Visualization of coronary arteries in paediatric patients using whole-heart coronary magnetic resonance angiography: comparison of image-navigation and the standard approach ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-12

AUTHORS

Mari Nieves Velasco Forte, Israel Valverde, Nanda Prabhu, Teresa Correia, Srinivas Ananth Narayan, Aaron Bell, Sujeev Mathur, Reza Razavi, Tarique Hussain, Kuberan Pushparajah, Markus Henningsson

ABSTRACT

AIMS: To investigate the use of respiratory motion compensation using image-based navigation (iNAV) with constant respiratory efficiency using single end-expiratory thresholding (CRUISE) for coronary magnetic resonance angiography (CMRA), and compare it to the conventional diaphragmatic navigator (dNAV) in paediatric patients with congenital or suspected heart disease. METHODS: iNAV allowed direct tracking of the respiratory heart motion and was generated using balanced steady state free precession startup echoes. Respiratory gating was achieved using CRUISE with a fixed 50% efficiency. Whole-heart CMRA was acquired with 1.3 mm isotropic resolution. For comparison, CMRA with identical imaging parameters were acquired using dNAV. Scan time, visualization of coronary artery origins and mid-course, imaging quality and sharpness was compared between the two sequences. RESULTS: Forty patients (13 females; median weight: 44 kg; median age: 12.6, range: 3 months-17 years) were enrolled. 25 scans were performed in awake patients. A contrast agent was used in 22 patients. The scan time was significantly reduced using iNAV for awake patients (iNAV 7:48 ± 1:26 vs dNAV 9:48 ± 3:11, P = 0.01) but not for patients under general anaesthesia (iNAV = 6:55 ± 1:50 versus dNAV = 6:32 ± 2:16; P = 0.32). In 98% of the cases, iNAV image quality had an equal or higher score than dNAV. The visual score analysis showed a clear difference, favouring iNAV (P = 0.002). The right coronary artery and the left anterior descending vessel sharpness was significantly improved (iNAV: 56.8% ± 10.1% vs dNAV: 53.7% ± 9.9%, P < 0.002 and iNAV: 55.8% ± 8.6% vs dNAV: 53% ± 9.2%, P = 0.001, respectively). CONCLUSION: iNAV allows for a higher success-rate and clearer depiction of the mid-course of coronary arteries in paediatric patients. Its acquisition time is shorter in awake patients and image quality score is equal or superior to the conventional method in most cases. More... »

PAGES

13

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12968-019-0525-8

DOI

http://dx.doi.org/10.1186/s12968-019-0525-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112362548

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30798789


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cardiorespiratory Medicine and Haematology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Biomedicine of Seville", 
          "id": "https://www.grid.ac/institutes/grid.414816.e", 
          "name": [
            "Division of Biomedical Engineering and Imaging Sciences, King\u2019s College London, London, UK", 
            "Department of Congenital Heart Disease, Evelina London Children\u2019s Hospital, Guy\u2019s and St Thomas NHS Foundation Trust, London, UK", 
            "Cardiovascular Pathology Unit, Institute of Biomedicine of Seville, IBIS, Virgen del Rocio University Hospital/CSIC/University of Seville, Seville, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Velasco Forte", 
        "givenName": "Mari Nieves", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Biomedicine of Seville", 
          "id": "https://www.grid.ac/institutes/grid.414816.e", 
          "name": [
            "Division of Biomedical Engineering and Imaging Sciences, King\u2019s College London, London, UK", 
            "Department of Congenital Heart Disease, Evelina London Children\u2019s Hospital, Guy\u2019s and St Thomas NHS Foundation Trust, London, UK", 
            "Cardiovascular Pathology Unit, Institute of Biomedicine of Seville, IBIS, Virgen del Rocio University Hospital/CSIC/University of Seville, Seville, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Valverde", 
        "givenName": "Israel", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Evelina London Children's Hospital", 
          "id": "https://www.grid.ac/institutes/grid.483570.d", 
          "name": [
            "Department of Congenital Heart Disease, Evelina London Children\u2019s Hospital, Guy\u2019s and St Thomas NHS Foundation Trust, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Prabhu", 
        "givenName": "Nanda", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "King's College London", 
          "id": "https://www.grid.ac/institutes/grid.13097.3c", 
          "name": [
            "Division of Biomedical Engineering and Imaging Sciences, King\u2019s College London, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Correia", 
        "givenName": "Teresa", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Evelina London Children's Hospital", 
          "id": "https://www.grid.ac/institutes/grid.483570.d", 
          "name": [
            "Division of Biomedical Engineering and Imaging Sciences, King\u2019s College London, London, UK", 
            "Department of Congenital Heart Disease, Evelina London Children\u2019s Hospital, Guy\u2019s and St Thomas NHS Foundation Trust, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Narayan", 
        "givenName": "Srinivas Ananth", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Evelina London Children's Hospital", 
          "id": "https://www.grid.ac/institutes/grid.483570.d", 
          "name": [
            "Department of Congenital Heart Disease, Evelina London Children\u2019s Hospital, Guy\u2019s and St Thomas NHS Foundation Trust, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bell", 
        "givenName": "Aaron", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Evelina London Children's Hospital", 
          "id": "https://www.grid.ac/institutes/grid.483570.d", 
          "name": [
            "Department of Congenital Heart Disease, Evelina London Children\u2019s Hospital, Guy\u2019s and St Thomas NHS Foundation Trust, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mathur", 
        "givenName": "Sujeev", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Evelina London Children's Hospital", 
          "id": "https://www.grid.ac/institutes/grid.483570.d", 
          "name": [
            "Division of Biomedical Engineering and Imaging Sciences, King\u2019s College London, London, UK", 
            "Department of Congenital Heart Disease, Evelina London Children\u2019s Hospital, Guy\u2019s and St Thomas NHS Foundation Trust, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Razavi", 
        "givenName": "Reza", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The University of Texas Southwestern Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.267313.2", 
          "name": [
            "Division of Biomedical Engineering and Imaging Sciences, King\u2019s College London, London, UK", 
            "Department of Pediatrics, University of Texas Southwestern Medical Center, 1935 Medical District Drive, Dallas, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hussain", 
        "givenName": "Tarique", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Evelina London Children's Hospital", 
          "id": "https://www.grid.ac/institutes/grid.483570.d", 
          "name": [
            "Division of Biomedical Engineering and Imaging Sciences, King\u2019s College London, London, UK", 
            "Department of Congenital Heart Disease, Evelina London Children\u2019s Hospital, Guy\u2019s and St Thomas NHS Foundation Trust, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pushparajah", 
        "givenName": "Kuberan", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Link\u00f6ping University", 
          "id": "https://www.grid.ac/institutes/grid.5640.7", 
          "name": [
            "Division of Biomedical Engineering and Imaging Sciences, King\u2019s College London, London, UK", 
            "Division of Cardiovascular Medicine, Department of Medical and Health Sciences, Link\u00f6ping University, Link\u00f6ping, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Henningsson", 
        "givenName": "Markus", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/jmri.21655", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000585713"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.24346", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006087706"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.20941", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010178837"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/s130606882", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013940438"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.12111700", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015954077"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.20557", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018831075"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.20557", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018831075"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2502071998", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019236054"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.24881", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020531208"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.10100828", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021220423"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.25523", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024505248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.25058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025205134"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12880-015-0095-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026362575", 
          "https://doi.org/10.1186/s12880-015-0095-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mri.2016.12.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033013016"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.13132045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036813090"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.26376", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037429225"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.26273", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037963843"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa010866", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045346689"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.10253", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045362386"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.0000134282.35183.ad", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045409422"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12968-015-0156-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045596111", 
          "https://doi.org/10.1186/s12968-015-0156-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12968-015-0156-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045596111", 
          "https://doi.org/10.1186/s12968-015-0156-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.23027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049511409"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.26332", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051045442"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/hrt.2008.160309", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053432201"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/heartjnl-2016-309773", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062814903"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/heartjnl-2016-309773", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062814903"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1259/bjr/15296170", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064568060"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4330/wjc.v6.i10.1060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072525235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.198.1.8539406", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082850333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.203.3.9169696", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083096606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fped.2017.00036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084433979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.26678", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084504832"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12880-018-0278-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107662035", 
          "https://doi.org/10.1186/s12880-018-0278-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12880-018-0278-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107662035", 
          "https://doi.org/10.1186/s12880-018-0278-0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "AIMS: To investigate the use of respiratory motion compensation using image-based navigation (iNAV) with constant respiratory efficiency using single end-expiratory thresholding (CRUISE) for coronary magnetic resonance angiography (CMRA), and compare it to the conventional diaphragmatic navigator (dNAV) in paediatric patients with congenital or suspected heart disease.\nMETHODS: iNAV allowed direct tracking of the respiratory heart motion and was generated using balanced steady state free precession startup echoes. Respiratory gating was achieved using CRUISE with a fixed 50% efficiency. Whole-heart CMRA was acquired with 1.3\u2009mm isotropic resolution. For comparison, CMRA with identical imaging parameters were acquired using dNAV. Scan time, visualization of coronary artery origins and mid-course, imaging quality and sharpness was compared between the two sequences.\nRESULTS: Forty patients (13 females; median weight: 44\u2009kg; median age: 12.6, range: 3\u2009months-17\u2009years) were enrolled. 25 scans were performed in awake patients. A contrast agent was used in 22 patients. The scan time was significantly reduced using iNAV for awake patients (iNAV 7:48\u2009\u00b1\u20091:26 vs dNAV 9:48\u2009\u00b1\u20093:11, P\u2009=\u20090.01) but not for patients under general anaesthesia (iNAV\u2009=\u20096:55\u2009\u00b1\u20091:50 versus dNAV\u2009=\u20096:32\u2009\u00b1\u20092:16; P\u2009=\u20090.32). In 98% of the cases, iNAV image quality had an equal or higher score than dNAV. The visual score analysis showed a clear difference, favouring iNAV (P\u2009=\u20090.002). The right coronary artery and the left anterior descending vessel sharpness was significantly improved (iNAV: 56.8%\u2009\u00b1\u200910.1% vs dNAV: 53.7%\u2009\u00b1\u20099.9%, P\u2009<\u20090.002 and iNAV: 55.8%\u2009\u00b1\u20098.6% vs dNAV: 53%\u2009\u00b1\u20099.2%, P\u2009=\u20090.001, respectively).\nCONCLUSION: iNAV allows for a higher success-rate and clearer depiction of the mid-course of coronary arteries in paediatric patients. Its acquisition time is shorter in awake patients and image quality score is equal or superior to the conventional method in most cases.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12968-019-0525-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1030439", 
        "issn": [
          "1548-7679", 
          "1879-2855"
        ], 
        "name": "Journal of Cardiovascular Magnetic Resonance", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "21"
      }
    ], 
    "name": "Visualization of coronary arteries in paediatric patients using whole-heart coronary magnetic resonance angiography: comparison of image-navigation and the standard approach for respiratory motion compensation", 
    "pagination": "13", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "043ecbe58d11112b8f7b7f8e4b1381c204e1da3a06e84c919f5bed4825a4b2a0"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30798789"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9815616"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12968-019-0525-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112362548"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12968-019-0525-8", 
      "https://app.dimensions.ai/details/publication/pub.1112362548"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78950_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs12968-019-0525-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12968-019-0525-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12968-019-0525-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12968-019-0525-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12968-019-0525-8'


 

This table displays all metadata directly associated to this object as RDF triples.

241 TRIPLES      21 PREDICATES      60 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12968-019-0525-8 schema:about anzsrc-for:11
2 anzsrc-for:1102
3 schema:author Nbddb4ba8b8184f1aa12819d53485b835
4 schema:citation sg:pub.10.1186/s12880-015-0095-7
5 sg:pub.10.1186/s12880-018-0278-0
6 sg:pub.10.1186/s12968-015-0156-7
7 https://doi.org/10.1002/jmri.20941
8 https://doi.org/10.1002/jmri.21655
9 https://doi.org/10.1002/jmri.25058
10 https://doi.org/10.1002/mrm.10253
11 https://doi.org/10.1002/mrm.20557
12 https://doi.org/10.1002/mrm.23027
13 https://doi.org/10.1002/mrm.24346
14 https://doi.org/10.1002/mrm.24881
15 https://doi.org/10.1002/mrm.25523
16 https://doi.org/10.1002/mrm.26273
17 https://doi.org/10.1002/mrm.26332
18 https://doi.org/10.1002/mrm.26376
19 https://doi.org/10.1002/mrm.26678
20 https://doi.org/10.1016/j.mri.2016.12.021
21 https://doi.org/10.1056/nejmoa010866
22 https://doi.org/10.1136/heartjnl-2016-309773
23 https://doi.org/10.1136/hrt.2008.160309
24 https://doi.org/10.1148/radiol.10100828
25 https://doi.org/10.1148/radiol.12111700
26 https://doi.org/10.1148/radiol.13132045
27 https://doi.org/10.1148/radiol.2502071998
28 https://doi.org/10.1148/radiology.198.1.8539406
29 https://doi.org/10.1148/radiology.203.3.9169696
30 https://doi.org/10.1161/01.cir.0000134282.35183.ad
31 https://doi.org/10.1259/bjr/15296170
32 https://doi.org/10.3389/fped.2017.00036
33 https://doi.org/10.3390/s130606882
34 https://doi.org/10.4330/wjc.v6.i10.1060
35 schema:datePublished 2019-12
36 schema:datePublishedReg 2019-12-01
37 schema:description AIMS: To investigate the use of respiratory motion compensation using image-based navigation (iNAV) with constant respiratory efficiency using single end-expiratory thresholding (CRUISE) for coronary magnetic resonance angiography (CMRA), and compare it to the conventional diaphragmatic navigator (dNAV) in paediatric patients with congenital or suspected heart disease. METHODS: iNAV allowed direct tracking of the respiratory heart motion and was generated using balanced steady state free precession startup echoes. Respiratory gating was achieved using CRUISE with a fixed 50% efficiency. Whole-heart CMRA was acquired with 1.3 mm isotropic resolution. For comparison, CMRA with identical imaging parameters were acquired using dNAV. Scan time, visualization of coronary artery origins and mid-course, imaging quality and sharpness was compared between the two sequences. RESULTS: Forty patients (13 females; median weight: 44 kg; median age: 12.6, range: 3 months-17 years) were enrolled. 25 scans were performed in awake patients. A contrast agent was used in 22 patients. The scan time was significantly reduced using iNAV for awake patients (iNAV 7:48 ± 1:26 vs dNAV 9:48 ± 3:11, P = 0.01) but not for patients under general anaesthesia (iNAV = 6:55 ± 1:50 versus dNAV = 6:32 ± 2:16; P = 0.32). In 98% of the cases, iNAV image quality had an equal or higher score than dNAV. The visual score analysis showed a clear difference, favouring iNAV (P = 0.002). The right coronary artery and the left anterior descending vessel sharpness was significantly improved (iNAV: 56.8% ± 10.1% vs dNAV: 53.7% ± 9.9%, P < 0.002 and iNAV: 55.8% ± 8.6% vs dNAV: 53% ± 9.2%, P = 0.001, respectively). CONCLUSION: iNAV allows for a higher success-rate and clearer depiction of the mid-course of coronary arteries in paediatric patients. Its acquisition time is shorter in awake patients and image quality score is equal or superior to the conventional method in most cases.
38 schema:genre research_article
39 schema:inLanguage en
40 schema:isAccessibleForFree false
41 schema:isPartOf Nd414acd0422547389a6c7c5ffcd90673
42 Neb4dba2d90064a79a1f869a206c88066
43 sg:journal.1030439
44 schema:name Visualization of coronary arteries in paediatric patients using whole-heart coronary magnetic resonance angiography: comparison of image-navigation and the standard approach for respiratory motion compensation
45 schema:pagination 13
46 schema:productId N4ee14d639dfc4199ac9636c18b025628
47 N65a1696b4f754e0da014b150d5aa9d80
48 Nbf69b792deea4d78b589aec61ba19c5f
49 Neaee2090f1d74252b5c364356438a8bf
50 Nfcdff1c5192747bab0f503ea05ec9eda
51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112362548
52 https://doi.org/10.1186/s12968-019-0525-8
53 schema:sdDatePublished 2019-04-11T13:19
54 schema:sdLicense https://scigraph.springernature.com/explorer/license/
55 schema:sdPublisher N586c5da5041145598273dbb045adc51f
56 schema:url https://link.springer.com/10.1186%2Fs12968-019-0525-8
57 sgo:license sg:explorer/license/
58 sgo:sdDataset articles
59 rdf:type schema:ScholarlyArticle
60 N0784425c85a9444d98d0b49a822e9513 rdf:first N33b3a0c3e793431396e0b9ff205d6197
61 rdf:rest Nf52fd0cd12204987afac1628a54477cf
62 N0794c88b4ec747ca84b28f1e2823f2c9 schema:affiliation https://www.grid.ac/institutes/grid.483570.d
63 schema:familyName Narayan
64 schema:givenName Srinivas Ananth
65 rdf:type schema:Person
66 N2fdaf56cd783427486e481c3ce664818 schema:affiliation https://www.grid.ac/institutes/grid.5640.7
67 schema:familyName Henningsson
68 schema:givenName Markus
69 rdf:type schema:Person
70 N30e16f016e78456bb3ac0b5ee041f230 rdf:first N2fdaf56cd783427486e481c3ce664818
71 rdf:rest rdf:nil
72 N33b3a0c3e793431396e0b9ff205d6197 schema:affiliation https://www.grid.ac/institutes/grid.267313.2
73 schema:familyName Hussain
74 schema:givenName Tarique
75 rdf:type schema:Person
76 N42adc1dd670043a1a747c45d5e7be527 rdf:first N997e2bbe965d488bb7a4953393970760
77 rdf:rest N59e0f219fb8c408b88d5d77d78345582
78 N4ee14d639dfc4199ac9636c18b025628 schema:name dimensions_id
79 schema:value pub.1112362548
80 rdf:type schema:PropertyValue
81 N586c5da5041145598273dbb045adc51f schema:name Springer Nature - SN SciGraph project
82 rdf:type schema:Organization
83 N59e0f219fb8c408b88d5d77d78345582 rdf:first Nf825075d923f40f8aa37e5aef2d5c73c
84 rdf:rest N936d315f15b246988eb2573dcfcae8b9
85 N65a1696b4f754e0da014b150d5aa9d80 schema:name readcube_id
86 schema:value 043ecbe58d11112b8f7b7f8e4b1381c204e1da3a06e84c919f5bed4825a4b2a0
87 rdf:type schema:PropertyValue
88 N6789e7381894463f914d4f3bdb11439c rdf:first N0794c88b4ec747ca84b28f1e2823f2c9
89 rdf:rest Nb0fe754c1c1e4dc6bacc962366dc00da
90 N6fbd3eac9eec4142b6e00dd3d5bd4a9c schema:affiliation https://www.grid.ac/institutes/grid.414816.e
91 schema:familyName Velasco Forte
92 schema:givenName Mari Nieves
93 rdf:type schema:Person
94 N936d315f15b246988eb2573dcfcae8b9 rdf:first Nf9179a5c40224ee7adcfb7869364fc5f
95 rdf:rest N6789e7381894463f914d4f3bdb11439c
96 N95bde0adbfe848128d986883d4f9e54b schema:affiliation https://www.grid.ac/institutes/grid.483570.d
97 schema:familyName Razavi
98 schema:givenName Reza
99 rdf:type schema:Person
100 N997e2bbe965d488bb7a4953393970760 schema:affiliation https://www.grid.ac/institutes/grid.414816.e
101 schema:familyName Valverde
102 schema:givenName Israel
103 rdf:type schema:Person
104 N9c7caf1b8ac6423f9bed68fa3ed0e79d rdf:first Ndc6e65b468f849439362d4767a16b1ef
105 rdf:rest Nfe4802e20392450cb3604947e45df3a0
106 Nb0fe754c1c1e4dc6bacc962366dc00da rdf:first Nf2276330492446ed9f4f6e470f997b8a
107 rdf:rest N9c7caf1b8ac6423f9bed68fa3ed0e79d
108 Nbddb4ba8b8184f1aa12819d53485b835 rdf:first N6fbd3eac9eec4142b6e00dd3d5bd4a9c
109 rdf:rest N42adc1dd670043a1a747c45d5e7be527
110 Nbf69b792deea4d78b589aec61ba19c5f schema:name nlm_unique_id
111 schema:value 9815616
112 rdf:type schema:PropertyValue
113 Nd414acd0422547389a6c7c5ffcd90673 schema:volumeNumber 21
114 rdf:type schema:PublicationVolume
115 Ndc6e65b468f849439362d4767a16b1ef schema:affiliation https://www.grid.ac/institutes/grid.483570.d
116 schema:familyName Mathur
117 schema:givenName Sujeev
118 rdf:type schema:Person
119 Neaee2090f1d74252b5c364356438a8bf schema:name pubmed_id
120 schema:value 30798789
121 rdf:type schema:PropertyValue
122 Neb4dba2d90064a79a1f869a206c88066 schema:issueNumber 1
123 rdf:type schema:PublicationIssue
124 Nf2276330492446ed9f4f6e470f997b8a schema:affiliation https://www.grid.ac/institutes/grid.483570.d
125 schema:familyName Bell
126 schema:givenName Aaron
127 rdf:type schema:Person
128 Nf52fd0cd12204987afac1628a54477cf rdf:first Nf86ce7d4422744aa9a76ef5cc8dff4f7
129 rdf:rest N30e16f016e78456bb3ac0b5ee041f230
130 Nf825075d923f40f8aa37e5aef2d5c73c schema:affiliation https://www.grid.ac/institutes/grid.483570.d
131 schema:familyName Prabhu
132 schema:givenName Nanda
133 rdf:type schema:Person
134 Nf86ce7d4422744aa9a76ef5cc8dff4f7 schema:affiliation https://www.grid.ac/institutes/grid.483570.d
135 schema:familyName Pushparajah
136 schema:givenName Kuberan
137 rdf:type schema:Person
138 Nf9179a5c40224ee7adcfb7869364fc5f schema:affiliation https://www.grid.ac/institutes/grid.13097.3c
139 schema:familyName Correia
140 schema:givenName Teresa
141 rdf:type schema:Person
142 Nfcdff1c5192747bab0f503ea05ec9eda schema:name doi
143 schema:value 10.1186/s12968-019-0525-8
144 rdf:type schema:PropertyValue
145 Nfe4802e20392450cb3604947e45df3a0 rdf:first N95bde0adbfe848128d986883d4f9e54b
146 rdf:rest N0784425c85a9444d98d0b49a822e9513
147 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
148 schema:name Medical and Health Sciences
149 rdf:type schema:DefinedTerm
150 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
151 schema:name Cardiorespiratory Medicine and Haematology
152 rdf:type schema:DefinedTerm
153 sg:journal.1030439 schema:issn 1548-7679
154 1879-2855
155 schema:name Journal of Cardiovascular Magnetic Resonance
156 rdf:type schema:Periodical
157 sg:pub.10.1186/s12880-015-0095-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026362575
158 https://doi.org/10.1186/s12880-015-0095-7
159 rdf:type schema:CreativeWork
160 sg:pub.10.1186/s12880-018-0278-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107662035
161 https://doi.org/10.1186/s12880-018-0278-0
162 rdf:type schema:CreativeWork
163 sg:pub.10.1186/s12968-015-0156-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045596111
164 https://doi.org/10.1186/s12968-015-0156-7
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1002/jmri.20941 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010178837
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1002/jmri.21655 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000585713
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1002/jmri.25058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025205134
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1002/mrm.10253 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045362386
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1002/mrm.20557 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018831075
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1002/mrm.23027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049511409
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1002/mrm.24346 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006087706
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1002/mrm.24881 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020531208
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1002/mrm.25523 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024505248
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1002/mrm.26273 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037963843
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1002/mrm.26332 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051045442
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1002/mrm.26376 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037429225
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1002/mrm.26678 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084504832
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1016/j.mri.2016.12.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033013016
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1056/nejmoa010866 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045346689
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1136/heartjnl-2016-309773 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062814903
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1136/hrt.2008.160309 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053432201
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1148/radiol.10100828 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021220423
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1148/radiol.12111700 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015954077
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1148/radiol.13132045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036813090
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1148/radiol.2502071998 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019236054
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1148/radiology.198.1.8539406 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082850333
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1148/radiology.203.3.9169696 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083096606
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1161/01.cir.0000134282.35183.ad schema:sameAs https://app.dimensions.ai/details/publication/pub.1045409422
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1259/bjr/15296170 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064568060
215 rdf:type schema:CreativeWork
216 https://doi.org/10.3389/fped.2017.00036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084433979
217 rdf:type schema:CreativeWork
218 https://doi.org/10.3390/s130606882 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013940438
219 rdf:type schema:CreativeWork
220 https://doi.org/10.4330/wjc.v6.i10.1060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072525235
221 rdf:type schema:CreativeWork
222 https://www.grid.ac/institutes/grid.13097.3c schema:alternateName King's College London
223 schema:name Division of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
224 rdf:type schema:Organization
225 https://www.grid.ac/institutes/grid.267313.2 schema:alternateName The University of Texas Southwestern Medical Center
226 schema:name Department of Pediatrics, University of Texas Southwestern Medical Center, 1935 Medical District Drive, Dallas, USA
227 Division of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
228 rdf:type schema:Organization
229 https://www.grid.ac/institutes/grid.414816.e schema:alternateName Institute of Biomedicine of Seville
230 schema:name Cardiovascular Pathology Unit, Institute of Biomedicine of Seville, IBIS, Virgen del Rocio University Hospital/CSIC/University of Seville, Seville, Spain
231 Department of Congenital Heart Disease, Evelina London Children’s Hospital, Guy’s and St Thomas NHS Foundation Trust, London, UK
232 Division of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
233 rdf:type schema:Organization
234 https://www.grid.ac/institutes/grid.483570.d schema:alternateName Evelina London Children's Hospital
235 schema:name Department of Congenital Heart Disease, Evelina London Children’s Hospital, Guy’s and St Thomas NHS Foundation Trust, London, UK
236 Division of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
237 rdf:type schema:Organization
238 https://www.grid.ac/institutes/grid.5640.7 schema:alternateName Linköping University
239 schema:name Division of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
240 Division of Cardiovascular Medicine, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
241 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...