Visualization of coronary arteries in paediatric patients using whole-heart coronary magnetic resonance angiography: comparison of image-navigation and the standard approach ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-12

AUTHORS

Mari Nieves Velasco Forte, Israel Valverde, Nanda Prabhu, Teresa Correia, Srinivas Ananth Narayan, Aaron Bell, Sujeev Mathur, Reza Razavi, Tarique Hussain, Kuberan Pushparajah, Markus Henningsson

ABSTRACT

AIMS: To investigate the use of respiratory motion compensation using image-based navigation (iNAV) with constant respiratory efficiency using single end-expiratory thresholding (CRUISE) for coronary magnetic resonance angiography (CMRA), and compare it to the conventional diaphragmatic navigator (dNAV) in paediatric patients with congenital or suspected heart disease. METHODS: iNAV allowed direct tracking of the respiratory heart motion and was generated using balanced steady state free precession startup echoes. Respiratory gating was achieved using CRUISE with a fixed 50% efficiency. Whole-heart CMRA was acquired with 1.3 mm isotropic resolution. For comparison, CMRA with identical imaging parameters were acquired using dNAV. Scan time, visualization of coronary artery origins and mid-course, imaging quality and sharpness was compared between the two sequences. RESULTS: Forty patients (13 females; median weight: 44 kg; median age: 12.6, range: 3 months-17 years) were enrolled. 25 scans were performed in awake patients. A contrast agent was used in 22 patients. The scan time was significantly reduced using iNAV for awake patients (iNAV 7:48 ± 1:26 vs dNAV 9:48 ± 3:11, P = 0.01) but not for patients under general anaesthesia (iNAV = 6:55 ± 1:50 versus dNAV = 6:32 ± 2:16; P = 0.32). In 98% of the cases, iNAV image quality had an equal or higher score than dNAV. The visual score analysis showed a clear difference, favouring iNAV (P = 0.002). The right coronary artery and the left anterior descending vessel sharpness was significantly improved (iNAV: 56.8% ± 10.1% vs dNAV: 53.7% ± 9.9%, P < 0.002 and iNAV: 55.8% ± 8.6% vs dNAV: 53% ± 9.2%, P = 0.001, respectively). CONCLUSION: iNAV allows for a higher success-rate and clearer depiction of the mid-course of coronary arteries in paediatric patients. Its acquisition time is shorter in awake patients and image quality score is equal or superior to the conventional method in most cases. More... »

PAGES

13

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12968-019-0525-8

DOI

http://dx.doi.org/10.1186/s12968-019-0525-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112362548

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30798789


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cardiorespiratory Medicine and Haematology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Biomedicine of Seville", 
          "id": "https://www.grid.ac/institutes/grid.414816.e", 
          "name": [
            "Division of Biomedical Engineering and Imaging Sciences, King\u2019s College London, London, UK", 
            "Department of Congenital Heart Disease, Evelina London Children\u2019s Hospital, Guy\u2019s and St Thomas NHS Foundation Trust, London, UK", 
            "Cardiovascular Pathology Unit, Institute of Biomedicine of Seville, IBIS, Virgen del Rocio University Hospital/CSIC/University of Seville, Seville, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Velasco Forte", 
        "givenName": "Mari Nieves", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Biomedicine of Seville", 
          "id": "https://www.grid.ac/institutes/grid.414816.e", 
          "name": [
            "Division of Biomedical Engineering and Imaging Sciences, King\u2019s College London, London, UK", 
            "Department of Congenital Heart Disease, Evelina London Children\u2019s Hospital, Guy\u2019s and St Thomas NHS Foundation Trust, London, UK", 
            "Cardiovascular Pathology Unit, Institute of Biomedicine of Seville, IBIS, Virgen del Rocio University Hospital/CSIC/University of Seville, Seville, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Valverde", 
        "givenName": "Israel", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Evelina London Children's Hospital", 
          "id": "https://www.grid.ac/institutes/grid.483570.d", 
          "name": [
            "Department of Congenital Heart Disease, Evelina London Children\u2019s Hospital, Guy\u2019s and St Thomas NHS Foundation Trust, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Prabhu", 
        "givenName": "Nanda", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "King's College London", 
          "id": "https://www.grid.ac/institutes/grid.13097.3c", 
          "name": [
            "Division of Biomedical Engineering and Imaging Sciences, King\u2019s College London, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Correia", 
        "givenName": "Teresa", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Evelina London Children's Hospital", 
          "id": "https://www.grid.ac/institutes/grid.483570.d", 
          "name": [
            "Division of Biomedical Engineering and Imaging Sciences, King\u2019s College London, London, UK", 
            "Department of Congenital Heart Disease, Evelina London Children\u2019s Hospital, Guy\u2019s and St Thomas NHS Foundation Trust, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Narayan", 
        "givenName": "Srinivas Ananth", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Evelina London Children's Hospital", 
          "id": "https://www.grid.ac/institutes/grid.483570.d", 
          "name": [
            "Department of Congenital Heart Disease, Evelina London Children\u2019s Hospital, Guy\u2019s and St Thomas NHS Foundation Trust, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bell", 
        "givenName": "Aaron", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Evelina London Children's Hospital", 
          "id": "https://www.grid.ac/institutes/grid.483570.d", 
          "name": [
            "Department of Congenital Heart Disease, Evelina London Children\u2019s Hospital, Guy\u2019s and St Thomas NHS Foundation Trust, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mathur", 
        "givenName": "Sujeev", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Evelina London Children's Hospital", 
          "id": "https://www.grid.ac/institutes/grid.483570.d", 
          "name": [
            "Division of Biomedical Engineering and Imaging Sciences, King\u2019s College London, London, UK", 
            "Department of Congenital Heart Disease, Evelina London Children\u2019s Hospital, Guy\u2019s and St Thomas NHS Foundation Trust, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Razavi", 
        "givenName": "Reza", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The University of Texas Southwestern Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.267313.2", 
          "name": [
            "Division of Biomedical Engineering and Imaging Sciences, King\u2019s College London, London, UK", 
            "Department of Pediatrics, University of Texas Southwestern Medical Center, 1935 Medical District Drive, Dallas, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hussain", 
        "givenName": "Tarique", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Evelina London Children's Hospital", 
          "id": "https://www.grid.ac/institutes/grid.483570.d", 
          "name": [
            "Division of Biomedical Engineering and Imaging Sciences, King\u2019s College London, London, UK", 
            "Department of Congenital Heart Disease, Evelina London Children\u2019s Hospital, Guy\u2019s and St Thomas NHS Foundation Trust, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pushparajah", 
        "givenName": "Kuberan", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Link\u00f6ping University", 
          "id": "https://www.grid.ac/institutes/grid.5640.7", 
          "name": [
            "Division of Biomedical Engineering and Imaging Sciences, King\u2019s College London, London, UK", 
            "Division of Cardiovascular Medicine, Department of Medical and Health Sciences, Link\u00f6ping University, Link\u00f6ping, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Henningsson", 
        "givenName": "Markus", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/jmri.21655", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000585713"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.24346", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006087706"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.20941", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010178837"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/s130606882", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013940438"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.12111700", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015954077"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.20557", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018831075"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.20557", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018831075"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2502071998", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019236054"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.24881", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020531208"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.10100828", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021220423"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.25523", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024505248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.25058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025205134"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12880-015-0095-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026362575", 
          "https://doi.org/10.1186/s12880-015-0095-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mri.2016.12.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033013016"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.13132045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036813090"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.26376", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037429225"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.26273", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037963843"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa010866", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045346689"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.10253", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045362386"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.0000134282.35183.ad", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045409422"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12968-015-0156-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045596111", 
          "https://doi.org/10.1186/s12968-015-0156-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12968-015-0156-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045596111", 
          "https://doi.org/10.1186/s12968-015-0156-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.23027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049511409"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.26332", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051045442"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/hrt.2008.160309", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053432201"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/heartjnl-2016-309773", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062814903"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/heartjnl-2016-309773", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062814903"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1259/bjr/15296170", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064568060"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4330/wjc.v6.i10.1060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072525235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.198.1.8539406", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082850333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.203.3.9169696", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083096606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fped.2017.00036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084433979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.26678", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084504832"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12880-018-0278-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107662035", 
          "https://doi.org/10.1186/s12880-018-0278-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12880-018-0278-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107662035", 
          "https://doi.org/10.1186/s12880-018-0278-0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "AIMS: To investigate the use of respiratory motion compensation using image-based navigation (iNAV) with constant respiratory efficiency using single end-expiratory thresholding (CRUISE) for coronary magnetic resonance angiography (CMRA), and compare it to the conventional diaphragmatic navigator (dNAV) in paediatric patients with congenital or suspected heart disease.\nMETHODS: iNAV allowed direct tracking of the respiratory heart motion and was generated using balanced steady state free precession startup echoes. Respiratory gating was achieved using CRUISE with a fixed 50% efficiency. Whole-heart CMRA was acquired with 1.3\u2009mm isotropic resolution. For comparison, CMRA with identical imaging parameters were acquired using dNAV. Scan time, visualization of coronary artery origins and mid-course, imaging quality and sharpness was compared between the two sequences.\nRESULTS: Forty patients (13 females; median weight: 44\u2009kg; median age: 12.6, range: 3\u2009months-17\u2009years) were enrolled. 25 scans were performed in awake patients. A contrast agent was used in 22 patients. The scan time was significantly reduced using iNAV for awake patients (iNAV 7:48\u2009\u00b1\u20091:26 vs dNAV 9:48\u2009\u00b1\u20093:11, P\u2009=\u20090.01) but not for patients under general anaesthesia (iNAV\u2009=\u20096:55\u2009\u00b1\u20091:50 versus dNAV\u2009=\u20096:32\u2009\u00b1\u20092:16; P\u2009=\u20090.32). In 98% of the cases, iNAV image quality had an equal or higher score than dNAV. The visual score analysis showed a clear difference, favouring iNAV (P\u2009=\u20090.002). The right coronary artery and the left anterior descending vessel sharpness was significantly improved (iNAV: 56.8%\u2009\u00b1\u200910.1% vs dNAV: 53.7%\u2009\u00b1\u20099.9%, P\u2009<\u20090.002 and iNAV: 55.8%\u2009\u00b1\u20098.6% vs dNAV: 53%\u2009\u00b1\u20099.2%, P\u2009=\u20090.001, respectively).\nCONCLUSION: iNAV allows for a higher success-rate and clearer depiction of the mid-course of coronary arteries in paediatric patients. Its acquisition time is shorter in awake patients and image quality score is equal or superior to the conventional method in most cases.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12968-019-0525-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1030439", 
        "issn": [
          "1548-7679", 
          "1879-2855"
        ], 
        "name": "Journal of Cardiovascular Magnetic Resonance", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "21"
      }
    ], 
    "name": "Visualization of coronary arteries in paediatric patients using whole-heart coronary magnetic resonance angiography: comparison of image-navigation and the standard approach for respiratory motion compensation", 
    "pagination": "13", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "043ecbe58d11112b8f7b7f8e4b1381c204e1da3a06e84c919f5bed4825a4b2a0"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30798789"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9815616"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12968-019-0525-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112362548"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12968-019-0525-8", 
      "https://app.dimensions.ai/details/publication/pub.1112362548"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78950_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs12968-019-0525-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12968-019-0525-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12968-019-0525-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12968-019-0525-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12968-019-0525-8'


 

This table displays all metadata directly associated to this object as RDF triples.

241 TRIPLES      21 PREDICATES      60 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12968-019-0525-8 schema:about anzsrc-for:11
2 anzsrc-for:1102
3 schema:author Nad57766f2db54eee9a2310e35dcea90d
4 schema:citation sg:pub.10.1186/s12880-015-0095-7
5 sg:pub.10.1186/s12880-018-0278-0
6 sg:pub.10.1186/s12968-015-0156-7
7 https://doi.org/10.1002/jmri.20941
8 https://doi.org/10.1002/jmri.21655
9 https://doi.org/10.1002/jmri.25058
10 https://doi.org/10.1002/mrm.10253
11 https://doi.org/10.1002/mrm.20557
12 https://doi.org/10.1002/mrm.23027
13 https://doi.org/10.1002/mrm.24346
14 https://doi.org/10.1002/mrm.24881
15 https://doi.org/10.1002/mrm.25523
16 https://doi.org/10.1002/mrm.26273
17 https://doi.org/10.1002/mrm.26332
18 https://doi.org/10.1002/mrm.26376
19 https://doi.org/10.1002/mrm.26678
20 https://doi.org/10.1016/j.mri.2016.12.021
21 https://doi.org/10.1056/nejmoa010866
22 https://doi.org/10.1136/heartjnl-2016-309773
23 https://doi.org/10.1136/hrt.2008.160309
24 https://doi.org/10.1148/radiol.10100828
25 https://doi.org/10.1148/radiol.12111700
26 https://doi.org/10.1148/radiol.13132045
27 https://doi.org/10.1148/radiol.2502071998
28 https://doi.org/10.1148/radiology.198.1.8539406
29 https://doi.org/10.1148/radiology.203.3.9169696
30 https://doi.org/10.1161/01.cir.0000134282.35183.ad
31 https://doi.org/10.1259/bjr/15296170
32 https://doi.org/10.3389/fped.2017.00036
33 https://doi.org/10.3390/s130606882
34 https://doi.org/10.4330/wjc.v6.i10.1060
35 schema:datePublished 2019-12
36 schema:datePublishedReg 2019-12-01
37 schema:description AIMS: To investigate the use of respiratory motion compensation using image-based navigation (iNAV) with constant respiratory efficiency using single end-expiratory thresholding (CRUISE) for coronary magnetic resonance angiography (CMRA), and compare it to the conventional diaphragmatic navigator (dNAV) in paediatric patients with congenital or suspected heart disease. METHODS: iNAV allowed direct tracking of the respiratory heart motion and was generated using balanced steady state free precession startup echoes. Respiratory gating was achieved using CRUISE with a fixed 50% efficiency. Whole-heart CMRA was acquired with 1.3 mm isotropic resolution. For comparison, CMRA with identical imaging parameters were acquired using dNAV. Scan time, visualization of coronary artery origins and mid-course, imaging quality and sharpness was compared between the two sequences. RESULTS: Forty patients (13 females; median weight: 44 kg; median age: 12.6, range: 3 months-17 years) were enrolled. 25 scans were performed in awake patients. A contrast agent was used in 22 patients. The scan time was significantly reduced using iNAV for awake patients (iNAV 7:48 ± 1:26 vs dNAV 9:48 ± 3:11, P = 0.01) but not for patients under general anaesthesia (iNAV = 6:55 ± 1:50 versus dNAV = 6:32 ± 2:16; P = 0.32). In 98% of the cases, iNAV image quality had an equal or higher score than dNAV. The visual score analysis showed a clear difference, favouring iNAV (P = 0.002). The right coronary artery and the left anterior descending vessel sharpness was significantly improved (iNAV: 56.8% ± 10.1% vs dNAV: 53.7% ± 9.9%, P < 0.002 and iNAV: 55.8% ± 8.6% vs dNAV: 53% ± 9.2%, P = 0.001, respectively). CONCLUSION: iNAV allows for a higher success-rate and clearer depiction of the mid-course of coronary arteries in paediatric patients. Its acquisition time is shorter in awake patients and image quality score is equal or superior to the conventional method in most cases.
38 schema:genre research_article
39 schema:inLanguage en
40 schema:isAccessibleForFree false
41 schema:isPartOf N912a35e8a177445682e8bb6ffb9d8cdb
42 N977eb6cd184c4a688f1848eda100542c
43 sg:journal.1030439
44 schema:name Visualization of coronary arteries in paediatric patients using whole-heart coronary magnetic resonance angiography: comparison of image-navigation and the standard approach for respiratory motion compensation
45 schema:pagination 13
46 schema:productId N105d1f577a6b4729a280c5bcba7015ed
47 N677b974dd7564455ac549304372b600e
48 Nb0d388e13bcc4851955e5a6623b738d8
49 Nbc6f8ae7e34d4b70a049f992621deb43
50 Ndf04f02528b944c996a0362198435ef5
51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112362548
52 https://doi.org/10.1186/s12968-019-0525-8
53 schema:sdDatePublished 2019-04-11T13:19
54 schema:sdLicense https://scigraph.springernature.com/explorer/license/
55 schema:sdPublisher Ne601c71f91de4745a89dc2e848ed6acc
56 schema:url https://link.springer.com/10.1186%2Fs12968-019-0525-8
57 sgo:license sg:explorer/license/
58 sgo:sdDataset articles
59 rdf:type schema:ScholarlyArticle
60 N094b108dff0f4d24986afdb532860024 schema:affiliation https://www.grid.ac/institutes/grid.483570.d
61 schema:familyName Razavi
62 schema:givenName Reza
63 rdf:type schema:Person
64 N105d1f577a6b4729a280c5bcba7015ed schema:name pubmed_id
65 schema:value 30798789
66 rdf:type schema:PropertyValue
67 N17d1b8ef689d414b8b676f47c02f3606 schema:affiliation https://www.grid.ac/institutes/grid.483570.d
68 schema:familyName Bell
69 schema:givenName Aaron
70 rdf:type schema:Person
71 N1a1b474a92e349518c1635e1dd49f2e7 schema:affiliation https://www.grid.ac/institutes/grid.5640.7
72 schema:familyName Henningsson
73 schema:givenName Markus
74 rdf:type schema:Person
75 N248a77755bc44a0b95f84ec330a95344 rdf:first Ndae26754ade14ccfb60b6e4b2aafa754
76 rdf:rest N9982136c04dd49069b11eda09b3af877
77 N26be99cdf3884dc69b9a03d192ea33c2 rdf:first Na047171b48c64c12ad8d5b0f6a70fed2
78 rdf:rest Nc2d5bf0382124e3e9c92c0ac0e53e647
79 N3cc4e3324c80433c86ff8ec775beb02c schema:affiliation https://www.grid.ac/institutes/grid.483570.d
80 schema:familyName Narayan
81 schema:givenName Srinivas Ananth
82 rdf:type schema:Person
83 N45afc7c48bfe4d54a0dbd5a41d02bb85 rdf:first N905c0c3b7a1e489d801946abb1f9a182
84 rdf:rest Nb7b0e4bd81d1470b9617a00df78d0768
85 N491b74c7d2b149c6a024eb079264749a schema:affiliation https://www.grid.ac/institutes/grid.414816.e
86 schema:familyName Velasco Forte
87 schema:givenName Mari Nieves
88 rdf:type schema:Person
89 N5491bd3d67d74267aaa46e6bed3bd629 rdf:first N17d1b8ef689d414b8b676f47c02f3606
90 rdf:rest N45afc7c48bfe4d54a0dbd5a41d02bb85
91 N67465728e9e54038ac1932edb7c4cb7a rdf:first N1a1b474a92e349518c1635e1dd49f2e7
92 rdf:rest rdf:nil
93 N677b974dd7564455ac549304372b600e schema:name readcube_id
94 schema:value 043ecbe58d11112b8f7b7f8e4b1381c204e1da3a06e84c919f5bed4825a4b2a0
95 rdf:type schema:PropertyValue
96 N77cd86e9e5e44fc6a0e38f1bfb81a48f rdf:first Nc9cb13f73b0341159f55dc099aa1a1e9
97 rdf:rest N248a77755bc44a0b95f84ec330a95344
98 N905c0c3b7a1e489d801946abb1f9a182 schema:affiliation https://www.grid.ac/institutes/grid.483570.d
99 schema:familyName Mathur
100 schema:givenName Sujeev
101 rdf:type schema:Person
102 N90e480c3d4884578b293d3857ff4ddab schema:affiliation https://www.grid.ac/institutes/grid.483570.d
103 schema:familyName Pushparajah
104 schema:givenName Kuberan
105 rdf:type schema:Person
106 N912a35e8a177445682e8bb6ffb9d8cdb schema:issueNumber 1
107 rdf:type schema:PublicationIssue
108 N977eb6cd184c4a688f1848eda100542c schema:volumeNumber 21
109 rdf:type schema:PublicationVolume
110 N9982136c04dd49069b11eda09b3af877 rdf:first N3cc4e3324c80433c86ff8ec775beb02c
111 rdf:rest N5491bd3d67d74267aaa46e6bed3bd629
112 Na047171b48c64c12ad8d5b0f6a70fed2 schema:affiliation https://www.grid.ac/institutes/grid.267313.2
113 schema:familyName Hussain
114 schema:givenName Tarique
115 rdf:type schema:Person
116 Nad57766f2db54eee9a2310e35dcea90d rdf:first N491b74c7d2b149c6a024eb079264749a
117 rdf:rest Nf0419ba2dac94ec39a0a25879e5c41c8
118 Nb0d388e13bcc4851955e5a6623b738d8 schema:name doi
119 schema:value 10.1186/s12968-019-0525-8
120 rdf:type schema:PropertyValue
121 Nb7b0e4bd81d1470b9617a00df78d0768 rdf:first N094b108dff0f4d24986afdb532860024
122 rdf:rest N26be99cdf3884dc69b9a03d192ea33c2
123 Nbc6f8ae7e34d4b70a049f992621deb43 schema:name nlm_unique_id
124 schema:value 9815616
125 rdf:type schema:PropertyValue
126 Nc2d5bf0382124e3e9c92c0ac0e53e647 rdf:first N90e480c3d4884578b293d3857ff4ddab
127 rdf:rest N67465728e9e54038ac1932edb7c4cb7a
128 Nc9cb13f73b0341159f55dc099aa1a1e9 schema:affiliation https://www.grid.ac/institutes/grid.483570.d
129 schema:familyName Prabhu
130 schema:givenName Nanda
131 rdf:type schema:Person
132 Ndae26754ade14ccfb60b6e4b2aafa754 schema:affiliation https://www.grid.ac/institutes/grid.13097.3c
133 schema:familyName Correia
134 schema:givenName Teresa
135 rdf:type schema:Person
136 Ndb4256dfeee048d99c1d684c60c840ef schema:affiliation https://www.grid.ac/institutes/grid.414816.e
137 schema:familyName Valverde
138 schema:givenName Israel
139 rdf:type schema:Person
140 Ndf04f02528b944c996a0362198435ef5 schema:name dimensions_id
141 schema:value pub.1112362548
142 rdf:type schema:PropertyValue
143 Ne601c71f91de4745a89dc2e848ed6acc schema:name Springer Nature - SN SciGraph project
144 rdf:type schema:Organization
145 Nf0419ba2dac94ec39a0a25879e5c41c8 rdf:first Ndb4256dfeee048d99c1d684c60c840ef
146 rdf:rest N77cd86e9e5e44fc6a0e38f1bfb81a48f
147 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
148 schema:name Medical and Health Sciences
149 rdf:type schema:DefinedTerm
150 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
151 schema:name Cardiorespiratory Medicine and Haematology
152 rdf:type schema:DefinedTerm
153 sg:journal.1030439 schema:issn 1548-7679
154 1879-2855
155 schema:name Journal of Cardiovascular Magnetic Resonance
156 rdf:type schema:Periodical
157 sg:pub.10.1186/s12880-015-0095-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026362575
158 https://doi.org/10.1186/s12880-015-0095-7
159 rdf:type schema:CreativeWork
160 sg:pub.10.1186/s12880-018-0278-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107662035
161 https://doi.org/10.1186/s12880-018-0278-0
162 rdf:type schema:CreativeWork
163 sg:pub.10.1186/s12968-015-0156-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045596111
164 https://doi.org/10.1186/s12968-015-0156-7
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1002/jmri.20941 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010178837
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1002/jmri.21655 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000585713
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1002/jmri.25058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025205134
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1002/mrm.10253 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045362386
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1002/mrm.20557 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018831075
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1002/mrm.23027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049511409
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1002/mrm.24346 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006087706
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1002/mrm.24881 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020531208
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1002/mrm.25523 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024505248
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1002/mrm.26273 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037963843
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1002/mrm.26332 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051045442
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1002/mrm.26376 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037429225
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1002/mrm.26678 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084504832
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1016/j.mri.2016.12.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033013016
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1056/nejmoa010866 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045346689
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1136/heartjnl-2016-309773 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062814903
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1136/hrt.2008.160309 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053432201
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1148/radiol.10100828 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021220423
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1148/radiol.12111700 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015954077
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1148/radiol.13132045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036813090
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1148/radiol.2502071998 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019236054
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1148/radiology.198.1.8539406 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082850333
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1148/radiology.203.3.9169696 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083096606
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1161/01.cir.0000134282.35183.ad schema:sameAs https://app.dimensions.ai/details/publication/pub.1045409422
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1259/bjr/15296170 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064568060
215 rdf:type schema:CreativeWork
216 https://doi.org/10.3389/fped.2017.00036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084433979
217 rdf:type schema:CreativeWork
218 https://doi.org/10.3390/s130606882 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013940438
219 rdf:type schema:CreativeWork
220 https://doi.org/10.4330/wjc.v6.i10.1060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072525235
221 rdf:type schema:CreativeWork
222 https://www.grid.ac/institutes/grid.13097.3c schema:alternateName King's College London
223 schema:name Division of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
224 rdf:type schema:Organization
225 https://www.grid.ac/institutes/grid.267313.2 schema:alternateName The University of Texas Southwestern Medical Center
226 schema:name Department of Pediatrics, University of Texas Southwestern Medical Center, 1935 Medical District Drive, Dallas, USA
227 Division of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
228 rdf:type schema:Organization
229 https://www.grid.ac/institutes/grid.414816.e schema:alternateName Institute of Biomedicine of Seville
230 schema:name Cardiovascular Pathology Unit, Institute of Biomedicine of Seville, IBIS, Virgen del Rocio University Hospital/CSIC/University of Seville, Seville, Spain
231 Department of Congenital Heart Disease, Evelina London Children’s Hospital, Guy’s and St Thomas NHS Foundation Trust, London, UK
232 Division of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
233 rdf:type schema:Organization
234 https://www.grid.ac/institutes/grid.483570.d schema:alternateName Evelina London Children's Hospital
235 schema:name Department of Congenital Heart Disease, Evelina London Children’s Hospital, Guy’s and St Thomas NHS Foundation Trust, London, UK
236 Division of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
237 rdf:type schema:Organization
238 https://www.grid.ac/institutes/grid.5640.7 schema:alternateName Linköping University
239 schema:name Division of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
240 Division of Cardiovascular Medicine, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
241 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...