Remodeling of lipid bodies by docosahexaenoic acid in activated microglial cells View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-05-24

AUTHORS

Marie-Eve Tremblay, Issan Zhang, Kanchan Bisht, Julie C. Savage, Cynthia Lecours, Martin Parent, Vladimir Titorenko, Dusica Maysinger

ABSTRACT

BackgroundOrganelle remodeling processes are evolutionarily conserved and involved in cell functions during development, aging, and cell death. Some endogenous and exogenous molecules can modulate these processes. Docosahexaenoic acid (DHA), an omega-3 polyunsaturated fatty acid, has mainly been considered as a modulator of plasma membrane fluidity in brain development and aging, while DHA’s role in organelle remodeling in specific neural cell types at the ultrastructural level remains largely unexplored. DHA is notably incorporated into dynamic organelles named lipid bodies (LBs). We hypothesized that DHA could attenuate the inflammatory response in lipopolysaccharide (LPS)-activated microglia by remodeling LBs and altering their functional interplay with mitochondria and other associated organelles.ResultsWe used electron microscopy to analyze at high spatial resolution organelle changes in N9 microglial cells exposed to the proinflammogen LPS, with or without DHA supplementation. Our results revealed that DHA reverses several effects of LPS in organelles. In particular, a large number of very small and grouped LBs was exclusively found in microglial cells exposed to DHA. In contrast, LBs in LPS-stimulated cells in the absence of DHA were sparse and large. LBs formed in the presence of DHA were generally electron-dense, suggesting DHA incorporation into these organelles. The accumulation of LBs in microglial cells from mouse and human was confirmed in situ. In addition, DHA induced numerous contacts between LBs and mitochondria and reversed the frequent disruption of mitochondrial integrity observed upon LPS stimulation. Dilation of the endoplasmic reticulum lumen was also infrequent following DHA treatment, suggesting that DHA reduces oxidative stress and protein misfolding. Lipidomic analysis in N9 microglial cells treated with DHA revealed an increase in phosphatidylserine, indicating the role of this phospholipid in normalization and maintenance of physiological membrane functions. This finding was supported by a marked reduction of microglial filopodia and endosome number and significant reduction of LPS-induced phagocytosis.ConclusionsDHA attenuates the inflammatory response in LPS-stimulated microglial cells by remodeling LBs and altering their interplay with mitochondria and other associated organelles. Our findings point towards a mechanism by which omega-3 DHA participates in organelle reorganization and contributes to the maintenance of neural cell homeostasis. More... »

PAGES

116

References to SciGraph publications

  • 2014-06-04. Pro-resolving lipid mediators are leads for resolution physiology in NATURE
  • 2013-01-27. Microglia: Key Elements in Neural Development, Plasticity, and Pathology in JOURNAL OF NEUROIMMUNE PHARMACOLOGY
  • 2010-05-14. Omega-3 Essential Fatty Acids Modulate Initiation and Progression of Neurodegenerative Disease in MOLECULAR NEUROBIOLOGY
  • 2015-12-30. Ligand engagement of Toll-like receptors regulates their expression in cortical microglia and astrocytes in JOURNAL OF NEUROINFLAMMATION
  • 2012-08-24. Histochemical Detection of Lipid Droplets in Cultured Cells in CELL IMAGING TECHNIQUES
  • 2010-06-14. Neurodegenerative diseases: failures in brain connectivity? in CELL DEATH & DIFFERENTIATION
  • 2010-08-17. Resveratrol differentially modulates inflammatory responses of microglia and astrocytes in JOURNAL OF NEUROINFLAMMATION
  • 2003-09-25. Distribution of major histocompatibility complex class II-positive microglia and cytokine profile of Parkinson's disease brains in ACTA NEUROPATHOLOGICA
  • 2014-09-02. Developing and Mature Synapses in MICROGLIA IN HEALTH AND DISEASE
  • 2013-12-08. Identification of a unique TGF-β–dependent molecular and functional signature in microglia in NATURE NEUROSCIENCE
  • 2014-12-12. n-3 PUFA supplementation benefits microglial responses to myelin pathology in SCIENTIFIC REPORTS
  • 2013-09-15. Cardiolipin externalization to the outer mitochondrial membrane acts as an elimination signal for mitophagy in neuronal cells in NATURE CELL BIOLOGY
  • 2016-03-29. Resolution of inflammation: a new therapeutic frontier in NATURE REVIEWS DRUG DISCOVERY
  • 2015-02-22. Docosahexaenoic acid (DHA): a modulator of microglia activity and dendritic spine morphology in JOURNAL OF NEUROINFLAMMATION
  • 2015-03-11. An update on the role of omega-3 fatty acids on inflammatory and degenerative diseases in JOURNAL OF PHYSIOLOGY AND BIOCHEMISTRY
  • 2015-01-14. RBM3 mediates structural plasticity and protective effects of cooling in neurodegeneration in NATURE
  • 2014-04-20. A mitochondrial pathway for biosynthesis of lipid mediators in NATURE CHEMISTRY
  • 1995-11. Lipofuscin of the retinal pigment epithelium: A review in EYE
  • 2013-08-20. ER Stress and Effects of DHA as an ER Stress Inhibitor in TRANSLATIONAL STROKE RESEARCH
  • 2008-06-11. Lipid droplets: a classic organelle with new outfits in HISTOCHEMISTRY AND CELL BIOLOGY
  • 2011-09-15. Endogenous Signaling by Omega-3 Docosahexaenoic Acid-derived Mediators Sustains Homeostatic Synaptic and Circuitry Integrity in MOLECULAR NEUROBIOLOGY
  • 2014-09-26. Oxidative stress and autophagy: the clash between damage and metabolic needs in CELL DEATH & DIFFERENTIATION
  • 2013-11-13. The biophysics and cell biology of lipid droplets in NATURE REVIEWS MOLECULAR CELL BIOLOGY
  • 2008-05-09. Filopodia: molecular architecture and cellular functions in NATURE REVIEWS MOLECULAR CELL BIOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s12974-016-0580-0

    DOI

    http://dx.doi.org/10.1186/s12974-016-0580-0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1022613712

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/27220286


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Clinical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1107", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Immunology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Neurosciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cell Line, Transformed", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cytokines", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Docosahexaenoic Acids", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Dose-Response Relationship, Drug", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Fatty Acids", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Lipid Droplets", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Lipopolysaccharides", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Mice", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Microglia", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Microscopy, Electron, Transmission", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Organelles", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Phagocytosis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Time Factors", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Triglycerides", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Molecular Medicine, Faculty of Medicine, Universit\u00e9 Laval, Axe Neurosciences, Centre de recherche du CHU de Qu\u00e9bec, Qu\u00e9bec, QC, Canada", 
              "id": "http://www.grid.ac/institutes/grid.23856.3a", 
              "name": [
                "Department of Molecular Medicine, Faculty of Medicine, Universit\u00e9 Laval, Axe Neurosciences, Centre de recherche du CHU de Qu\u00e9bec, Qu\u00e9bec, QC, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tremblay", 
            "givenName": "Marie-Eve", 
            "id": "sg:person.013611761022.53", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013611761022.53"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Pharmacology and Therapeutics, McGill University, Montr\u00e9al, QC, Canada", 
              "id": "http://www.grid.ac/institutes/grid.14709.3b", 
              "name": [
                "Department of Pharmacology and Therapeutics, McGill University, Montr\u00e9al, QC, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Issan", 
            "id": "sg:person.01271614116.49", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01271614116.49"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Molecular Medicine, Faculty of Medicine, Universit\u00e9 Laval, Axe Neurosciences, Centre de recherche du CHU de Qu\u00e9bec, Qu\u00e9bec, QC, Canada", 
              "id": "http://www.grid.ac/institutes/grid.23856.3a", 
              "name": [
                "Department of Molecular Medicine, Faculty of Medicine, Universit\u00e9 Laval, Axe Neurosciences, Centre de recherche du CHU de Qu\u00e9bec, Qu\u00e9bec, QC, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bisht", 
            "givenName": "Kanchan", 
            "id": "sg:person.0703400053.42", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703400053.42"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Molecular Medicine, Faculty of Medicine, Universit\u00e9 Laval, Axe Neurosciences, Centre de recherche du CHU de Qu\u00e9bec, Qu\u00e9bec, QC, Canada", 
              "id": "http://www.grid.ac/institutes/grid.23856.3a", 
              "name": [
                "Department of Molecular Medicine, Faculty of Medicine, Universit\u00e9 Laval, Axe Neurosciences, Centre de recherche du CHU de Qu\u00e9bec, Qu\u00e9bec, QC, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Savage", 
            "givenName": "Julie C.", 
            "id": "sg:person.01206743263.05", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206743263.05"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Molecular Medicine, Faculty of Medicine, Universit\u00e9 Laval, Axe Neurosciences, Centre de recherche du CHU de Qu\u00e9bec, Qu\u00e9bec, QC, Canada", 
              "id": "http://www.grid.ac/institutes/grid.23856.3a", 
              "name": [
                "Department of Molecular Medicine, Faculty of Medicine, Universit\u00e9 Laval, Axe Neurosciences, Centre de recherche du CHU de Qu\u00e9bec, Qu\u00e9bec, QC, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lecours", 
            "givenName": "Cynthia", 
            "id": "sg:person.0635264653.24", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635264653.24"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Psychiatry and Neuroscience, Faculty of Medicine, Centre de recherche de l\u2019Institut universitaire en sant\u00e9 mentale de Qu\u00e9bec, Universit\u00e9 Laval, Qu\u00e9bec, QC, Canada", 
              "id": "http://www.grid.ac/institutes/grid.23856.3a", 
              "name": [
                "Department of Psychiatry and Neuroscience, Faculty of Medicine, Centre de recherche de l\u2019Institut universitaire en sant\u00e9 mentale de Qu\u00e9bec, Universit\u00e9 Laval, Qu\u00e9bec, QC, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Parent", 
            "givenName": "Martin", 
            "id": "sg:person.0776371752.13", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0776371752.13"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Biology, Concordia University, Montr\u00e9al, QC, Canada", 
              "id": "http://www.grid.ac/institutes/grid.410319.e", 
              "name": [
                "Department of Biology, Concordia University, Montr\u00e9al, QC, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Titorenko", 
            "givenName": "Vladimir", 
            "id": "sg:person.01237376277.18", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01237376277.18"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Pharmacology and Therapeutics, McGill University, Montr\u00e9al, QC, Canada", 
              "id": "http://www.grid.ac/institutes/grid.14709.3b", 
              "name": [
                "Department of Pharmacology and Therapeutics, McGill University, Montr\u00e9al, QC, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Maysinger", 
            "givenName": "Dusica", 
            "id": "sg:person.0113066715.31", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0113066715.31"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nature14142", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018639853", 
              "https://doi.org/10.1038/nature14142"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1742-2094-7-46", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027800139", 
              "https://doi.org/10.1186/1742-2094-7-46"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12974-015-0244-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013815656", 
              "https://doi.org/10.1186/s12974-015-0244-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrm3699", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039047455", 
              "https://doi.org/10.1038/nrm3699"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep07458", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008764459", 
              "https://doi.org/10.1038/srep07458"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4939-1429-6_9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040715677", 
              "https://doi.org/10.1007/978-1-4939-1429-6_9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature13479", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034176627", 
              "https://doi.org/10.1038/nature13479"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12035-011-8200-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018016780", 
              "https://doi.org/10.1007/s12035-011-8200-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12974-015-0458-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031299072", 
              "https://doi.org/10.1186/s12974-015-0458-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12975-013-0282-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025332700", 
              "https://doi.org/10.1007/s12975-013-0282-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00418-008-0449-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002817064", 
              "https://doi.org/10.1007/s00418-008-0449-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12035-010-8139-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025805179", 
              "https://doi.org/10.1007/s12035-010-8139-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncb2837", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039086149", 
              "https://doi.org/10.1038/ncb2837"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/cdd.2010.23", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022419543", 
              "https://doi.org/10.1038/cdd.2010.23"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nn.3599", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017349450", 
              "https://doi.org/10.1038/nn.3599"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13105-015-0395-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034696410", 
              "https://doi.org/10.1007/s13105-015-0395-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/cdd.2014.150", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023548334", 
              "https://doi.org/10.1038/cdd.2014.150"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00401-003-0766-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047579287", 
              "https://doi.org/10.1007/s00401-003-0766-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrd.2016.39", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003201789", 
              "https://doi.org/10.1038/nrd.2016.39"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrm2406", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001840033", 
              "https://doi.org/10.1038/nrm2406"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/eye.1995.192", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007270894", 
              "https://doi.org/10.1038/eye.1995.192"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-62703-056-4_25", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042573641", 
              "https://doi.org/10.1007/978-1-62703-056-4_25"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nchem.1924", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036827258", 
              "https://doi.org/10.1038/nchem.1924"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11481-013-9434-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018607461", 
              "https://doi.org/10.1007/s11481-013-9434-z"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2016-05-24", 
        "datePublishedReg": "2016-05-24", 
        "description": "BackgroundOrganelle remodeling processes are evolutionarily conserved and involved in cell functions during development, aging, and cell death. Some endogenous and exogenous molecules can modulate these processes. Docosahexaenoic acid (DHA), an omega-3 polyunsaturated fatty acid, has mainly been considered as a modulator of plasma membrane fluidity in brain development and aging, while DHA\u2019s role in organelle remodeling in specific neural cell types at the ultrastructural level remains largely unexplored. DHA is notably incorporated into dynamic organelles named lipid bodies (LBs). We hypothesized that DHA could attenuate the inflammatory response in lipopolysaccharide (LPS)-activated microglia by remodeling LBs and altering their functional interplay with mitochondria and other associated organelles.ResultsWe used electron microscopy to analyze at high spatial resolution organelle changes in N9 microglial cells exposed to the proinflammogen LPS, with or without DHA supplementation. Our results revealed that DHA reverses several effects of LPS in organelles. In particular, a large number of very small and grouped LBs was exclusively found in microglial cells exposed to DHA. In contrast, LBs in LPS-stimulated cells in the absence of DHA were sparse and large. LBs formed in the presence of DHA were generally electron-dense, suggesting DHA incorporation into these organelles. The accumulation of LBs in microglial cells from mouse and human was confirmed in situ. In addition, DHA induced numerous contacts between LBs and mitochondria and reversed the frequent disruption of mitochondrial integrity observed upon LPS stimulation. Dilation of the endoplasmic reticulum lumen was also infrequent following DHA treatment, suggesting that DHA reduces oxidative stress and protein misfolding. Lipidomic analysis in N9 microglial cells treated with DHA revealed an increase in phosphatidylserine, indicating the role of this phospholipid in normalization and maintenance of physiological membrane functions. This finding was supported by a marked reduction of microglial filopodia and endosome number and significant reduction of LPS-induced phagocytosis.ConclusionsDHA attenuates the inflammatory response in LPS-stimulated microglial cells by remodeling LBs and altering their interplay with mitochondria and other associated organelles. Our findings point towards a mechanism by which omega-3 DHA participates in organelle reorganization and contributes to the maintenance of neural cell homeostasis.", 
        "genre": "article", 
        "id": "sg:pub.10.1186/s12974-016-0580-0", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1034001", 
            "issn": [
              "1742-2094"
            ], 
            "name": "Journal of Neuroinflammation", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "13"
          }
        ], 
        "keywords": [
          "lipid bodies", 
          "accumulation of LBs", 
          "specific neural cell types", 
          "endoplasmic reticulum lumen", 
          "neural cell types", 
          "plasma membrane fluidity", 
          "N9 microglial cells", 
          "dynamic organelles", 
          "absence of DHA", 
          "protein misfolding", 
          "microglial cells", 
          "organelle reorganization", 
          "functional interplay", 
          "presence of DHA", 
          "reticulum lumen", 
          "mitochondrial integrity", 
          "cell homeostasis", 
          "organelles", 
          "organelle changes", 
          "docosahexaenoic acid", 
          "cell death", 
          "cell types", 
          "membrane function", 
          "mitochondria", 
          "inflammatory response", 
          "membrane fluidity", 
          "lipidomic analysis", 
          "cell function", 
          "exogenous molecules", 
          "oxidative stress", 
          "effects of LPS", 
          "DHA's role", 
          "DHA treatment", 
          "fatty acids", 
          "cells", 
          "ultrastructural level", 
          "brain development", 
          "DHA supplementation", 
          "LPS stimulation", 
          "misfolding", 
          "LPS", 
          "DHA incorporation", 
          "marked reduction", 
          "acid", 
          "filopodia", 
          "role", 
          "maintenance", 
          "homeostasis", 
          "phosphatidylserine", 
          "significant reduction", 
          "participates", 
          "phagocytosis", 
          "numerous contacts", 
          "interplay", 
          "phospholipids", 
          "large number", 
          "accumulation", 
          "function", 
          "disruption", 
          "reorganization", 
          "aging", 
          "response", 
          "modulator", 
          "microglia", 
          "molecules", 
          "humans", 
          "fluidity", 
          "development", 
          "findings", 
          "ConclusionsDHA", 
          "mechanism", 
          "electron microscopy", 
          "mice", 
          "lipopolysaccharide", 
          "integrity", 
          "stress", 
          "supplementation", 
          "ResultsWe", 
          "death", 
          "stimulation", 
          "dilation", 
          "lumen", 
          "treatment", 
          "absence", 
          "body", 
          "number", 
          "contrast", 
          "reduction", 
          "process", 
          "microscopy", 
          "frequent disruptions", 
          "presence", 
          "incorporation", 
          "levels", 
          "normalization", 
          "changes", 
          "addition", 
          "analysis", 
          "types", 
          "situ", 
          "increase", 
          "effect", 
          "contact", 
          "results"
        ], 
        "name": "Remodeling of lipid bodies by docosahexaenoic acid in activated microglial cells", 
        "pagination": "116", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1022613712"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s12974-016-0580-0"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "27220286"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s12974-016-0580-0", 
          "https://app.dimensions.ai/details/publication/pub.1022613712"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-11-24T21:00", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_691.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1186/s12974-016-0580-0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12974-016-0580-0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12974-016-0580-0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12974-016-0580-0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12974-016-0580-0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    385 TRIPLES      21 PREDICATES      170 URIs      136 LITERALS      22 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s12974-016-0580-0 schema:about N07845f2c98da4dd58666ae579966ce7e
    2 N3ad4c597392b4c4cb93259b74bde1f5d
    3 N674e8894c0ca4f148aa6db4d70ab3594
    4 N76dca5cf20f2457dab3966baa99a48b4
    5 N78ebb1dc87a8433d953352716654a25e
    6 N82151c41cf5342039bee418ce3f85d7a
    7 N8250dc03b51640489612eda391239509
    8 N83c0a91954634f66b9868d712c688cc9
    9 N8a1bf34043834a24af928773ec430c09
    10 Nb8a661bc35184c099aa2d6823aaffcf4
    11 Ndbadb0c91448493b87d50bffae5ffaad
    12 Ndf14d6167d144299ab9d5afe9eba5f6f
    13 Ne6f97e1b15fe48e199ae0dd916562ce4
    14 Neeb7b3dc985949ae8d27dfcdb4bf933b
    15 Nfdc7b6050bc24661a5a4c788960cab9d
    16 anzsrc-for:11
    17 anzsrc-for:1103
    18 anzsrc-for:1107
    19 anzsrc-for:1109
    20 schema:author Nf457d33132584b378f4e8cd135958e75
    21 schema:citation sg:pub.10.1007/978-1-4939-1429-6_9
    22 sg:pub.10.1007/978-1-62703-056-4_25
    23 sg:pub.10.1007/s00401-003-0766-2
    24 sg:pub.10.1007/s00418-008-0449-0
    25 sg:pub.10.1007/s11481-013-9434-z
    26 sg:pub.10.1007/s12035-010-8139-z
    27 sg:pub.10.1007/s12035-011-8200-6
    28 sg:pub.10.1007/s12975-013-0282-1
    29 sg:pub.10.1007/s13105-015-0395-y
    30 sg:pub.10.1038/cdd.2010.23
    31 sg:pub.10.1038/cdd.2014.150
    32 sg:pub.10.1038/eye.1995.192
    33 sg:pub.10.1038/nature13479
    34 sg:pub.10.1038/nature14142
    35 sg:pub.10.1038/ncb2837
    36 sg:pub.10.1038/nchem.1924
    37 sg:pub.10.1038/nn.3599
    38 sg:pub.10.1038/nrd.2016.39
    39 sg:pub.10.1038/nrm2406
    40 sg:pub.10.1038/nrm3699
    41 sg:pub.10.1038/srep07458
    42 sg:pub.10.1186/1742-2094-7-46
    43 sg:pub.10.1186/s12974-015-0244-5
    44 sg:pub.10.1186/s12974-015-0458-6
    45 schema:datePublished 2016-05-24
    46 schema:datePublishedReg 2016-05-24
    47 schema:description BackgroundOrganelle remodeling processes are evolutionarily conserved and involved in cell functions during development, aging, and cell death. Some endogenous and exogenous molecules can modulate these processes. Docosahexaenoic acid (DHA), an omega-3 polyunsaturated fatty acid, has mainly been considered as a modulator of plasma membrane fluidity in brain development and aging, while DHA’s role in organelle remodeling in specific neural cell types at the ultrastructural level remains largely unexplored. DHA is notably incorporated into dynamic organelles named lipid bodies (LBs). We hypothesized that DHA could attenuate the inflammatory response in lipopolysaccharide (LPS)-activated microglia by remodeling LBs and altering their functional interplay with mitochondria and other associated organelles.ResultsWe used electron microscopy to analyze at high spatial resolution organelle changes in N9 microglial cells exposed to the proinflammogen LPS, with or without DHA supplementation. Our results revealed that DHA reverses several effects of LPS in organelles. In particular, a large number of very small and grouped LBs was exclusively found in microglial cells exposed to DHA. In contrast, LBs in LPS-stimulated cells in the absence of DHA were sparse and large. LBs formed in the presence of DHA were generally electron-dense, suggesting DHA incorporation into these organelles. The accumulation of LBs in microglial cells from mouse and human was confirmed in situ. In addition, DHA induced numerous contacts between LBs and mitochondria and reversed the frequent disruption of mitochondrial integrity observed upon LPS stimulation. Dilation of the endoplasmic reticulum lumen was also infrequent following DHA treatment, suggesting that DHA reduces oxidative stress and protein misfolding. Lipidomic analysis in N9 microglial cells treated with DHA revealed an increase in phosphatidylserine, indicating the role of this phospholipid in normalization and maintenance of physiological membrane functions. This finding was supported by a marked reduction of microglial filopodia and endosome number and significant reduction of LPS-induced phagocytosis.ConclusionsDHA attenuates the inflammatory response in LPS-stimulated microglial cells by remodeling LBs and altering their interplay with mitochondria and other associated organelles. Our findings point towards a mechanism by which omega-3 DHA participates in organelle reorganization and contributes to the maintenance of neural cell homeostasis.
    48 schema:genre article
    49 schema:isAccessibleForFree true
    50 schema:isPartOf N8fac273da05745c3b2a6a76d363e5977
    51 Nf7ac00cf4cd343c7a2be6af2d28da9b2
    52 sg:journal.1034001
    53 schema:keywords ConclusionsDHA
    54 DHA incorporation
    55 DHA supplementation
    56 DHA treatment
    57 DHA's role
    58 LPS
    59 LPS stimulation
    60 N9 microglial cells
    61 ResultsWe
    62 absence
    63 absence of DHA
    64 accumulation
    65 accumulation of LBs
    66 acid
    67 addition
    68 aging
    69 analysis
    70 body
    71 brain development
    72 cell death
    73 cell function
    74 cell homeostasis
    75 cell types
    76 cells
    77 changes
    78 contact
    79 contrast
    80 death
    81 development
    82 dilation
    83 disruption
    84 docosahexaenoic acid
    85 dynamic organelles
    86 effect
    87 effects of LPS
    88 electron microscopy
    89 endoplasmic reticulum lumen
    90 exogenous molecules
    91 fatty acids
    92 filopodia
    93 findings
    94 fluidity
    95 frequent disruptions
    96 function
    97 functional interplay
    98 homeostasis
    99 humans
    100 incorporation
    101 increase
    102 inflammatory response
    103 integrity
    104 interplay
    105 large number
    106 levels
    107 lipid bodies
    108 lipidomic analysis
    109 lipopolysaccharide
    110 lumen
    111 maintenance
    112 marked reduction
    113 mechanism
    114 membrane fluidity
    115 membrane function
    116 mice
    117 microglia
    118 microglial cells
    119 microscopy
    120 misfolding
    121 mitochondria
    122 mitochondrial integrity
    123 modulator
    124 molecules
    125 neural cell types
    126 normalization
    127 number
    128 numerous contacts
    129 organelle changes
    130 organelle reorganization
    131 organelles
    132 oxidative stress
    133 participates
    134 phagocytosis
    135 phosphatidylserine
    136 phospholipids
    137 plasma membrane fluidity
    138 presence
    139 presence of DHA
    140 process
    141 protein misfolding
    142 reduction
    143 reorganization
    144 response
    145 results
    146 reticulum lumen
    147 role
    148 significant reduction
    149 situ
    150 specific neural cell types
    151 stimulation
    152 stress
    153 supplementation
    154 treatment
    155 types
    156 ultrastructural level
    157 schema:name Remodeling of lipid bodies by docosahexaenoic acid in activated microglial cells
    158 schema:pagination 116
    159 schema:productId Na8ef36f45303450294e72e9e89f48d7a
    160 Ne0eab02ff7564abf9fbcfa46db1b5f07
    161 Nea058787e33647838e843747999cfe9b
    162 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022613712
    163 https://doi.org/10.1186/s12974-016-0580-0
    164 schema:sdDatePublished 2022-11-24T21:00
    165 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    166 schema:sdPublisher N128aa06aa2904977ac0dcba77e3a5ef9
    167 schema:url https://doi.org/10.1186/s12974-016-0580-0
    168 sgo:license sg:explorer/license/
    169 sgo:sdDataset articles
    170 rdf:type schema:ScholarlyArticle
    171 N0768bce0983b4c88bc391109989b76d1 rdf:first sg:person.01206743263.05
    172 rdf:rest Neb0333dbda78415b9f03a0954c38c049
    173 N07845f2c98da4dd58666ae579966ce7e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    174 schema:name Animals
    175 rdf:type schema:DefinedTerm
    176 N128aa06aa2904977ac0dcba77e3a5ef9 schema:name Springer Nature - SN SciGraph project
    177 rdf:type schema:Organization
    178 N1c6d238aee0a431381cac602d9a07fcd rdf:first sg:person.01271614116.49
    179 rdf:rest N3bbd0e4085df4ca08c83ea9ee72eabce
    180 N30c87f3299444e2aadaabdc64f059ecd rdf:first sg:person.0776371752.13
    181 rdf:rest Nc1ad52f63458400f92f70a4b2a2b6e80
    182 N3ad4c597392b4c4cb93259b74bde1f5d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    183 schema:name Triglycerides
    184 rdf:type schema:DefinedTerm
    185 N3bbd0e4085df4ca08c83ea9ee72eabce rdf:first sg:person.0703400053.42
    186 rdf:rest N0768bce0983b4c88bc391109989b76d1
    187 N674e8894c0ca4f148aa6db4d70ab3594 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    188 schema:name Cell Line, Transformed
    189 rdf:type schema:DefinedTerm
    190 N76dca5cf20f2457dab3966baa99a48b4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    191 schema:name Phagocytosis
    192 rdf:type schema:DefinedTerm
    193 N789b325629d641a5919cde0182d63e19 rdf:first sg:person.0113066715.31
    194 rdf:rest rdf:nil
    195 N78ebb1dc87a8433d953352716654a25e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    196 schema:name Docosahexaenoic Acids
    197 rdf:type schema:DefinedTerm
    198 N82151c41cf5342039bee418ce3f85d7a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    199 schema:name Fatty Acids
    200 rdf:type schema:DefinedTerm
    201 N8250dc03b51640489612eda391239509 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    202 schema:name Time Factors
    203 rdf:type schema:DefinedTerm
    204 N83c0a91954634f66b9868d712c688cc9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    205 schema:name Microglia
    206 rdf:type schema:DefinedTerm
    207 N8a1bf34043834a24af928773ec430c09 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    208 schema:name Mice
    209 rdf:type schema:DefinedTerm
    210 N8fac273da05745c3b2a6a76d363e5977 schema:issueNumber 1
    211 rdf:type schema:PublicationIssue
    212 Na8ef36f45303450294e72e9e89f48d7a schema:name dimensions_id
    213 schema:value pub.1022613712
    214 rdf:type schema:PropertyValue
    215 Nb8a661bc35184c099aa2d6823aaffcf4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    216 schema:name Lipopolysaccharides
    217 rdf:type schema:DefinedTerm
    218 Nc1ad52f63458400f92f70a4b2a2b6e80 rdf:first sg:person.01237376277.18
    219 rdf:rest N789b325629d641a5919cde0182d63e19
    220 Ndbadb0c91448493b87d50bffae5ffaad schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    221 schema:name Dose-Response Relationship, Drug
    222 rdf:type schema:DefinedTerm
    223 Ndf14d6167d144299ab9d5afe9eba5f6f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    224 schema:name Microscopy, Electron, Transmission
    225 rdf:type schema:DefinedTerm
    226 Ne0eab02ff7564abf9fbcfa46db1b5f07 schema:name pubmed_id
    227 schema:value 27220286
    228 rdf:type schema:PropertyValue
    229 Ne6f97e1b15fe48e199ae0dd916562ce4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    230 schema:name Organelles
    231 rdf:type schema:DefinedTerm
    232 Nea058787e33647838e843747999cfe9b schema:name doi
    233 schema:value 10.1186/s12974-016-0580-0
    234 rdf:type schema:PropertyValue
    235 Neb0333dbda78415b9f03a0954c38c049 rdf:first sg:person.0635264653.24
    236 rdf:rest N30c87f3299444e2aadaabdc64f059ecd
    237 Neeb7b3dc985949ae8d27dfcdb4bf933b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    238 schema:name Lipid Droplets
    239 rdf:type schema:DefinedTerm
    240 Nf457d33132584b378f4e8cd135958e75 rdf:first sg:person.013611761022.53
    241 rdf:rest N1c6d238aee0a431381cac602d9a07fcd
    242 Nf7ac00cf4cd343c7a2be6af2d28da9b2 schema:volumeNumber 13
    243 rdf:type schema:PublicationVolume
    244 Nfdc7b6050bc24661a5a4c788960cab9d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    245 schema:name Cytokines
    246 rdf:type schema:DefinedTerm
    247 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    248 schema:name Medical and Health Sciences
    249 rdf:type schema:DefinedTerm
    250 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
    251 schema:name Clinical Sciences
    252 rdf:type schema:DefinedTerm
    253 anzsrc-for:1107 schema:inDefinedTermSet anzsrc-for:
    254 schema:name Immunology
    255 rdf:type schema:DefinedTerm
    256 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
    257 schema:name Neurosciences
    258 rdf:type schema:DefinedTerm
    259 sg:journal.1034001 schema:issn 1742-2094
    260 schema:name Journal of Neuroinflammation
    261 schema:publisher Springer Nature
    262 rdf:type schema:Periodical
    263 sg:person.0113066715.31 schema:affiliation grid-institutes:grid.14709.3b
    264 schema:familyName Maysinger
    265 schema:givenName Dusica
    266 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0113066715.31
    267 rdf:type schema:Person
    268 sg:person.01206743263.05 schema:affiliation grid-institutes:grid.23856.3a
    269 schema:familyName Savage
    270 schema:givenName Julie C.
    271 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206743263.05
    272 rdf:type schema:Person
    273 sg:person.01237376277.18 schema:affiliation grid-institutes:grid.410319.e
    274 schema:familyName Titorenko
    275 schema:givenName Vladimir
    276 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01237376277.18
    277 rdf:type schema:Person
    278 sg:person.01271614116.49 schema:affiliation grid-institutes:grid.14709.3b
    279 schema:familyName Zhang
    280 schema:givenName Issan
    281 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01271614116.49
    282 rdf:type schema:Person
    283 sg:person.013611761022.53 schema:affiliation grid-institutes:grid.23856.3a
    284 schema:familyName Tremblay
    285 schema:givenName Marie-Eve
    286 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013611761022.53
    287 rdf:type schema:Person
    288 sg:person.0635264653.24 schema:affiliation grid-institutes:grid.23856.3a
    289 schema:familyName Lecours
    290 schema:givenName Cynthia
    291 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635264653.24
    292 rdf:type schema:Person
    293 sg:person.0703400053.42 schema:affiliation grid-institutes:grid.23856.3a
    294 schema:familyName Bisht
    295 schema:givenName Kanchan
    296 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703400053.42
    297 rdf:type schema:Person
    298 sg:person.0776371752.13 schema:affiliation grid-institutes:grid.23856.3a
    299 schema:familyName Parent
    300 schema:givenName Martin
    301 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0776371752.13
    302 rdf:type schema:Person
    303 sg:pub.10.1007/978-1-4939-1429-6_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040715677
    304 https://doi.org/10.1007/978-1-4939-1429-6_9
    305 rdf:type schema:CreativeWork
    306 sg:pub.10.1007/978-1-62703-056-4_25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042573641
    307 https://doi.org/10.1007/978-1-62703-056-4_25
    308 rdf:type schema:CreativeWork
    309 sg:pub.10.1007/s00401-003-0766-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047579287
    310 https://doi.org/10.1007/s00401-003-0766-2
    311 rdf:type schema:CreativeWork
    312 sg:pub.10.1007/s00418-008-0449-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002817064
    313 https://doi.org/10.1007/s00418-008-0449-0
    314 rdf:type schema:CreativeWork
    315 sg:pub.10.1007/s11481-013-9434-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1018607461
    316 https://doi.org/10.1007/s11481-013-9434-z
    317 rdf:type schema:CreativeWork
    318 sg:pub.10.1007/s12035-010-8139-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1025805179
    319 https://doi.org/10.1007/s12035-010-8139-z
    320 rdf:type schema:CreativeWork
    321 sg:pub.10.1007/s12035-011-8200-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018016780
    322 https://doi.org/10.1007/s12035-011-8200-6
    323 rdf:type schema:CreativeWork
    324 sg:pub.10.1007/s12975-013-0282-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025332700
    325 https://doi.org/10.1007/s12975-013-0282-1
    326 rdf:type schema:CreativeWork
    327 sg:pub.10.1007/s13105-015-0395-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1034696410
    328 https://doi.org/10.1007/s13105-015-0395-y
    329 rdf:type schema:CreativeWork
    330 sg:pub.10.1038/cdd.2010.23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022419543
    331 https://doi.org/10.1038/cdd.2010.23
    332 rdf:type schema:CreativeWork
    333 sg:pub.10.1038/cdd.2014.150 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023548334
    334 https://doi.org/10.1038/cdd.2014.150
    335 rdf:type schema:CreativeWork
    336 sg:pub.10.1038/eye.1995.192 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007270894
    337 https://doi.org/10.1038/eye.1995.192
    338 rdf:type schema:CreativeWork
    339 sg:pub.10.1038/nature13479 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034176627
    340 https://doi.org/10.1038/nature13479
    341 rdf:type schema:CreativeWork
    342 sg:pub.10.1038/nature14142 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018639853
    343 https://doi.org/10.1038/nature14142
    344 rdf:type schema:CreativeWork
    345 sg:pub.10.1038/ncb2837 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039086149
    346 https://doi.org/10.1038/ncb2837
    347 rdf:type schema:CreativeWork
    348 sg:pub.10.1038/nchem.1924 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036827258
    349 https://doi.org/10.1038/nchem.1924
    350 rdf:type schema:CreativeWork
    351 sg:pub.10.1038/nn.3599 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017349450
    352 https://doi.org/10.1038/nn.3599
    353 rdf:type schema:CreativeWork
    354 sg:pub.10.1038/nrd.2016.39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003201789
    355 https://doi.org/10.1038/nrd.2016.39
    356 rdf:type schema:CreativeWork
    357 sg:pub.10.1038/nrm2406 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001840033
    358 https://doi.org/10.1038/nrm2406
    359 rdf:type schema:CreativeWork
    360 sg:pub.10.1038/nrm3699 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039047455
    361 https://doi.org/10.1038/nrm3699
    362 rdf:type schema:CreativeWork
    363 sg:pub.10.1038/srep07458 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008764459
    364 https://doi.org/10.1038/srep07458
    365 rdf:type schema:CreativeWork
    366 sg:pub.10.1186/1742-2094-7-46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027800139
    367 https://doi.org/10.1186/1742-2094-7-46
    368 rdf:type schema:CreativeWork
    369 sg:pub.10.1186/s12974-015-0244-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013815656
    370 https://doi.org/10.1186/s12974-015-0244-5
    371 rdf:type schema:CreativeWork
    372 sg:pub.10.1186/s12974-015-0458-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031299072
    373 https://doi.org/10.1186/s12974-015-0458-6
    374 rdf:type schema:CreativeWork
    375 grid-institutes:grid.14709.3b schema:alternateName Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada
    376 schema:name Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada
    377 rdf:type schema:Organization
    378 grid-institutes:grid.23856.3a schema:alternateName Department of Molecular Medicine, Faculty of Medicine, Université Laval, Axe Neurosciences, Centre de recherche du CHU de Québec, Québec, QC, Canada
    379 Department of Psychiatry and Neuroscience, Faculty of Medicine, Centre de recherche de l’Institut universitaire en santé mentale de Québec, Université Laval, Québec, QC, Canada
    380 schema:name Department of Molecular Medicine, Faculty of Medicine, Université Laval, Axe Neurosciences, Centre de recherche du CHU de Québec, Québec, QC, Canada
    381 Department of Psychiatry and Neuroscience, Faculty of Medicine, Centre de recherche de l’Institut universitaire en santé mentale de Québec, Université Laval, Québec, QC, Canada
    382 rdf:type schema:Organization
    383 grid-institutes:grid.410319.e schema:alternateName Department of Biology, Concordia University, Montréal, QC, Canada
    384 schema:name Department of Biology, Concordia University, Montréal, QC, Canada
    385 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...