Visualization of coronary arteries in paediatric patients using whole-heart coronary magnetic resonance angiography: comparison of image-navigation and the standard approach ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-12

AUTHORS

Mari Nieves Velasco Forte, Israel Valverde, Nanda Prabhu, Teresa Correia, Srinivas Ananth Narayan, Aaron Bell, Sujeev Mathur, Reza Razavi, Tarique Hussain, Kuberan Pushparajah, Markus Henningsson

ABSTRACT

AIMS: To investigate the use of respiratory motion compensation using image-based navigation (iNAV) with constant respiratory efficiency using single end-expiratory thresholding (CRUISE) for coronary magnetic resonance angiography (CMRA), and compare it to the conventional diaphragmatic navigator (dNAV) in paediatric patients with congenital or suspected heart disease. METHODS: iNAV allowed direct tracking of the respiratory heart motion and was generated using balanced steady state free precession startup echoes. Respiratory gating was achieved using CRUISE with a fixed 50% efficiency. Whole-heart CMRA was acquired with 1.3 mm isotropic resolution. For comparison, CMRA with identical imaging parameters were acquired using dNAV. Scan time, visualization of coronary artery origins and mid-course, imaging quality and sharpness was compared between the two sequences. RESULTS: Forty patients (13 females; median weight: 44 kg; median age: 12.6, range: 3 months-17 years) were enrolled. 25 scans were performed in awake patients. A contrast agent was used in 22 patients. The scan time was significantly reduced using iNAV for awake patients (iNAV 7:48 ± 1:26 vs dNAV 9:48 ± 3:11, P = 0.01) but not for patients under general anaesthesia (iNAV = 6:55 ± 1:50 versus dNAV = 6:32 ± 2:16; P = 0.32). In 98% of the cases, iNAV image quality had an equal or higher score than dNAV. The visual score analysis showed a clear difference, favouring iNAV (P = 0.002). The right coronary artery and the left anterior descending vessel sharpness was significantly improved (iNAV: 56.8% ± 10.1% vs dNAV: 53.7% ± 9.9%, P < 0.002 and iNAV: 55.8% ± 8.6% vs dNAV: 53% ± 9.2%, P = 0.001, respectively). CONCLUSION: iNAV allows for a higher success-rate and clearer depiction of the mid-course of coronary arteries in paediatric patients. Its acquisition time is shorter in awake patients and image quality score is equal or superior to the conventional method in most cases. More... »

PAGES

13

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12968-019-0525-8

DOI

http://dx.doi.org/10.1186/s12968-019-0525-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112362548

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30798789


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cardiorespiratory Medicine and Haematology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Biomedicine of Seville", 
          "id": "https://www.grid.ac/institutes/grid.414816.e", 
          "name": [
            "Division of Biomedical Engineering and Imaging Sciences, King\u2019s College London, London, UK", 
            "Department of Congenital Heart Disease, Evelina London Children\u2019s Hospital, Guy\u2019s and St Thomas NHS Foundation Trust, London, UK", 
            "Cardiovascular Pathology Unit, Institute of Biomedicine of Seville, IBIS, Virgen del Rocio University Hospital/CSIC/University of Seville, Seville, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Velasco Forte", 
        "givenName": "Mari Nieves", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Biomedicine of Seville", 
          "id": "https://www.grid.ac/institutes/grid.414816.e", 
          "name": [
            "Division of Biomedical Engineering and Imaging Sciences, King\u2019s College London, London, UK", 
            "Department of Congenital Heart Disease, Evelina London Children\u2019s Hospital, Guy\u2019s and St Thomas NHS Foundation Trust, London, UK", 
            "Cardiovascular Pathology Unit, Institute of Biomedicine of Seville, IBIS, Virgen del Rocio University Hospital/CSIC/University of Seville, Seville, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Valverde", 
        "givenName": "Israel", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Evelina London Children's Hospital", 
          "id": "https://www.grid.ac/institutes/grid.483570.d", 
          "name": [
            "Department of Congenital Heart Disease, Evelina London Children\u2019s Hospital, Guy\u2019s and St Thomas NHS Foundation Trust, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Prabhu", 
        "givenName": "Nanda", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "King's College London", 
          "id": "https://www.grid.ac/institutes/grid.13097.3c", 
          "name": [
            "Division of Biomedical Engineering and Imaging Sciences, King\u2019s College London, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Correia", 
        "givenName": "Teresa", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Evelina London Children's Hospital", 
          "id": "https://www.grid.ac/institutes/grid.483570.d", 
          "name": [
            "Division of Biomedical Engineering and Imaging Sciences, King\u2019s College London, London, UK", 
            "Department of Congenital Heart Disease, Evelina London Children\u2019s Hospital, Guy\u2019s and St Thomas NHS Foundation Trust, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Narayan", 
        "givenName": "Srinivas Ananth", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Evelina London Children's Hospital", 
          "id": "https://www.grid.ac/institutes/grid.483570.d", 
          "name": [
            "Department of Congenital Heart Disease, Evelina London Children\u2019s Hospital, Guy\u2019s and St Thomas NHS Foundation Trust, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bell", 
        "givenName": "Aaron", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Evelina London Children's Hospital", 
          "id": "https://www.grid.ac/institutes/grid.483570.d", 
          "name": [
            "Department of Congenital Heart Disease, Evelina London Children\u2019s Hospital, Guy\u2019s and St Thomas NHS Foundation Trust, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mathur", 
        "givenName": "Sujeev", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Evelina London Children's Hospital", 
          "id": "https://www.grid.ac/institutes/grid.483570.d", 
          "name": [
            "Division of Biomedical Engineering and Imaging Sciences, King\u2019s College London, London, UK", 
            "Department of Congenital Heart Disease, Evelina London Children\u2019s Hospital, Guy\u2019s and St Thomas NHS Foundation Trust, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Razavi", 
        "givenName": "Reza", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The University of Texas Southwestern Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.267313.2", 
          "name": [
            "Division of Biomedical Engineering and Imaging Sciences, King\u2019s College London, London, UK", 
            "Department of Pediatrics, University of Texas Southwestern Medical Center, 1935 Medical District Drive, Dallas, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hussain", 
        "givenName": "Tarique", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Evelina London Children's Hospital", 
          "id": "https://www.grid.ac/institutes/grid.483570.d", 
          "name": [
            "Division of Biomedical Engineering and Imaging Sciences, King\u2019s College London, London, UK", 
            "Department of Congenital Heart Disease, Evelina London Children\u2019s Hospital, Guy\u2019s and St Thomas NHS Foundation Trust, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pushparajah", 
        "givenName": "Kuberan", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Link\u00f6ping University", 
          "id": "https://www.grid.ac/institutes/grid.5640.7", 
          "name": [
            "Division of Biomedical Engineering and Imaging Sciences, King\u2019s College London, London, UK", 
            "Division of Cardiovascular Medicine, Department of Medical and Health Sciences, Link\u00f6ping University, Link\u00f6ping, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Henningsson", 
        "givenName": "Markus", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/jmri.21655", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000585713"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.24346", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006087706"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.20941", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010178837"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/s130606882", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013940438"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.12111700", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015954077"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.20557", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018831075"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.20557", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018831075"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2502071998", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019236054"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.24881", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020531208"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.10100828", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021220423"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.25523", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024505248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.25058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025205134"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12880-015-0095-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026362575", 
          "https://doi.org/10.1186/s12880-015-0095-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mri.2016.12.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033013016"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.13132045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036813090"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.26376", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037429225"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.26273", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037963843"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa010866", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045346689"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.10253", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045362386"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.0000134282.35183.ad", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045409422"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12968-015-0156-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045596111", 
          "https://doi.org/10.1186/s12968-015-0156-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12968-015-0156-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045596111", 
          "https://doi.org/10.1186/s12968-015-0156-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.23027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049511409"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.26332", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051045442"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/hrt.2008.160309", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053432201"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/heartjnl-2016-309773", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062814903"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/heartjnl-2016-309773", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062814903"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1259/bjr/15296170", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064568060"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4330/wjc.v6.i10.1060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072525235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.198.1.8539406", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082850333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.203.3.9169696", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083096606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fped.2017.00036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084433979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.26678", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084504832"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12880-018-0278-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107662035", 
          "https://doi.org/10.1186/s12880-018-0278-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12880-018-0278-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107662035", 
          "https://doi.org/10.1186/s12880-018-0278-0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "AIMS: To investigate the use of respiratory motion compensation using image-based navigation (iNAV) with constant respiratory efficiency using single end-expiratory thresholding (CRUISE) for coronary magnetic resonance angiography (CMRA), and compare it to the conventional diaphragmatic navigator (dNAV) in paediatric patients with congenital or suspected heart disease.\nMETHODS: iNAV allowed direct tracking of the respiratory heart motion and was generated using balanced steady state free precession startup echoes. Respiratory gating was achieved using CRUISE with a fixed 50% efficiency. Whole-heart CMRA was acquired with 1.3\u2009mm isotropic resolution. For comparison, CMRA with identical imaging parameters were acquired using dNAV. Scan time, visualization of coronary artery origins and mid-course, imaging quality and sharpness was compared between the two sequences.\nRESULTS: Forty patients (13 females; median weight: 44\u2009kg; median age: 12.6, range: 3\u2009months-17\u2009years) were enrolled. 25 scans were performed in awake patients. A contrast agent was used in 22 patients. The scan time was significantly reduced using iNAV for awake patients (iNAV 7:48\u2009\u00b1\u20091:26 vs dNAV 9:48\u2009\u00b1\u20093:11, P\u2009=\u20090.01) but not for patients under general anaesthesia (iNAV\u2009=\u20096:55\u2009\u00b1\u20091:50 versus dNAV\u2009=\u20096:32\u2009\u00b1\u20092:16; P\u2009=\u20090.32). In 98% of the cases, iNAV image quality had an equal or higher score than dNAV. The visual score analysis showed a clear difference, favouring iNAV (P\u2009=\u20090.002). The right coronary artery and the left anterior descending vessel sharpness was significantly improved (iNAV: 56.8%\u2009\u00b1\u200910.1% vs dNAV: 53.7%\u2009\u00b1\u20099.9%, P\u2009<\u20090.002 and iNAV: 55.8%\u2009\u00b1\u20098.6% vs dNAV: 53%\u2009\u00b1\u20099.2%, P\u2009=\u20090.001, respectively).\nCONCLUSION: iNAV allows for a higher success-rate and clearer depiction of the mid-course of coronary arteries in paediatric patients. Its acquisition time is shorter in awake patients and image quality score is equal or superior to the conventional method in most cases.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12968-019-0525-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1030439", 
        "issn": [
          "1548-7679", 
          "1879-2855"
        ], 
        "name": "Journal of Cardiovascular Magnetic Resonance", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "21"
      }
    ], 
    "name": "Visualization of coronary arteries in paediatric patients using whole-heart coronary magnetic resonance angiography: comparison of image-navigation and the standard approach for respiratory motion compensation", 
    "pagination": "13", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "043ecbe58d11112b8f7b7f8e4b1381c204e1da3a06e84c919f5bed4825a4b2a0"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30798789"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9815616"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12968-019-0525-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112362548"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12968-019-0525-8", 
      "https://app.dimensions.ai/details/publication/pub.1112362548"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78950_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs12968-019-0525-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12968-019-0525-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12968-019-0525-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12968-019-0525-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12968-019-0525-8'


 

This table displays all metadata directly associated to this object as RDF triples.

241 TRIPLES      21 PREDICATES      60 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12968-019-0525-8 schema:about anzsrc-for:11
2 anzsrc-for:1102
3 schema:author N65f58f9a5a4f464f8d80f11653b5fb63
4 schema:citation sg:pub.10.1186/s12880-015-0095-7
5 sg:pub.10.1186/s12880-018-0278-0
6 sg:pub.10.1186/s12968-015-0156-7
7 https://doi.org/10.1002/jmri.20941
8 https://doi.org/10.1002/jmri.21655
9 https://doi.org/10.1002/jmri.25058
10 https://doi.org/10.1002/mrm.10253
11 https://doi.org/10.1002/mrm.20557
12 https://doi.org/10.1002/mrm.23027
13 https://doi.org/10.1002/mrm.24346
14 https://doi.org/10.1002/mrm.24881
15 https://doi.org/10.1002/mrm.25523
16 https://doi.org/10.1002/mrm.26273
17 https://doi.org/10.1002/mrm.26332
18 https://doi.org/10.1002/mrm.26376
19 https://doi.org/10.1002/mrm.26678
20 https://doi.org/10.1016/j.mri.2016.12.021
21 https://doi.org/10.1056/nejmoa010866
22 https://doi.org/10.1136/heartjnl-2016-309773
23 https://doi.org/10.1136/hrt.2008.160309
24 https://doi.org/10.1148/radiol.10100828
25 https://doi.org/10.1148/radiol.12111700
26 https://doi.org/10.1148/radiol.13132045
27 https://doi.org/10.1148/radiol.2502071998
28 https://doi.org/10.1148/radiology.198.1.8539406
29 https://doi.org/10.1148/radiology.203.3.9169696
30 https://doi.org/10.1161/01.cir.0000134282.35183.ad
31 https://doi.org/10.1259/bjr/15296170
32 https://doi.org/10.3389/fped.2017.00036
33 https://doi.org/10.3390/s130606882
34 https://doi.org/10.4330/wjc.v6.i10.1060
35 schema:datePublished 2019-12
36 schema:datePublishedReg 2019-12-01
37 schema:description AIMS: To investigate the use of respiratory motion compensation using image-based navigation (iNAV) with constant respiratory efficiency using single end-expiratory thresholding (CRUISE) for coronary magnetic resonance angiography (CMRA), and compare it to the conventional diaphragmatic navigator (dNAV) in paediatric patients with congenital or suspected heart disease. METHODS: iNAV allowed direct tracking of the respiratory heart motion and was generated using balanced steady state free precession startup echoes. Respiratory gating was achieved using CRUISE with a fixed 50% efficiency. Whole-heart CMRA was acquired with 1.3 mm isotropic resolution. For comparison, CMRA with identical imaging parameters were acquired using dNAV. Scan time, visualization of coronary artery origins and mid-course, imaging quality and sharpness was compared between the two sequences. RESULTS: Forty patients (13 females; median weight: 44 kg; median age: 12.6, range: 3 months-17 years) were enrolled. 25 scans were performed in awake patients. A contrast agent was used in 22 patients. The scan time was significantly reduced using iNAV for awake patients (iNAV 7:48 ± 1:26 vs dNAV 9:48 ± 3:11, P = 0.01) but not for patients under general anaesthesia (iNAV = 6:55 ± 1:50 versus dNAV = 6:32 ± 2:16; P = 0.32). In 98% of the cases, iNAV image quality had an equal or higher score than dNAV. The visual score analysis showed a clear difference, favouring iNAV (P = 0.002). The right coronary artery and the left anterior descending vessel sharpness was significantly improved (iNAV: 56.8% ± 10.1% vs dNAV: 53.7% ± 9.9%, P < 0.002 and iNAV: 55.8% ± 8.6% vs dNAV: 53% ± 9.2%, P = 0.001, respectively). CONCLUSION: iNAV allows for a higher success-rate and clearer depiction of the mid-course of coronary arteries in paediatric patients. Its acquisition time is shorter in awake patients and image quality score is equal or superior to the conventional method in most cases.
38 schema:genre research_article
39 schema:inLanguage en
40 schema:isAccessibleForFree false
41 schema:isPartOf N24301dd624464ef293c4ee8794a3fe39
42 N3ef91b4a8a734bf3a584da78377c6952
43 sg:journal.1030439
44 schema:name Visualization of coronary arteries in paediatric patients using whole-heart coronary magnetic resonance angiography: comparison of image-navigation and the standard approach for respiratory motion compensation
45 schema:pagination 13
46 schema:productId N33c351874a624b0cbf48a328702e5f0e
47 N92308a36a706485781af486e7df065da
48 N98a511526d0e49488a803dcf42cb118a
49 Nddb13e175e4342c4a92397f352d786d3
50 Ne07755840cc74723b383da8d15eaf4e4
51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112362548
52 https://doi.org/10.1186/s12968-019-0525-8
53 schema:sdDatePublished 2019-04-11T13:19
54 schema:sdLicense https://scigraph.springernature.com/explorer/license/
55 schema:sdPublisher N97cace3b7a2346cbb1743e71059c4d8d
56 schema:url https://link.springer.com/10.1186%2Fs12968-019-0525-8
57 sgo:license sg:explorer/license/
58 sgo:sdDataset articles
59 rdf:type schema:ScholarlyArticle
60 N1792b4f940bb4816ab9747cf44173411 rdf:first Ne4b5b34d020e440ea7e183b1e2e3752b
61 rdf:rest N7a6645dc4786475a8ee6b1128548a58c
62 N19f8d6a235084ca2b939a5aa06f2aef8 rdf:first N2fb3a52f6f3e49dbb8f8e6959a14220e
63 rdf:rest N3bc1a9a936844b299bccaaa72b146d04
64 N209e46fcdafe42399b61534451a21341 rdf:first N4ef465713e0a44d9a7271c007a23603e
65 rdf:rest Nc8a667d60ded4677aad4e613f2e91e7b
66 N24301dd624464ef293c4ee8794a3fe39 schema:volumeNumber 21
67 rdf:type schema:PublicationVolume
68 N2bef88e211624462b00d4ee7196ed9fb rdf:first Nff25500a575345d4a4ac03180e112e42
69 rdf:rest N209e46fcdafe42399b61534451a21341
70 N2fb3a52f6f3e49dbb8f8e6959a14220e schema:affiliation https://www.grid.ac/institutes/grid.483570.d
71 schema:familyName Pushparajah
72 schema:givenName Kuberan
73 rdf:type schema:Person
74 N328b3c485bd147fcb3ba8721f7a693de schema:affiliation https://www.grid.ac/institutes/grid.483570.d
75 schema:familyName Narayan
76 schema:givenName Srinivas Ananth
77 rdf:type schema:Person
78 N33c351874a624b0cbf48a328702e5f0e schema:name dimensions_id
79 schema:value pub.1112362548
80 rdf:type schema:PropertyValue
81 N3bc1a9a936844b299bccaaa72b146d04 rdf:first N49ea45a38be9458296296b2def8ce653
82 rdf:rest rdf:nil
83 N3ef91b4a8a734bf3a584da78377c6952 schema:issueNumber 1
84 rdf:type schema:PublicationIssue
85 N49ea45a38be9458296296b2def8ce653 schema:affiliation https://www.grid.ac/institutes/grid.5640.7
86 schema:familyName Henningsson
87 schema:givenName Markus
88 rdf:type schema:Person
89 N4db00223903d48429fa4058c443a4520 schema:affiliation https://www.grid.ac/institutes/grid.483570.d
90 schema:familyName Bell
91 schema:givenName Aaron
92 rdf:type schema:Person
93 N4ef465713e0a44d9a7271c007a23603e schema:affiliation https://www.grid.ac/institutes/grid.483570.d
94 schema:familyName Prabhu
95 schema:givenName Nanda
96 rdf:type schema:Person
97 N634da81c64c24d00a2684c08aaa0ac4b schema:affiliation https://www.grid.ac/institutes/grid.483570.d
98 schema:familyName Razavi
99 schema:givenName Reza
100 rdf:type schema:Person
101 N65f58f9a5a4f464f8d80f11653b5fb63 rdf:first Nd09219c939f949f8888eb9a7ba6d50e0
102 rdf:rest N2bef88e211624462b00d4ee7196ed9fb
103 N6ded086eae7249ff8691c61587c638ae schema:affiliation https://www.grid.ac/institutes/grid.13097.3c
104 schema:familyName Correia
105 schema:givenName Teresa
106 rdf:type schema:Person
107 N79cc44f1b342413798ec5f14e18c460c rdf:first Nac44bb2327bb4d888b9295981f2844e1
108 rdf:rest N19f8d6a235084ca2b939a5aa06f2aef8
109 N7a6645dc4786475a8ee6b1128548a58c rdf:first N634da81c64c24d00a2684c08aaa0ac4b
110 rdf:rest N79cc44f1b342413798ec5f14e18c460c
111 N92308a36a706485781af486e7df065da schema:name nlm_unique_id
112 schema:value 9815616
113 rdf:type schema:PropertyValue
114 N97cace3b7a2346cbb1743e71059c4d8d schema:name Springer Nature - SN SciGraph project
115 rdf:type schema:Organization
116 N98a511526d0e49488a803dcf42cb118a schema:name pubmed_id
117 schema:value 30798789
118 rdf:type schema:PropertyValue
119 Na2837c64a40149d493fe4d1220db256d rdf:first N4db00223903d48429fa4058c443a4520
120 rdf:rest N1792b4f940bb4816ab9747cf44173411
121 Nac44bb2327bb4d888b9295981f2844e1 schema:affiliation https://www.grid.ac/institutes/grid.267313.2
122 schema:familyName Hussain
123 schema:givenName Tarique
124 rdf:type schema:Person
125 Nc8a667d60ded4677aad4e613f2e91e7b rdf:first N6ded086eae7249ff8691c61587c638ae
126 rdf:rest Ndbd57c2563164fe1912ef2962497e20a
127 Nd09219c939f949f8888eb9a7ba6d50e0 schema:affiliation https://www.grid.ac/institutes/grid.414816.e
128 schema:familyName Velasco Forte
129 schema:givenName Mari Nieves
130 rdf:type schema:Person
131 Ndbd57c2563164fe1912ef2962497e20a rdf:first N328b3c485bd147fcb3ba8721f7a693de
132 rdf:rest Na2837c64a40149d493fe4d1220db256d
133 Nddb13e175e4342c4a92397f352d786d3 schema:name doi
134 schema:value 10.1186/s12968-019-0525-8
135 rdf:type schema:PropertyValue
136 Ne07755840cc74723b383da8d15eaf4e4 schema:name readcube_id
137 schema:value 043ecbe58d11112b8f7b7f8e4b1381c204e1da3a06e84c919f5bed4825a4b2a0
138 rdf:type schema:PropertyValue
139 Ne4b5b34d020e440ea7e183b1e2e3752b schema:affiliation https://www.grid.ac/institutes/grid.483570.d
140 schema:familyName Mathur
141 schema:givenName Sujeev
142 rdf:type schema:Person
143 Nff25500a575345d4a4ac03180e112e42 schema:affiliation https://www.grid.ac/institutes/grid.414816.e
144 schema:familyName Valverde
145 schema:givenName Israel
146 rdf:type schema:Person
147 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
148 schema:name Medical and Health Sciences
149 rdf:type schema:DefinedTerm
150 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
151 schema:name Cardiorespiratory Medicine and Haematology
152 rdf:type schema:DefinedTerm
153 sg:journal.1030439 schema:issn 1548-7679
154 1879-2855
155 schema:name Journal of Cardiovascular Magnetic Resonance
156 rdf:type schema:Periodical
157 sg:pub.10.1186/s12880-015-0095-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026362575
158 https://doi.org/10.1186/s12880-015-0095-7
159 rdf:type schema:CreativeWork
160 sg:pub.10.1186/s12880-018-0278-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107662035
161 https://doi.org/10.1186/s12880-018-0278-0
162 rdf:type schema:CreativeWork
163 sg:pub.10.1186/s12968-015-0156-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045596111
164 https://doi.org/10.1186/s12968-015-0156-7
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1002/jmri.20941 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010178837
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1002/jmri.21655 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000585713
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1002/jmri.25058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025205134
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1002/mrm.10253 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045362386
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1002/mrm.20557 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018831075
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1002/mrm.23027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049511409
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1002/mrm.24346 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006087706
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1002/mrm.24881 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020531208
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1002/mrm.25523 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024505248
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1002/mrm.26273 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037963843
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1002/mrm.26332 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051045442
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1002/mrm.26376 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037429225
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1002/mrm.26678 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084504832
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1016/j.mri.2016.12.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033013016
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1056/nejmoa010866 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045346689
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1136/heartjnl-2016-309773 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062814903
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1136/hrt.2008.160309 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053432201
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1148/radiol.10100828 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021220423
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1148/radiol.12111700 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015954077
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1148/radiol.13132045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036813090
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1148/radiol.2502071998 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019236054
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1148/radiology.198.1.8539406 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082850333
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1148/radiology.203.3.9169696 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083096606
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1161/01.cir.0000134282.35183.ad schema:sameAs https://app.dimensions.ai/details/publication/pub.1045409422
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1259/bjr/15296170 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064568060
215 rdf:type schema:CreativeWork
216 https://doi.org/10.3389/fped.2017.00036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084433979
217 rdf:type schema:CreativeWork
218 https://doi.org/10.3390/s130606882 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013940438
219 rdf:type schema:CreativeWork
220 https://doi.org/10.4330/wjc.v6.i10.1060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072525235
221 rdf:type schema:CreativeWork
222 https://www.grid.ac/institutes/grid.13097.3c schema:alternateName King's College London
223 schema:name Division of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
224 rdf:type schema:Organization
225 https://www.grid.ac/institutes/grid.267313.2 schema:alternateName The University of Texas Southwestern Medical Center
226 schema:name Department of Pediatrics, University of Texas Southwestern Medical Center, 1935 Medical District Drive, Dallas, USA
227 Division of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
228 rdf:type schema:Organization
229 https://www.grid.ac/institutes/grid.414816.e schema:alternateName Institute of Biomedicine of Seville
230 schema:name Cardiovascular Pathology Unit, Institute of Biomedicine of Seville, IBIS, Virgen del Rocio University Hospital/CSIC/University of Seville, Seville, Spain
231 Department of Congenital Heart Disease, Evelina London Children’s Hospital, Guy’s and St Thomas NHS Foundation Trust, London, UK
232 Division of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
233 rdf:type schema:Organization
234 https://www.grid.ac/institutes/grid.483570.d schema:alternateName Evelina London Children's Hospital
235 schema:name Department of Congenital Heart Disease, Evelina London Children’s Hospital, Guy’s and St Thomas NHS Foundation Trust, London, UK
236 Division of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
237 rdf:type schema:Organization
238 https://www.grid.ac/institutes/grid.5640.7 schema:alternateName Linköping University
239 schema:name Division of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
240 Division of Cardiovascular Medicine, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
241 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...