038/nmeth.2804"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-33418-4_32", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043443285", 
              "https://doi.org/10.1007/978-3-642-33418-4_32"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00401-009-0622-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047010389", 
              "https://doi.org/10.1007/s00401-009-0622-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12974-015-0268-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034421547", 
              "https://doi.org/10.1186/s12974-015-0268-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12974-015-0421-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051620783", 
              "https://doi.org/10.1186/s12974-015-0421-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1742-2094-11-12", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032410803", 
              "https://doi.org/10.1186/1742-2094-11-12"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.1896", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016358112", 
              "https://doi.org/10.1038/nmeth.1896"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nri2015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029495068", 
              "https://doi.org/10.1038/nri2015"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-59814-2_18", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025687532", 
              "https://doi.org/10.1007/978-3-642-59814-2_18"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.2019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026706357", 
              "https://doi.org/10.1038/nmeth.2019"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature17630", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027519318", 
              "https://doi.org/10.1038/nature17630"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nn1997", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006831469", 
              "https://doi.org/10.1038/nn1997"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1742-2094-11-48", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027271026", 
              "https://doi.org/10.1186/1742-2094-11-48"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12974-014-0182-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051322766", 
              "https://doi.org/10.1186/s12974-014-0182-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrn2038", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004977965", 
              "https://doi.org/10.1038/nrn2038"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nn.3358", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037252060", 
              "https://doi.org/10.1038/nn.3358"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12974-015-0394-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017130630", 
              "https://doi.org/10.1186/s12974-015-0394-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/tpj.2008.15", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031314414", 
              "https://doi.org/10.1038/tpj.2008.15"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2016-06-17", 
        "datePublishedReg": "2016-06-17", 
        "description": "BACKGROUND: Microglial cells are tissue-resident macrophages of the central nervous system. They are extremely dynamic, sensitive to their microenvironment and present a characteristic complex and heterogeneous morphology and distribution within the brain tissue. Many experimental clues highlight a strong link between their morphology and their function in response to aggression. However, due to their complex \"dendritic-like\" aspect that constitutes the major pool of murine microglial cells and their dense network, precise and powerful morphological studies are not easy to realize and complicate correlation with molecular or clinical parameters.\nMETHODS: Using the knock-in mouse model CX3CR1(GFP/+), we developed a 3D automated confocal tissue imaging system coupled with morphological modelling of many thousands of microglial cells revealing precise and quantitative assessment of major cell features: cell density, cell body area, cytoplasm area and number of primary, secondary and tertiary processes. We determined two morphological criteria that are the complexity index (CI) and the covered environment area (CEA) allowing an innovative approach lying in (i) an accurate and objective study of morphological changes in healthy or pathological condition, (ii) an in situ mapping of the microglial distribution in different neuroanatomical regions and (iii) a study of the clustering of numerous cells, allowing us to discriminate different sub-populations.\nRESULTS: Our results on more than 20,000 cells by condition confirm at baseline a regional heterogeneity of the microglial distribution and phenotype that persists after induction of neuroinflammation by systemic injection of lipopolysaccharide (LPS). Using clustering analysis, we highlight that, at resting state, microglial cells are distributed in four microglial sub-populations defined by their CI and CEA with a regional pattern and a specific behaviour after challenge.\nCONCLUSIONS: Our results counteract the classical view of a homogenous regional resting state of the microglial cells within the brain. Microglial cells are distributed in different defined sub-populations that present specific behaviour after pathological challenge, allowing postulating for a cellular and functional specialization. Moreover, this new experimental approach will provide a support not only to neuropathological diagnosis but also to study microglial function in various disease models while reducing the number of animals needed to approach the international ethical statements.", 
        "genre": "article", 
        "id": "sg:pub.10.1186/s12974-016-0614-7", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.3640318", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1034001", 
            "issn": [
              "1742-2094"
            ], 
            "name": "Journal of Neuroinflammation", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "13"
          }
        ], 
        "keywords": [
          "tissue-resident macrophages", 
          "microglial cells", 
          "functional specialization", 
          "major pool", 
          "microglial distribution", 
          "situ mapping", 
          "numerous cells", 
          "murine microglial cells", 
          "morphological criteria", 
          "pathological conditions", 
          "classical view", 
          "pathological challenges", 
          "cells", 
          "number of animals", 
          "microglial function", 
          "new experimental approach", 
          "cell density", 
          "morphological changes", 
          "experimental approach", 
          "cell features", 
          "induction of neuroinflammation", 
          "disease models", 
          "experimental clues", 
          "cell body area", 
          "central nervous system", 
          "morphological studies", 
          "mouse model", 
          "different neuroanatomical regions", 
          "nervous system", 
          "clinical parameters", 
          "neuropathological diagnosis", 
          "systemic injection", 
          "cytoplasm area", 
          "phenotypic", 
          "phenotype", 
          "brain tissue", 
          "neuroanatomical regions", 
          "body areas", 
          "regional patterns", 
          "complexity index", 
          "induction", 
          "microenvironment", 
          "specialization", 
          "function", 
          "pool", 
          "lipopolysaccharide", 
          "specific behaviors", 
          "morphology", 
          "macrophages", 
          "objective study", 
          "tissue", 
          "clues", 
          "animals", 
          "strong link", 
          "distribution", 
          "thousands", 
          "neuroinflammation", 
          "regional heterogeneity", 
          "quantitative assessment", 
          "region", 
          "mapping", 
          "analysis", 
          "diagnosis", 
          "baseline", 
          "patterns", 
          "heterogeneous morphology", 
          "study", 
          "number", 
          "brain", 
          "CEA", 
          "response", 
          "heterogeneity", 
          "injection", 
          "conditions", 
          "area", 
          "clustering", 
          "changes", 
          "link", 
          "dense network", 
          "assessment", 
          "results", 
          "index", 
          "process", 
          "criteria", 
          "innovative approach", 
          "novel method", 
          "system", 
          "correlation", 
          "aggression", 
          "approach", 
          "morphology analysis", 
          "state", 
          "aspects", 
          "density", 
          "challenges", 
          "features", 
          "model", 
          "support", 
          "network", 
          "imaging system", 
          "behavior", 
          "statements", 
          "view", 
          "tertiary processes", 
          "ethical statements", 
          "method", 
          "modelling", 
          "parameters", 
          "environment area", 
          "morphological modelling", 
          "powerful morphological studies", 
          "confocal tissue imaging system", 
          "tissue imaging system", 
          "major cell features", 
          "present specific behaviour", 
          "international ethical statements", 
          "microglial morphology analysis"
        ], 
        "name": "Phenotypic clustering: a novel method for microglial morphology analysis", 
        "pagination": "153", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1018229516"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s12974-016-0614-7"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "27317566"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s12974-016-0614-7", 
          "https://app.dimensions.ai/details/publication/pub.1018229516"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-11-01T18:27", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_697.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1186/s12974-016-0614-7"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12974-016-0614-7'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12974-016-0614-7'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12974-016-0614-7'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12974-016-0614-7'


     

    This table displays all metadata directly associated to this object as RDF triples.

    413 TRIPLES      22 PREDICATES      177 URIs      149 LITERALS      21 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s12974-016-0614-7 schema:about N1136272fdaaa4a3788e47cc0968ecafb
    2 N25c370a939ac4e1ea54ed4122323a9c0
    3 N384fce6df32b4829bdc4f1a12a4d933e
    4 N455bb9fcb1404beebb4cc2b6aacd0b12
    5 N55251a23e1ac4f3eaf9b5fb37c4a48b5
    6 N5e11ac01524f4f9bb32ccc96cbe2ec64
    7 N67cb302a7aa74701a4d3e72635bea222
    8 N813b23be2a6042ddbbfad79337b631da
    9 N8db1e7ba336a423a830f333e8701cbf8
    10 Nb608a6bdb7a4483e8be36ea92c7b84b4
    11 Nbc779d5f0c1b48339fb0d23773e3c098
    12 Ncf79afb3341a472e9b8403d99922e974
    13 Nd397b5d871f94091b46ed1bfb027fad7
    14 Nd6f407396bb64290abbb2d2aa933620c
    15 anzsrc-for:11
    16 anzsrc-for:1109
    17 schema:author N0e8e332d461f4e11b87294398dfc8021
    18 schema:citation sg:pub.10.1007/978-3-642-33418-4_32
    19 sg:pub.10.1007/978-3-642-59814-2_18
    20 sg:pub.10.1007/s00401-009-0622-0
    21 sg:pub.10.1038/nature17630
    22 sg:pub.10.1038/nmeth.1896
    23 sg:pub.10.1038/nmeth.2019
    24 sg:pub.10.1038/nmeth.2804
    25 sg:pub.10.1038/nn.3358
    26 sg:pub.10.1038/nn1472
    27 sg:pub.10.1038/nn1997
    28 sg:pub.10.1038/nri2015
    29 sg:pub.10.1038/nrn2038
    30 sg:pub.10.1038/tpj.2008.15
    31 sg:pub.10.1186/1742-2094-11-12
    32 sg:pub.10.1186/1742-2094-11-48
    33 sg:pub.10.1186/1742-2094-8-174
    34 sg:pub.10.1186/s12974-014-0182-7
    35 sg:pub.10.1186/s12974-015-0268-x
    36 sg:pub.10.1186/s12974-015-0394-5
    37 sg:pub.10.1186/s12974-015-0421-6
    38 schema:datePublished 2016-06-17
    39 schema:datePublishedReg 2016-06-17
    40 schema:description BACKGROUND: Microglial cells are tissue-resident macrophages of the central nervous system. They are extremely dynamic, sensitive to their microenvironment and present a characteristic complex and heterogeneous morphology and distribution within the brain tissue. Many experimental clues highlight a strong link between their morphology and their function in response to aggression. However, due to their complex "dendritic-like" aspect that constitutes the major pool of murine microglial cells and their dense network, precise and powerful morphological studies are not easy to realize and complicate correlation with molecular or clinical parameters. METHODS: Using the knock-in mouse model CX3CR1(GFP/+), we developed a 3D automated confocal tissue imaging system coupled with morphological modelling of many thousands of microglial cells revealing precise and quantitative assessment of major cell features: cell density, cell body area, cytoplasm area and number of primary, secondary and tertiary processes. We determined two morphological criteria that are the complexity index (CI) and the covered environment area (CEA) allowing an innovative approach lying in (i) an accurate and objective study of morphological changes in healthy or pathological condition, (ii) an in situ mapping of the microglial distribution in different neuroanatomical regions and (iii) a study of the clustering of numerous cells, allowing us to discriminate different sub-populations. RESULTS: Our results on more than 20,000 cells by condition confirm at baseline a regional heterogeneity of the microglial distribution and phenotype that persists after induction of neuroinflammation by systemic injection of lipopolysaccharide (LPS). Using clustering analysis, we highlight that, at resting state, microglial cells are distributed in four microglial sub-populations defined by their CI and CEA with a regional pattern and a specific behaviour after challenge. CONCLUSIONS: Our results counteract the classical view of a homogenous regional resting state of the microglial cells within the brain. Microglial cells are distributed in different defined sub-populations that present specific behaviour after pathological challenge, allowing postulating for a cellular and functional specialization. Moreover, this new experimental approach will provide a support not only to neuropathological diagnosis but also to study microglial function in various disease models while reducing the number of animals needed to approach the international ethical statements.
    41 schema:genre article
    42 schema:inLanguage en
    43 schema:isAccessibleForFree true
    44 schema:isPartOf N2e4beb53c1a0410589826089be9b6f13
    45 N9b764e01c5844d79b887626d1e29da46
    46 sg:journal.1034001
    47 schema:keywords CEA
    48 aggression
    49 analysis
    50 animals
    51 approach
    52 area
    53 aspects
    54 assessment
    55 baseline
    56 behavior
    57 body areas
    58 brain
    59 brain tissue
    60 cell body area
    61 cell density
    62 cell features
    63 cells
    64 central nervous system
    65 challenges
    66 changes
    67 classical view
    68 clinical parameters
    69 clues
    70 clustering
    71 complexity index
    72 conditions
    73 confocal tissue imaging system
    74 correlation
    75 criteria
    76 cytoplasm area
    77 dense network
    78 density
    79 diagnosis
    80 different neuroanatomical regions
    81 disease models
    82 distribution
    83 environment area
    84 ethical statements
    85 experimental approach
    86 experimental clues
    87 features
    88 function
    89 functional specialization
    90 heterogeneity
    91 heterogeneous morphology
    92 imaging system
    93 index
    94 induction
    95 induction of neuroinflammation
    96 injection
    97 innovative approach
    98 international ethical statements
    99 link
    100 lipopolysaccharide
    101 macrophages
    102 major cell features
    103 major pool
    104 mapping
    105 method
    106 microenvironment
    107 microglial cells
    108 microglial distribution
    109 microglial function
    110 microglial morphology analysis
    111 model
    112 modelling
    113 morphological changes
    114 morphological criteria
    115 morphological modelling
    116 morphological studies
    117 morphology
    118 morphology analysis
    119 mouse model
    120 murine microglial cells
    121 nervous system
    122 network
    123 neuroanatomical regions
    124 neuroinflammation
    125 neuropathological diagnosis
    126 new experimental approach
    127 novel method
    128 number
    129 number of animals
    130 numerous cells
    131 objective study
    132 parameters
    133 pathological challenges
    134 pathological conditions
    135 patterns
    136 phenotype
    137 phenotypic
    138 pool
    139 powerful morphological studies
    140 present specific behaviour
    141 process
    142 quantitative assessment
    143 region
    144 regional heterogeneity
    145 regional patterns
    146 response
    147 results
    148 situ mapping
    149 specialization
    150 specific behaviors
    151 state
    152 statements
    153 strong link
    154 study
    155 support
    156 system
    157 systemic injection
    158 tertiary processes
    159 thousands
    160 tissue
    161 tissue imaging system
    162 tissue-resident macrophages
    163 view
    164 schema:name Phenotypic clustering: a novel method for microglial morphology analysis
    165 schema:pagination 153
    166 schema:productId N096d66e1366249d0952066fb522a1ed7
    167 N945a529ec13b4eacb38438abb544d409
    168 Nd1bfa77611cf42138826024342adb71c
    169 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018229516
    170 https://doi.org/10.1186/s12974-016-0614-7
    171 schema:sdDatePublished 2021-11-01T18:27
    172 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    173 schema:sdPublisher N4d373ee4a05c45be8c51e4a0b0371832
    174 schema:url https://doi.org/10.1186/s12974-016-0614-7
    175 sgo:license sg:explorer/license/
    176 sgo:sdDataset articles
    177 rdf:type schema:ScholarlyArticle
    178 N0222459b719f42e6840822bbb61a76a1 rdf:first sg:person.01236520765.81
    179 rdf:rest N780331cc03664ea2a2402bcf77ae0174
    180 N096d66e1366249d0952066fb522a1ed7 schema:name doi
    181 schema:value 10.1186/s12974-016-0614-7
    182 rdf:type schema:PropertyValue
    183 N0e8e332d461f4e11b87294398dfc8021 rdf:first sg:person.0775263360.52
    184 rdf:rest N4bffc708a1c84b2c885904fb8fab0548
    185 N1136272fdaaa4a3788e47cc0968ecafb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    186 schema:name Animals
    187 rdf:type schema:DefinedTerm
    188 N25c370a939ac4e1ea54ed4122323a9c0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    189 schema:name Brain Chemistry
    190 rdf:type schema:DefinedTerm
    191 N2e4beb53c1a0410589826089be9b6f13 schema:issueNumber 1
    192 rdf:type schema:PublicationIssue
    193 N384fce6df32b4829bdc4f1a12a4d933e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    194 schema:name Phenotype
    195 rdf:type schema:DefinedTerm
    196 N3dbd63fedec9446c9f0d79ed41dde6a4 rdf:first sg:person.01313017623.51
    197 rdf:rest Nbf93ee9404ec47af8af716fc49ce7a61
    198 N42e20fc793d34d5799c3bbdfa55631c5 rdf:first sg:person.01335506263.95
    199 rdf:rest N3dbd63fedec9446c9f0d79ed41dde6a4
    200 N455bb9fcb1404beebb4cc2b6aacd0b12 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    201 schema:name Brain
    202 rdf:type schema:DefinedTerm
    203 N4bffc708a1c84b2c885904fb8fab0548 rdf:first sg:person.0677714474.13
    204 rdf:rest N42e20fc793d34d5799c3bbdfa55631c5
    205 N4d373ee4a05c45be8c51e4a0b0371832 schema:name Springer Nature - SN SciGraph project
    206 rdf:type schema:Organization
    207 N5141d9423be84a0d84a468acd26f8fd7 rdf:first sg:person.01234612564.82
    208 rdf:rest N76359966f2164e768c86bd6ff170ba51
    209 N55251a23e1ac4f3eaf9b5fb37c4a48b5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    210 schema:name Mice, Inbred C57BL
    211 rdf:type schema:DefinedTerm
    212 N5e11ac01524f4f9bb32ccc96cbe2ec64 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    213 schema:name Microglia
    214 rdf:type schema:DefinedTerm
    215 N67cb302a7aa74701a4d3e72635bea222 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    216 schema:name Mice
    217 rdf:type schema:DefinedTerm
    218 N71839524bc9e4ace8a95a68655b8c63f rdf:first sg:person.0627766062.30
    219 rdf:rest rdf:nil
    220 N76359966f2164e768c86bd6ff170ba51 rdf:first sg:person.0734521005.23
    221 rdf:rest Nfabaef22c10a492a9b9d2715b7d3a549
    222 N780331cc03664ea2a2402bcf77ae0174 rdf:first sg:person.0637731735.86
    223 rdf:rest N5141d9423be84a0d84a468acd26f8fd7
    224 N813b23be2a6042ddbbfad79337b631da schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    225 schema:name Cytoplasm
    226 rdf:type schema:DefinedTerm
    227 N8bb865a77f094560a66237e82ee2ec01 schema:affiliation grid-institutes:grid.428999.7
    228 schema:familyName Simard
    229 schema:givenName Sébastien
    230 rdf:type schema:Person
    231 N8db1e7ba336a423a830f333e8701cbf8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    232 schema:name Cell Body
    233 rdf:type schema:DefinedTerm
    234 N945a529ec13b4eacb38438abb544d409 schema:name dimensions_id
    235 schema:value pub.1018229516
    236 rdf:type schema:PropertyValue
    237 N9b764e01c5844d79b887626d1e29da46 schema:volumeNumber 13
    238 rdf:type schema:PublicationVolume
    239 Nb608a6bdb7a4483e8be36ea92c7b84b4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    240 schema:name Cluster Analysis
    241 rdf:type schema:DefinedTerm
    242 Nba3cc6ea7efa42369400100883a883e4 rdf:first N8bb865a77f094560a66237e82ee2ec01
    243 rdf:rest N0222459b719f42e6840822bbb61a76a1
    244 Nbc779d5f0c1b48339fb0d23773e3c098 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    245 schema:name Female
    246 rdf:type schema:DefinedTerm
    247 Nbf93ee9404ec47af8af716fc49ce7a61 rdf:first sg:person.0623022020.90
    248 rdf:rest Nba3cc6ea7efa42369400100883a883e4
    249 Ncf79afb3341a472e9b8403d99922e974 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    250 schema:name Microscopy, Confocal
    251 rdf:type schema:DefinedTerm
    252 Nd1bfa77611cf42138826024342adb71c schema:name pubmed_id
    253 schema:value 27317566
    254 rdf:type schema:PropertyValue
    255 Nd397b5d871f94091b46ed1bfb027fad7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    256 schema:name Mice, Transgenic
    257 rdf:type schema:DefinedTerm
    258 Nd6f407396bb64290abbb2d2aa933620c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    259 schema:name Male
    260 rdf:type schema:DefinedTerm
    261 Nfabaef22c10a492a9b9d2715b7d3a549 rdf:first sg:person.01254234270.77
    262 rdf:rest N71839524bc9e4ace8a95a68655b8c63f
    263 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    264 schema:name Medical and Health Sciences
    265 rdf:type schema:DefinedTerm
    266 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
    267 schema:name Neurosciences
    268 rdf:type schema:DefinedTerm
    269 sg:grant.3640318 http://pending.schema.org/fundedItem sg:pub.10.1186/s12974-016-0614-7
    270 rdf:type schema:MonetaryGrant
    271 sg:journal.1034001 schema:issn 1742-2094
    272 schema:name Journal of Neuroinflammation
    273 schema:publisher Springer Nature
    274 rdf:type schema:Periodical
    275 sg:person.01234612564.82 schema:affiliation grid-institutes:grid.428999.7
    276 schema:familyName Shorte
    277 schema:givenName Spencer L.
    278 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01234612564.82
    279 rdf:type schema:Person
    280 sg:person.01236520765.81 schema:affiliation grid-institutes:grid.423839.7
    281 schema:familyName Lemaire
    282 schema:givenName Marc
    283 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01236520765.81
    284 rdf:type schema:Person
    285 sg:person.01254234270.77 schema:affiliation grid-institutes:None
    286 schema:familyName Chrétien
    287 schema:givenName Fabrice
    288 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01254234270.77
    289 rdf:type schema:Person
    290 sg:person.01313017623.51 schema:affiliation grid-institutes:grid.428999.7
    291 schema:familyName Fiette
    292 schema:givenName Laurence
    293 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01313017623.51
    294 rdf:type schema:Person
    295 sg:person.01335506263.95 schema:affiliation grid-institutes:grid.428999.7
    296 schema:familyName Flamant
    297 schema:givenName Patricia
    298 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01335506263.95
    299 rdf:type schema:Person
    300 sg:person.0623022020.90 schema:affiliation grid-institutes:grid.418068.3
    301 schema:familyName Bozza
    302 schema:givenName Fernando A.
    303 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623022020.90
    304 rdf:type schema:Person
    305 sg:person.0627766062.30 schema:affiliation grid-institutes:grid.428999.7
    306 schema:familyName Danckaert
    307 schema:givenName Anne
    308 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0627766062.30
    309 rdf:type schema:Person
    310 sg:person.0637731735.86 schema:affiliation grid-institutes:grid.508487.6
    311 schema:familyName Plaud
    312 schema:givenName Benoit
    313 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0637731735.86
    314 rdf:type schema:Person
    315 sg:person.0677714474.13 schema:affiliation grid-institutes:grid.428999.7
    316 schema:familyName Roux
    317 schema:givenName Pascal
    318 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0677714474.13
    319 rdf:type schema:Person
    320 sg:person.0734521005.23 schema:affiliation grid-institutes:None
    321 schema:familyName Sharshar
    322 schema:givenName Tarek
    323 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0734521005.23
    324 rdf:type schema:Person
    325 sg:person.0775263360.52 schema:affiliation grid-institutes:None
    326 schema:familyName Verdonk
    327 schema:givenName Franck
    328 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0775263360.52
    329 rdf:type schema:Person
    330 sg:pub.10.1007/978-3-642-33418-4_32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043443285
    331 https://doi.org/10.1007/978-3-642-33418-4_32
    332 rdf:type schema:CreativeWork
    333 sg:pub.10.1007/978-3-642-59814-2_18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025687532
    334 https://doi.org/10.1007/978-3-642-59814-2_18
    335 rdf:type schema:CreativeWork
    336 sg:pub.10.1007/s00401-009-0622-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047010389
    337 https://doi.org/10.1007/s00401-009-0622-0
    338 rdf:type schema:CreativeWork
    339 sg:pub.10.1038/nature17630 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027519318
    340 https://doi.org/10.1038/nature17630
    341 rdf:type schema:CreativeWork
    342 sg:pub.10.1038/nmeth.1896 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016358112
    343 https://doi.org/10.1038/nmeth.1896
    344 rdf:type schema:CreativeWork
    345 sg:pub.10.1038/nmeth.2019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026706357
    346 https://doi.org/10.1038/nmeth.2019
    347 rdf:type schema:CreativeWork
    348 sg:pub.10.1038/nmeth.2804 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012857313
    349 https://doi.org/10.1038/nmeth.2804
    350 rdf:type schema:CreativeWork
    351 sg:pub.10.1038/nn.3358 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037252060
    352 https://doi.org/10.1038/nn.3358
    353 rdf:type schema:CreativeWork
    354 sg:pub.10.1038/nn1472 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046138818
    355 https://doi.org/10.1038/nn1472
    356 rdf:type schema:CreativeWork
    357 sg:pub.10.1038/nn1997 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006831469
    358 https://doi.org/10.1038/nn1997
    359 rdf:type schema:CreativeWork
    360 sg:pub.10.1038/nri2015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029495068
    361 https://doi.org/10.1038/nri2015
    362 rdf:type schema:CreativeWork
    363 sg:pub.10.1038/nrn2038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004977965
    364 https://doi.org/10.1038/nrn2038
    365 rdf:type schema:CreativeWork
    366 sg:pub.10.1038/tpj.2008.15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031314414
    367 https://doi.org/10.1038/tpj.2008.15
    368 rdf:type schema:CreativeWork
    369 sg:pub.10.1186/1742-2094-11-12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032410803
    370 https://doi.org/10.1186/1742-2094-11-12
    371 rdf:type schema:CreativeWork
    372 sg:pub.10.1186/1742-2094-11-48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027271026
    373 https://doi.org/10.1186/1742-2094-11-48
    374 rdf:type schema:CreativeWork
    375 sg:pub.10.1186/1742-2094-8-174 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012499641
    376 https://doi.org/10.1186/1742-2094-8-174
    377 rdf:type schema:CreativeWork
    378 sg:pub.10.1186/s12974-014-0182-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051322766
    379 https://doi.org/10.1186/s12974-014-0182-7
    380 rdf:type schema:CreativeWork
    381 sg:pub.10.1186/s12974-015-0268-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1034421547
    382 https://doi.org/10.1186/s12974-015-0268-x
    383 rdf:type schema:CreativeWork
    384 sg:pub.10.1186/s12974-015-0394-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017130630
    385 https://doi.org/10.1186/s12974-015-0394-5
    386 rdf:type schema:CreativeWork
    387 sg:pub.10.1186/s12974-015-0421-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051620783
    388 https://doi.org/10.1186/s12974-015-0421-6
    389 rdf:type schema:CreativeWork
    390 grid-institutes:None schema:alternateName TRIGGERSEP, F-CRIN Network, Toulouse, France
    391 schema:name Air Liquide Santé International, World Business Line Healthcare, Medical R&D, Paris-Saclay Research Center, 1 chemin de la Porte des Loges, Jouy-en-Josas, France
    392 Department of Intensive Care, Raymond Poincare University Hospital, Garches, France
    393 Human Histopathology and Animal Models Unit, Infection and Epidemiology Department, Institut Pasteur, Paris, France
    394 Laboratoire hospitalo-universitaire de Neuropathologie, Centre Hospitalier Sainte Anne, Paris, France
    395 Paris Descartes University, Sorbonne Paris Cité, Paris, France
    396 TRIGGERSEP, F-CRIN Network, Toulouse, France
    397 Versailles Saint Quentin University, Versailles, France
    398 rdf:type schema:Organization
    399 grid-institutes:grid.418068.3 schema:alternateName ICU, Instituto de Pesquisa Clínica Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
    400 schema:name ICU, Instituto de Pesquisa Clínica Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
    401 rdf:type schema:Organization
    402 grid-institutes:grid.423839.7 schema:alternateName Air Liquide Santé International, World Business Line Healthcare, Medical R&D, Paris-Saclay Research Center, 1 chemin de la Porte des Loges, Jouy-en-Josas, France
    403 schema:name Air Liquide Santé International, World Business Line Healthcare, Medical R&D, Paris-Saclay Research Center, 1 chemin de la Porte des Loges, Jouy-en-Josas, France
    404 rdf:type schema:Organization
    405 grid-institutes:grid.428999.7 schema:alternateName Human Histopathology and Animal Models Unit, Infection and Epidemiology Department, Institut Pasteur, Paris, France
    406 Imagopole - CITech, Institut Pasteur, Paris, France
    407 schema:name Human Histopathology and Animal Models Unit, Infection and Epidemiology Department, Institut Pasteur, Paris, France
    408 Imagopole - CITech, Institut Pasteur, Paris, France
    409 rdf:type schema:Organization
    410 grid-institutes:grid.508487.6 schema:alternateName Paris Diderot University, Paris, France
    411 schema:name Department of Anaesthesiology and Surgical Intensive Care, Saint-Louis University Hospital of Paris, Paris, France
    412 Paris Diderot University, Paris, France
    413 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...