Assessment of carotid atherosclerotic disease using three-dimensional cardiovascular magnetic resonance vessel wall imaging: comparison with digital subtraction angiography View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2020-03-05

AUTHORS

Zhenjia Wang, Mi Lu, Wen Liu, Tiejin Zheng, Debiao Li, Wei Yu, Zhaoyang Fan

ABSTRACT

BackgroundA three-dimensional (3D) cardiovascular magnetic resonance (CMR) vessel wall imaging (VWI) technique based on 3D T1 weighted (T1w) Sampling Perfection with Application-optimized Contrast using different flip angle Evolutions (SPACE) has recently been used as a promising CMR imaging modality for evaluating extra-cranial and intra-cranial vessel walls. However, this technique is yet to be validated against the current diagnostic imaging standard. We therefore aimed to evaluate the diagnostic performance of 3D CMR VWI in characterizing carotid disease using intra-arterial digital subtraction angiography (DSA) as a reference.MethodsConsecutive patients with at least unilateral > 50% carotid stenosis on ultrasound were scheduled to undergo interventional therapy were invited to participate. The following metrics were measured using 3D CMR VWI and DSA: lumen diameter of the common carotid artery (CCA) and segments C1–C7, stenosis diameter, reference diameter, lesion length, stenosis degree, and ulceration. We assessed the diagnostic sensitivity, specificity, accuracy, and receiver operating characteristic (ROC) curve of 3D CMR VWI, and used Cohen’s kappa, the intraclass correlation coefficient (ICC), and Bland-Altman analyses to assess the diagnostic agreement between 3D CMR VWI and DSA.ResultsThe ICC (all ICCs ≥0.96) and Bland-Altman plots indicated excellent inter-reader agreement in all individual morphologic measurements by 3D CMR VWI. Excellent agreement in all individual morphologic measurements were also found between 3D CMR VWI and DSA. In addition, 3D CMR VWI had high sensitivity (98.4, 97.4, 80.0, 100.0%), specificity (100.0, 94.5, 99.1, 98.0%), and Cohen’s kappa (0.99, 0.89, 0.84, 0.96) for detecting stenosis > 50%, stenosis > 70%, ulceration, and total occlusion, respectively, using DSA as the standard. The AUC of 3D CMR VWI for predicting stenosis > 50 and > 70% were 0.998 and 0.999, respectively.ConclusionsThe 3D CMR VWI technique enables accurate diagnosis and luminal feature assessment of carotid artery atherosclerosis, suggesting that this imaging modality may be useful for routine imaging workups and provide comprehensive information for both the vessel wall and lumen. More... »

PAGES

18

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12968-020-0604-x

DOI

http://dx.doi.org/10.1186/s12968-020-0604-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1125401947

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/32131854


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cardiorespiratory Medicine and Haematology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Angiography, Digital Subtraction", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Carotid Stenosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Imaging, Three-Dimensional", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Angiography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Plaque, Atherosclerotic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Predictive Value of Tests", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Severity of Illness Index", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, No. 23, Back Road of Art Gallery, 100010, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.24696.3f", 
          "name": [
            "Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, No.2 Anzhen Road, 100029, Beijing, China", 
            "Department of Radiology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, No. 23, Back Road of Art Gallery, 100010, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Zhenjia", 
        "id": "sg:person.013371766555.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013371766555.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Otolaryngology Head and Neck Surgery, Beijing Anzhen Hospital, Capital Medical University, No. 2 Anzhen Road, 100029, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.24696.3f", 
          "name": [
            "Department of Otolaryngology Head and Neck Surgery, Beijing Anzhen Hospital, Capital Medical University, No. 2 Anzhen Road, 100029, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lu", 
        "givenName": "Mi", 
        "id": "sg:person.011173575413.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011173575413.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, No.2 Anzhen Road, 100029, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.24696.3f", 
          "name": [
            "Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, No.2 Anzhen Road, 100029, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Wen", 
        "id": "sg:person.012016701452.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012016701452.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Neurosurgery, Beijing Anzhen Hospital, Capital Medical University, No. 2 Anzhen Road, 100029, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.24696.3f", 
          "name": [
            "Department of Neurosurgery, Beijing Anzhen Hospital, Capital Medical University, No. 2 Anzhen Road, 100029, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zheng", 
        "givenName": "Tiejin", 
        "id": "sg:person.013205052263.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013205052263.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Bioengineering, University of California, Los Angeles, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.266100.3", 
          "name": [
            "Biomedical Imaging Research Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd., PACT 400, 90048, Los Angeles, CA, USA", 
            "Department of Bioengineering, University of California, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Debiao", 
        "id": "sg:person.01152021525.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152021525.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, No.2 Anzhen Road, 100029, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.24696.3f", 
          "name": [
            "Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, No.2 Anzhen Road, 100029, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yu", 
        "givenName": "Wei", 
        "id": "sg:person.01143631075.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143631075.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Bioengineering, University of California, Los Angeles, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.266100.3", 
          "name": [
            "Biomedical Imaging Research Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd., PACT 400, 90048, Los Angeles, CA, USA", 
            "Department of Bioengineering, University of California, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fan", 
        "givenName": "Zhaoyang", 
        "id": "sg:person.01136172260.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136172260.58"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/1532-429x-10-31", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042265023", 
          "https://doi.org/10.1186/1532-429x-10-31"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12968-018-0453-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104560508", 
          "https://doi.org/10.1186/s12968-018-0453-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1532-429x-11-41", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003933091", 
          "https://doi.org/10.1186/1532-429x-11-41"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep33246", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008183501", 
          "https://doi.org/10.1038/srep33246"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10554-017-1228-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091201460", 
          "https://doi.org/10.1007/s10554-017-1228-6"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2020-03-05", 
    "datePublishedReg": "2020-03-05", 
    "description": "BackgroundA three-dimensional (3D)\u00a0cardiovascular magnetic resonance (CMR)\u00a0vessel wall imaging (VWI) technique based on 3D T1 weighted\u00a0(T1w) Sampling Perfection with Application-optimized Contrast using different flip angle Evolutions (SPACE) has recently been used as a promising CMR imaging modality for evaluating extra-cranial and intra-cranial vessel walls. However, this technique is yet to be validated against the current diagnostic imaging standard. We therefore aimed to evaluate the diagnostic performance of 3D CMR VWI in characterizing carotid disease using intra-arterial digital subtraction angiography (DSA) as a reference.MethodsConsecutive patients with at least unilateral >\u200950% carotid stenosis on ultrasound were scheduled to undergo interventional therapy were invited to participate. The following metrics were measured using 3D CMR VWI and DSA: lumen diameter of the common carotid artery (CCA) and segments C1\u2013C7, stenosis diameter, reference diameter, lesion length, stenosis degree, and ulceration. We assessed the diagnostic sensitivity, specificity, accuracy, and receiver operating characteristic (ROC) curve of 3D CMR VWI, and used Cohen\u2019s kappa, the intraclass correlation coefficient (ICC), and Bland-Altman analyses to assess the diagnostic agreement between 3D CMR VWI and DSA.ResultsThe ICC (all ICCs \u22650.96) and Bland-Altman plots indicated excellent inter-reader agreement in all individual morphologic measurements by 3D CMR VWI. Excellent agreement in all individual morphologic measurements were also found between 3D CMR VWI and DSA. In addition, 3D CMR VWI had high sensitivity (98.4, 97.4, 80.0, 100.0%), specificity (100.0, 94.5, 99.1, 98.0%), and Cohen\u2019s kappa (0.99, 0.89, 0.84, 0.96) for detecting stenosis >\u200950%, stenosis >\u200970%, ulceration, and total occlusion, respectively, using DSA as the standard. The AUC of 3D CMR VWI for predicting stenosis >\u200950 and\u2009>\u200970% were 0.998 and 0.999, respectively.ConclusionsThe 3D CMR VWI technique enables accurate diagnosis and luminal feature assessment of carotid artery atherosclerosis, suggesting that this imaging modality may be useful for routine imaging workups and provide comprehensive information for both the vessel wall and lumen.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s12968-020-0604-x", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.8388914", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1030439", 
        "issn": [
          "1548-7679", 
          "1879-2855"
        ], 
        "name": "Journal of Cardiovascular Magnetic Resonance", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "22"
      }
    ], 
    "keywords": [
      "digital subtraction angiography", 
      "cardiovascular magnetic resonance", 
      "excellent agreement", 
      "common carotid artery", 
      "intraclass correlation coefficient", 
      "diameter", 
      "wall imaging", 
      "high sensitivity", 
      "wall", 
      "angle evolution", 
      "subtraction angiography", 
      "measurements", 
      "agreement", 
      "technique", 
      "carotid artery atherosclerosis", 
      "intra-arterial digital subtraction angiography", 
      "vessel wall", 
      "carotid atherosclerotic disease", 
      "morphologic measurements", 
      "Cohen's kappa", 
      "magnetic resonance vessel wall imaging", 
      "vessel wall imaging techniques", 
      "excellent inter-reader agreement", 
      "inter-reader agreement", 
      "vessel wall imaging", 
      "performance", 
      "MethodsConsecutive patients", 
      "artery atherosclerosis", 
      "carotid disease", 
      "Bland-Altman plots", 
      "total occlusion", 
      "imaging workup", 
      "atherosclerotic disease", 
      "carotid stenosis", 
      "interventional therapy", 
      "Bland-Altman analysis", 
      "carotid artery", 
      "stenosis diameter", 
      "coefficient", 
      "stenosis", 
      "reference diameter", 
      "lumen diameter", 
      "stenosis degree", 
      "accurate diagnosis", 
      "diagnostic agreement", 
      "lesion length", 
      "diagnostic sensitivity", 
      "accuracy", 
      "diagnostic performance", 
      "imaging modalities", 
      "imaging techniques", 
      "feature assessment", 
      "receiver", 
      "characteristic curve", 
      "ulceration", 
      "imaging standard", 
      "angiography", 
      "disease", 
      "kappa", 
      "curves", 
      "sensitivity", 
      "different flip angle evolutions", 
      "standards", 
      "magnetic resonance", 
      "application-optimized contrasts", 
      "modalities", 
      "VWI", 
      "sampling perfection", 
      "comprehensive information", 
      "resonance", 
      "perfection", 
      "comparison", 
      "length", 
      "reference", 
      "correlation coefficient", 
      "patients", 
      "artery", 
      "atherosclerosis", 
      "therapy", 
      "addition", 
      "workup", 
      "evolution", 
      "specificity", 
      "diagnosis", 
      "occlusion", 
      "AUC", 
      "assessment", 
      "ultrasound", 
      "analysis", 
      "plots", 
      "lumen", 
      "degree", 
      "C1-C7", 
      "imaging", 
      "metrics", 
      "T1", 
      "information", 
      "contrast"
    ], 
    "name": "Assessment of carotid atherosclerotic disease using three-dimensional cardiovascular magnetic resonance vessel wall imaging: comparison with digital subtraction angiography", 
    "pagination": "18", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1125401947"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12968-020-0604-x"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "32131854"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12968-020-0604-x", 
      "https://app.dimensions.ai/details/publication/pub.1125401947"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:47", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_859.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s12968-020-0604-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12968-020-0604-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12968-020-0604-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12968-020-0604-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12968-020-0604-x'


 

This table displays all metadata directly associated to this object as RDF triples.

289 TRIPLES      21 PREDICATES      142 URIs      129 LITERALS      21 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12968-020-0604-x schema:about N02d8f02d904f4966bdbfe644e430939c
2 N156a467e8c6b4941ad974070f2d6d72e
3 N2dff300842ae47a1a4f8cfa949573962
4 N32f0874e42544c15bdedf330a2262ca1
5 N3342de092185453fa63bef18a32b634d
6 N500a30e167614d2a890fc77f5975c645
7 N50d3c13340004e9491af64cf1ddf9cdb
8 N62ff045dec724ffaa0ad3a046a88536d
9 N6b21387390514e0c9c4ee2a43d5e69c9
10 N6d4cd31112ff427fa4e56474f9d76336
11 N7d091566699047d58527c712f5ceac0c
12 N7f44e28f33f14fa1a044419389e342ab
13 Nc0970f975f6b46c99633a97168f5654e
14 Nf8245f16ed114f01b69f6cae753a779f
15 anzsrc-for:11
16 anzsrc-for:1102
17 schema:author N1be3caae2d504be683ad23c3af20f51d
18 schema:citation sg:pub.10.1007/s10554-017-1228-6
19 sg:pub.10.1038/srep33246
20 sg:pub.10.1186/1532-429x-10-31
21 sg:pub.10.1186/1532-429x-11-41
22 sg:pub.10.1186/s12968-018-0453-z
23 schema:datePublished 2020-03-05
24 schema:datePublishedReg 2020-03-05
25 schema:description BackgroundA three-dimensional (3D) cardiovascular magnetic resonance (CMR) vessel wall imaging (VWI) technique based on 3D T1 weighted (T1w) Sampling Perfection with Application-optimized Contrast using different flip angle Evolutions (SPACE) has recently been used as a promising CMR imaging modality for evaluating extra-cranial and intra-cranial vessel walls. However, this technique is yet to be validated against the current diagnostic imaging standard. We therefore aimed to evaluate the diagnostic performance of 3D CMR VWI in characterizing carotid disease using intra-arterial digital subtraction angiography (DSA) as a reference.MethodsConsecutive patients with at least unilateral > 50% carotid stenosis on ultrasound were scheduled to undergo interventional therapy were invited to participate. The following metrics were measured using 3D CMR VWI and DSA: lumen diameter of the common carotid artery (CCA) and segments C1–C7, stenosis diameter, reference diameter, lesion length, stenosis degree, and ulceration. We assessed the diagnostic sensitivity, specificity, accuracy, and receiver operating characteristic (ROC) curve of 3D CMR VWI, and used Cohen’s kappa, the intraclass correlation coefficient (ICC), and Bland-Altman analyses to assess the diagnostic agreement between 3D CMR VWI and DSA.ResultsThe ICC (all ICCs ≥0.96) and Bland-Altman plots indicated excellent inter-reader agreement in all individual morphologic measurements by 3D CMR VWI. Excellent agreement in all individual morphologic measurements were also found between 3D CMR VWI and DSA. In addition, 3D CMR VWI had high sensitivity (98.4, 97.4, 80.0, 100.0%), specificity (100.0, 94.5, 99.1, 98.0%), and Cohen’s kappa (0.99, 0.89, 0.84, 0.96) for detecting stenosis > 50%, stenosis > 70%, ulceration, and total occlusion, respectively, using DSA as the standard. The AUC of 3D CMR VWI for predicting stenosis > 50 and > 70% were 0.998 and 0.999, respectively.ConclusionsThe 3D CMR VWI technique enables accurate diagnosis and luminal feature assessment of carotid artery atherosclerosis, suggesting that this imaging modality may be useful for routine imaging workups and provide comprehensive information for both the vessel wall and lumen.
26 schema:genre article
27 schema:isAccessibleForFree true
28 schema:isPartOf N11d50fe4cf0141c7bbecd6201a6c9d3a
29 N42565e5c1c1a45a786c6a713a1884c20
30 sg:journal.1030439
31 schema:keywords AUC
32 Bland-Altman analysis
33 Bland-Altman plots
34 C1-C7
35 Cohen's kappa
36 MethodsConsecutive patients
37 T1
38 VWI
39 accuracy
40 accurate diagnosis
41 addition
42 agreement
43 analysis
44 angiography
45 angle evolution
46 application-optimized contrasts
47 artery
48 artery atherosclerosis
49 assessment
50 atherosclerosis
51 atherosclerotic disease
52 cardiovascular magnetic resonance
53 carotid artery
54 carotid artery atherosclerosis
55 carotid atherosclerotic disease
56 carotid disease
57 carotid stenosis
58 characteristic curve
59 coefficient
60 common carotid artery
61 comparison
62 comprehensive information
63 contrast
64 correlation coefficient
65 curves
66 degree
67 diagnosis
68 diagnostic agreement
69 diagnostic performance
70 diagnostic sensitivity
71 diameter
72 different flip angle evolutions
73 digital subtraction angiography
74 disease
75 evolution
76 excellent agreement
77 excellent inter-reader agreement
78 feature assessment
79 high sensitivity
80 imaging
81 imaging modalities
82 imaging standard
83 imaging techniques
84 imaging workup
85 information
86 inter-reader agreement
87 interventional therapy
88 intra-arterial digital subtraction angiography
89 intraclass correlation coefficient
90 kappa
91 length
92 lesion length
93 lumen
94 lumen diameter
95 magnetic resonance
96 magnetic resonance vessel wall imaging
97 measurements
98 metrics
99 modalities
100 morphologic measurements
101 occlusion
102 patients
103 perfection
104 performance
105 plots
106 receiver
107 reference
108 reference diameter
109 resonance
110 sampling perfection
111 sensitivity
112 specificity
113 standards
114 stenosis
115 stenosis degree
116 stenosis diameter
117 subtraction angiography
118 technique
119 therapy
120 total occlusion
121 ulceration
122 ultrasound
123 vessel wall
124 vessel wall imaging
125 vessel wall imaging techniques
126 wall
127 wall imaging
128 workup
129 schema:name Assessment of carotid atherosclerotic disease using three-dimensional cardiovascular magnetic resonance vessel wall imaging: comparison with digital subtraction angiography
130 schema:pagination 18
131 schema:productId N0a91bcc1b26a4513acaf0c78e767172d
132 Na17f7593a8ba43e2b7370312a436ded2
133 Nb7f8031834914d28994860dcd45064f1
134 schema:sameAs https://app.dimensions.ai/details/publication/pub.1125401947
135 https://doi.org/10.1186/s12968-020-0604-x
136 schema:sdDatePublished 2022-10-01T06:47
137 schema:sdLicense https://scigraph.springernature.com/explorer/license/
138 schema:sdPublisher Nae4ce0ed1ac74f9ca4cda3c6f63763c5
139 schema:url https://doi.org/10.1186/s12968-020-0604-x
140 sgo:license sg:explorer/license/
141 sgo:sdDataset articles
142 rdf:type schema:ScholarlyArticle
143 N02d8f02d904f4966bdbfe644e430939c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
144 schema:name Aged
145 rdf:type schema:DefinedTerm
146 N0a91bcc1b26a4513acaf0c78e767172d schema:name dimensions_id
147 schema:value pub.1125401947
148 rdf:type schema:PropertyValue
149 N11d50fe4cf0141c7bbecd6201a6c9d3a schema:issueNumber 1
150 rdf:type schema:PublicationIssue
151 N156a467e8c6b4941ad974070f2d6d72e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Magnetic Resonance Angiography
153 rdf:type schema:DefinedTerm
154 N160d7427f95640d7b5854bcc449b5279 rdf:first sg:person.012016701452.48
155 rdf:rest N27334d5a82bb4756a957f186c2b7847e
156 N1be3caae2d504be683ad23c3af20f51d rdf:first sg:person.013371766555.49
157 rdf:rest Nbb6e73f5e42d4e2eb46a82b02dda922f
158 N27334d5a82bb4756a957f186c2b7847e rdf:first sg:person.013205052263.44
159 rdf:rest N93746e1f5f8442e5874279fb9367e758
160 N2dff300842ae47a1a4f8cfa949573962 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
161 schema:name Middle Aged
162 rdf:type schema:DefinedTerm
163 N32f0874e42544c15bdedf330a2262ca1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
164 schema:name Predictive Value of Tests
165 rdf:type schema:DefinedTerm
166 N3342de092185453fa63bef18a32b634d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
167 schema:name Imaging, Three-Dimensional
168 rdf:type schema:DefinedTerm
169 N42565e5c1c1a45a786c6a713a1884c20 schema:volumeNumber 22
170 rdf:type schema:PublicationVolume
171 N500a30e167614d2a890fc77f5975c645 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
172 schema:name Reproducibility of Results
173 rdf:type schema:DefinedTerm
174 N50d3c13340004e9491af64cf1ddf9cdb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
175 schema:name Angiography, Digital Subtraction
176 rdf:type schema:DefinedTerm
177 N62ff045dec724ffaa0ad3a046a88536d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
178 schema:name Plaque, Atherosclerotic
179 rdf:type schema:DefinedTerm
180 N6b21387390514e0c9c4ee2a43d5e69c9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
181 schema:name Female
182 rdf:type schema:DefinedTerm
183 N6d4cd31112ff427fa4e56474f9d76336 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
184 schema:name Male
185 rdf:type schema:DefinedTerm
186 N7d091566699047d58527c712f5ceac0c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
187 schema:name Prospective Studies
188 rdf:type schema:DefinedTerm
189 N7f44e28f33f14fa1a044419389e342ab schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
190 schema:name Severity of Illness Index
191 rdf:type schema:DefinedTerm
192 N82dcd2a2dd5545a5bbd1e2cbd932a406 rdf:first sg:person.01143631075.45
193 rdf:rest N8974e4e64723436894d023e8194536af
194 N8974e4e64723436894d023e8194536af rdf:first sg:person.01136172260.58
195 rdf:rest rdf:nil
196 N93746e1f5f8442e5874279fb9367e758 rdf:first sg:person.01152021525.33
197 rdf:rest N82dcd2a2dd5545a5bbd1e2cbd932a406
198 Na17f7593a8ba43e2b7370312a436ded2 schema:name doi
199 schema:value 10.1186/s12968-020-0604-x
200 rdf:type schema:PropertyValue
201 Nae4ce0ed1ac74f9ca4cda3c6f63763c5 schema:name Springer Nature - SN SciGraph project
202 rdf:type schema:Organization
203 Nb7f8031834914d28994860dcd45064f1 schema:name pubmed_id
204 schema:value 32131854
205 rdf:type schema:PropertyValue
206 Nbb6e73f5e42d4e2eb46a82b02dda922f rdf:first sg:person.011173575413.11
207 rdf:rest N160d7427f95640d7b5854bcc449b5279
208 Nc0970f975f6b46c99633a97168f5654e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
209 schema:name Humans
210 rdf:type schema:DefinedTerm
211 Nf8245f16ed114f01b69f6cae753a779f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
212 schema:name Carotid Stenosis
213 rdf:type schema:DefinedTerm
214 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
215 schema:name Medical and Health Sciences
216 rdf:type schema:DefinedTerm
217 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
218 schema:name Cardiorespiratory Medicine and Haematology
219 rdf:type schema:DefinedTerm
220 sg:grant.8388914 http://pending.schema.org/fundedItem sg:pub.10.1186/s12968-020-0604-x
221 rdf:type schema:MonetaryGrant
222 sg:journal.1030439 schema:issn 1548-7679
223 1879-2855
224 schema:name Journal of Cardiovascular Magnetic Resonance
225 schema:publisher Springer Nature
226 rdf:type schema:Periodical
227 sg:person.011173575413.11 schema:affiliation grid-institutes:grid.24696.3f
228 schema:familyName Lu
229 schema:givenName Mi
230 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011173575413.11
231 rdf:type schema:Person
232 sg:person.01136172260.58 schema:affiliation grid-institutes:grid.266100.3
233 schema:familyName Fan
234 schema:givenName Zhaoyang
235 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136172260.58
236 rdf:type schema:Person
237 sg:person.01143631075.45 schema:affiliation grid-institutes:grid.24696.3f
238 schema:familyName Yu
239 schema:givenName Wei
240 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143631075.45
241 rdf:type schema:Person
242 sg:person.01152021525.33 schema:affiliation grid-institutes:grid.266100.3
243 schema:familyName Li
244 schema:givenName Debiao
245 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152021525.33
246 rdf:type schema:Person
247 sg:person.012016701452.48 schema:affiliation grid-institutes:grid.24696.3f
248 schema:familyName Liu
249 schema:givenName Wen
250 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012016701452.48
251 rdf:type schema:Person
252 sg:person.013205052263.44 schema:affiliation grid-institutes:grid.24696.3f
253 schema:familyName Zheng
254 schema:givenName Tiejin
255 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013205052263.44
256 rdf:type schema:Person
257 sg:person.013371766555.49 schema:affiliation grid-institutes:grid.24696.3f
258 schema:familyName Wang
259 schema:givenName Zhenjia
260 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013371766555.49
261 rdf:type schema:Person
262 sg:pub.10.1007/s10554-017-1228-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091201460
263 https://doi.org/10.1007/s10554-017-1228-6
264 rdf:type schema:CreativeWork
265 sg:pub.10.1038/srep33246 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008183501
266 https://doi.org/10.1038/srep33246
267 rdf:type schema:CreativeWork
268 sg:pub.10.1186/1532-429x-10-31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042265023
269 https://doi.org/10.1186/1532-429x-10-31
270 rdf:type schema:CreativeWork
271 sg:pub.10.1186/1532-429x-11-41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003933091
272 https://doi.org/10.1186/1532-429x-11-41
273 rdf:type schema:CreativeWork
274 sg:pub.10.1186/s12968-018-0453-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1104560508
275 https://doi.org/10.1186/s12968-018-0453-z
276 rdf:type schema:CreativeWork
277 grid-institutes:grid.24696.3f schema:alternateName Department of Neurosurgery, Beijing Anzhen Hospital, Capital Medical University, No. 2 Anzhen Road, 100029, Beijing, China
278 Department of Otolaryngology Head and Neck Surgery, Beijing Anzhen Hospital, Capital Medical University, No. 2 Anzhen Road, 100029, Beijing, China
279 Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, No.2 Anzhen Road, 100029, Beijing, China
280 Department of Radiology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, No. 23, Back Road of Art Gallery, 100010, Beijing, China
281 schema:name Department of Neurosurgery, Beijing Anzhen Hospital, Capital Medical University, No. 2 Anzhen Road, 100029, Beijing, China
282 Department of Otolaryngology Head and Neck Surgery, Beijing Anzhen Hospital, Capital Medical University, No. 2 Anzhen Road, 100029, Beijing, China
283 Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, No.2 Anzhen Road, 100029, Beijing, China
284 Department of Radiology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, No. 23, Back Road of Art Gallery, 100010, Beijing, China
285 rdf:type schema:Organization
286 grid-institutes:grid.266100.3 schema:alternateName Department of Bioengineering, University of California, Los Angeles, CA, USA
287 schema:name Biomedical Imaging Research Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd., PACT 400, 90048, Los Angeles, CA, USA
288 Department of Bioengineering, University of California, Los Angeles, CA, USA
289 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...