Quantitative assessment of symptomatic intracranial atherosclerosis and lenticulostriate arteries in recent stroke patients using whole-brain high-resolution cardiovascular magnetic resonance imaging View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-06-07

AUTHORS

Mengnan Wang, Fang Wu, Yujiao Yang, Huijuan Miao, Zhaoyang Fan, Xunming Ji, Debiao Li, Xiuhai Guo, Qi Yang

ABSTRACT

BackgroundIt has been shown that intracranial atherosclerotic stenosis (ICAS) has heterogeneous features in terms of plaque instability and vascular remodeling. Therefore, quantitative information on the changes of intracranial atherosclerosis and lenticulostriate arteries (LSAs) may potentially improve understanding of the pathophysiological mechanisms underlying stroke and may guide the treatment and work-up strategies. Our present study aimed to use a novel whole-brain high-resolution cardiovascular magnetic resonance imaging (WB-HRCMR) to assess both ICAS plaques and LSAs in recent stroke patients.MethodsTwenty-nine symptomatic and 23 asymptomatic ICAS patients were enrolled in this study from Jan 2015 through Sep 2017 and all patients underwent WB-HRCMR. Intracranial atherosclerotic plaque burden, plaque enhancement volume, plaque enhancement index, as well as the number and length of LSAs were evaluated in two groups. Enhancement index was calculated as follows: ([Signal intensity (SI)plaque/SInormal wall on post-contrast imaging] − [SIplaque/SInormal wall on matched pre-contrast imaging])/(SIplaque / SInormal wall on matched pre-contrast imaging). Logistic regression analysis was used to investigate the independent high risk plaque and LSAs features associated with stroke.ResultsSymptomatic ICAS patients exhibited larger enhancement plaque volume (20.70 ± 3.07 mm3 vs. 6.71 ± 1.87 mm3P = 0.001) and higher enhancement index (0.44 ± 0.08 vs. 0.09 ± 0.06 P = 0.001) compared with the asymptomatic ICAS. The average length of LSAs in symptomatic ICAS (20.95 ± 0.87 mm) was shorter than in asymptomatic ICAS (24.04 ± 0.95 mm) (P = 0.02). Regression analysis showed that the enhancement index (100.43, 95% CI − 4.02-2510.96; P = 0.005) and the average length of LSAs (0.80, 95% CI − 0.65-0.99; P = 0.036) were independent factors for predicting of stroke.ConclusionWB-HRCMR enabled the comprehensive quantitative evaluation of intracranial atherosclerotic lesions and perforating arteries. Symptomatic ICAS had distinct plaque characteristics and shorter LSA length compared with asymptomatic ICAS. More... »

PAGES

35

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12968-018-0465-8

DOI

http://dx.doi.org/10.1186/s12968-018-0465-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1104460760

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29880054


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cardiorespiratory Medicine and Haematology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Asymptomatic Diseases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Basal Ganglia Cerebrovascular Disease", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cerebral Arteries", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Intracranial Arteriosclerosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Plaque, Atherosclerotic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Predictive Value of Tests", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prognosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Risk Assessment", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Risk Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Severity of Illness Index", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Stroke", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Neurology, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.413259.8", 
          "name": [
            "Department of Neurology, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Mengnan", 
        "id": "sg:person.012047171530.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012047171530.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.413259.8", 
          "name": [
            "Department of Radiology, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wu", 
        "givenName": "Fang", 
        "id": "sg:person.07417576007.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07417576007.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Neurology, Sanbo Brain Hospital, Capital Medical University, 100093, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.24696.3f", 
          "name": [
            "Department of Neurology, Sanbo Brain Hospital, Capital Medical University, 100093, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Yujiao", 
        "id": "sg:person.011201276663.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011201276663.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Neurology, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.413259.8", 
          "name": [
            "Department of Neurology, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Miao", 
        "givenName": "Huijuan", 
        "id": "sg:person.014237513130.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014237513130.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Biomedical Imaging Research Institute, Cedars Sinai Medical Center, 90048, Los Angeles, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.50956.3f", 
          "name": [
            "Biomedical Imaging Research Institute, Cedars Sinai Medical Center, 90048, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fan", 
        "givenName": "Zhaoyang", 
        "id": "sg:person.01136172260.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136172260.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.413259.8", 
          "name": [
            "Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ji", 
        "givenName": "Xunming", 
        "id": "sg:person.010317006007.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010317006007.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Biomedical Imaging Research Institute, Cedars Sinai Medical Center, 90048, Los Angeles, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.50956.3f", 
          "name": [
            "Biomedical Imaging Research Institute, Cedars Sinai Medical Center, 90048, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Debiao", 
        "id": "sg:person.01152021525.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152021525.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Neurology, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.413259.8", 
          "name": [
            "Department of Neurology, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Guo", 
        "givenName": "Xiuhai", 
        "id": "sg:person.016632236313.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016632236313.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Biomedical Imaging Research Institute, Cedars Sinai Medical Center, 90048, Los Angeles, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.50956.3f", 
          "name": [
            "Department of Radiology, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China", 
            "Biomedical Imaging Research Institute, Cedars Sinai Medical Center, 90048, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Qi", 
        "id": "sg:person.01353064311.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353064311.62"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00330-015-4008-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009298470", 
          "https://doi.org/10.1007/s00330-015-4008-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11604-012-0058-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046800709", 
          "https://doi.org/10.1007/s11604-012-0058-7"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-06-07", 
    "datePublishedReg": "2018-06-07", 
    "description": "BackgroundIt has been shown that intracranial atherosclerotic stenosis (ICAS) has heterogeneous features in terms of plaque instability and vascular remodeling. Therefore, quantitative information on the changes of intracranial atherosclerosis and lenticulostriate arteries (LSAs) may potentially improve understanding of the pathophysiological mechanisms underlying stroke and may guide the treatment and work-up strategies. Our present study aimed to use a novel whole-brain high-resolution cardiovascular magnetic resonance imaging (WB-HRCMR) to assess both ICAS plaques and LSAs in recent stroke patients.MethodsTwenty-nine symptomatic and 23 asymptomatic ICAS patients were enrolled in this study from Jan 2015 through Sep 2017 and all patients underwent WB-HRCMR. Intracranial atherosclerotic plaque burden, plaque enhancement volume, plaque enhancement index, as well as the number and length of LSAs were evaluated in two groups. Enhancement index was calculated as follows: ([Signal intensity (SI)plaque/SInormal wall on post-contrast imaging]\u2009\u2212\u2009[SIplaque/SInormal wall on matched pre-contrast imaging])/(SIplaque / SInormal wall on matched pre-contrast imaging). Logistic regression analysis was used to investigate the independent high risk plaque and LSAs features associated with stroke.ResultsSymptomatic ICAS patients exhibited larger enhancement plaque volume (20.70\u2009\u00b1\u20093.07\u00a0mm3 vs. 6.71\u2009\u00b1\u20091.87\u00a0mm3P\u2009=\u20090.001) and higher enhancement index (0.44\u2009\u00b1\u20090.08 vs. 0.09\u2009\u00b1\u20090.06 P\u2009=\u20090.001) compared with the asymptomatic ICAS. The average length of LSAs in symptomatic ICAS (20.95\u2009\u00b1\u20090.87\u00a0mm) was shorter than in asymptomatic ICAS (24.04\u2009\u00b1\u20090.95\u00a0mm) (P\u2009=\u20090.02). Regression analysis showed that the enhancement index (100.43, 95% CI\u2009\u2212\u20094.02-2510.96; P\u2009=\u20090.005) and the average length of LSAs (0.80, 95% CI\u2009\u2212\u20090.65-0.99; P\u2009=\u20090.036) were independent factors for predicting of stroke.ConclusionWB-HRCMR enabled the comprehensive quantitative evaluation of intracranial atherosclerotic lesions and perforating arteries. Symptomatic ICAS had distinct plaque characteristics and shorter LSA length compared with asymptomatic ICAS.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s12968-018-0465-8", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.8374654", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2542522", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1030439", 
        "issn": [
          "1548-7679", 
          "1879-2855"
        ], 
        "name": "Journal of Cardiovascular Magnetic Resonance", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "20"
      }
    ], 
    "keywords": [
      "asymptomatic intracranial atherosclerotic stenosis", 
      "intracranial atherosclerotic stenosis", 
      "symptomatic intracranial atherosclerotic stenosis", 
      "recent stroke patients", 
      "cardiovascular magnetic resonance imaging", 
      "lenticulostriate arteries", 
      "magnetic resonance imaging", 
      "intracranial atherosclerosis", 
      "stroke patients", 
      "resonance imaging", 
      "intracranial atherosclerotic lesions", 
      "symptomatic intracranial atherosclerosis", 
      "atherosclerotic plaque burden", 
      "high-risk plaques", 
      "logistic regression analysis", 
      "regression analysis", 
      "enhancement index", 
      "plaque burden", 
      "atherosclerotic stenosis", 
      "pathophysiological mechanisms", 
      "ICA plaques", 
      "plaque characteristics", 
      "ICAS patients", 
      "plaque volume", 
      "plaque instability", 
      "risk plaques", 
      "vascular remodeling", 
      "MethodsTwenty-nine", 
      "atherosclerotic lesions", 
      "independent factors", 
      "patients", 
      "average length", 
      "enhancement volume", 
      "artery", 
      "stroke", 
      "atherosclerosis", 
      "plaques", 
      "present study", 
      "imaging", 
      "index", 
      "stenosis", 
      "BackgroundIt", 
      "lesions", 
      "quantitative assessment", 
      "remodeling", 
      "treatment", 
      "burden", 
      "study", 
      "volume", 
      "group", 
      "comprehensive quantitative evaluation", 
      "quantitative evaluation", 
      "assessment", 
      "factors", 
      "length", 
      "evaluation", 
      "analysis", 
      "features", 
      "changes", 
      "mechanism", 
      "strategies", 
      "number", 
      "understanding", 
      "characteristics", 
      "quantitative information", 
      "heterogeneous features", 
      "information", 
      "instability", 
      "terms", 
      "work"
    ], 
    "name": "Quantitative assessment of symptomatic intracranial atherosclerosis and lenticulostriate arteries in recent stroke patients using whole-brain high-resolution cardiovascular magnetic resonance imaging", 
    "pagination": "35", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1104460760"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12968-018-0465-8"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29880054"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12968-018-0465-8", 
      "https://app.dimensions.ai/details/publication/pub.1104460760"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:38", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_780.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s12968-018-0465-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12968-018-0465-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12968-018-0465-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12968-018-0465-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12968-018-0465-8'


 

This table displays all metadata directly associated to this object as RDF triples.

282 TRIPLES      21 PREDICATES      115 URIs      104 LITERALS      24 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12968-018-0465-8 schema:about N0203e29af0fc4e0593f91ddccc8b22a8
2 N0bed4b3541ee496d9d4cf7077cf76ed9
3 N217b20fc194a4df3b82d18d4ab08b4ed
4 N42ad3a113956441781b9e220b68c1b3d
5 N525352c7c4d04cb788924c55377f9996
6 N5d8a4018368647ac89c762f5c6190e10
7 N7f4d200e8d8341998a774cb67ac0ec3b
8 N8b03ceb6eb6e4f0da2d321bef9a7f451
9 Na2d4bef4bcb34fbab0cf1eb7370c606e
10 Nb53da6ab973147929a608f26c36a6862
11 Nb8872c2550664bdaa8946582a6f98dde
12 Nb9f24b8dccec4bde9c572a9d527f0ec6
13 Nbafed90c57934711abcaaf6f7d95bd76
14 Nc30faa8e00a243d1869394a8b65def29
15 Ncaee58a99ac346e7b66416647a9aba10
16 Neaa1ea22f9c74be4a384677cc5710139
17 Nf5fd088d9bce49859f6c4af2092f5321
18 anzsrc-for:11
19 anzsrc-for:1102
20 anzsrc-for:1109
21 schema:author N19ed00505053457f96a6feb914fc0ca3
22 schema:citation sg:pub.10.1007/s00330-015-4008-5
23 sg:pub.10.1007/s11604-012-0058-7
24 schema:datePublished 2018-06-07
25 schema:datePublishedReg 2018-06-07
26 schema:description BackgroundIt has been shown that intracranial atherosclerotic stenosis (ICAS) has heterogeneous features in terms of plaque instability and vascular remodeling. Therefore, quantitative information on the changes of intracranial atherosclerosis and lenticulostriate arteries (LSAs) may potentially improve understanding of the pathophysiological mechanisms underlying stroke and may guide the treatment and work-up strategies. Our present study aimed to use a novel whole-brain high-resolution cardiovascular magnetic resonance imaging (WB-HRCMR) to assess both ICAS plaques and LSAs in recent stroke patients.MethodsTwenty-nine symptomatic and 23 asymptomatic ICAS patients were enrolled in this study from Jan 2015 through Sep 2017 and all patients underwent WB-HRCMR. Intracranial atherosclerotic plaque burden, plaque enhancement volume, plaque enhancement index, as well as the number and length of LSAs were evaluated in two groups. Enhancement index was calculated as follows: ([Signal intensity (SI)plaque/SInormal wall on post-contrast imaging] − [SIplaque/SInormal wall on matched pre-contrast imaging])/(SIplaque / SInormal wall on matched pre-contrast imaging). Logistic regression analysis was used to investigate the independent high risk plaque and LSAs features associated with stroke.ResultsSymptomatic ICAS patients exhibited larger enhancement plaque volume (20.70 ± 3.07 mm3 vs. 6.71 ± 1.87 mm3P = 0.001) and higher enhancement index (0.44 ± 0.08 vs. 0.09 ± 0.06 P = 0.001) compared with the asymptomatic ICAS. The average length of LSAs in symptomatic ICAS (20.95 ± 0.87 mm) was shorter than in asymptomatic ICAS (24.04 ± 0.95 mm) (P = 0.02). Regression analysis showed that the enhancement index (100.43, 95% CI − 4.02-2510.96; P = 0.005) and the average length of LSAs (0.80, 95% CI − 0.65-0.99; P = 0.036) were independent factors for predicting of stroke.ConclusionWB-HRCMR enabled the comprehensive quantitative evaluation of intracranial atherosclerotic lesions and perforating arteries. Symptomatic ICAS had distinct plaque characteristics and shorter LSA length compared with asymptomatic ICAS.
27 schema:genre article
28 schema:isAccessibleForFree true
29 schema:isPartOf N2cffec20379340c1b04d8b2bcece9fa3
30 N86bd74185000429395bd7ff93eecd24e
31 sg:journal.1030439
32 schema:keywords BackgroundIt
33 ICA plaques
34 ICAS patients
35 MethodsTwenty-nine
36 analysis
37 artery
38 assessment
39 asymptomatic intracranial atherosclerotic stenosis
40 atherosclerosis
41 atherosclerotic lesions
42 atherosclerotic plaque burden
43 atherosclerotic stenosis
44 average length
45 burden
46 cardiovascular magnetic resonance imaging
47 changes
48 characteristics
49 comprehensive quantitative evaluation
50 enhancement index
51 enhancement volume
52 evaluation
53 factors
54 features
55 group
56 heterogeneous features
57 high-risk plaques
58 imaging
59 independent factors
60 index
61 information
62 instability
63 intracranial atherosclerosis
64 intracranial atherosclerotic lesions
65 intracranial atherosclerotic stenosis
66 length
67 lenticulostriate arteries
68 lesions
69 logistic regression analysis
70 magnetic resonance imaging
71 mechanism
72 number
73 pathophysiological mechanisms
74 patients
75 plaque burden
76 plaque characteristics
77 plaque instability
78 plaque volume
79 plaques
80 present study
81 quantitative assessment
82 quantitative evaluation
83 quantitative information
84 recent stroke patients
85 regression analysis
86 remodeling
87 resonance imaging
88 risk plaques
89 stenosis
90 strategies
91 stroke
92 stroke patients
93 study
94 symptomatic intracranial atherosclerosis
95 symptomatic intracranial atherosclerotic stenosis
96 terms
97 treatment
98 understanding
99 vascular remodeling
100 volume
101 work
102 schema:name Quantitative assessment of symptomatic intracranial atherosclerosis and lenticulostriate arteries in recent stroke patients using whole-brain high-resolution cardiovascular magnetic resonance imaging
103 schema:pagination 35
104 schema:productId N4feed868403c4edebf6c1e43233c47f3
105 Nb31ba734a44349b68682a11ee2dc4fa1
106 Ndfa14933e5cd4c9da7f02b4d14b94c41
107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104460760
108 https://doi.org/10.1186/s12968-018-0465-8
109 schema:sdDatePublished 2022-12-01T06:38
110 schema:sdLicense https://scigraph.springernature.com/explorer/license/
111 schema:sdPublisher N17be9bf4540f451587e6b489411c6814
112 schema:url https://doi.org/10.1186/s12968-018-0465-8
113 sgo:license sg:explorer/license/
114 sgo:sdDataset articles
115 rdf:type schema:ScholarlyArticle
116 N0203e29af0fc4e0593f91ddccc8b22a8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Severity of Illness Index
118 rdf:type schema:DefinedTerm
119 N0bed4b3541ee496d9d4cf7077cf76ed9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Plaque, Atherosclerotic
121 rdf:type schema:DefinedTerm
122 N17be9bf4540f451587e6b489411c6814 schema:name Springer Nature - SN SciGraph project
123 rdf:type schema:Organization
124 N19ed00505053457f96a6feb914fc0ca3 rdf:first sg:person.012047171530.16
125 rdf:rest N296cd65b5e77442c876c3e198eff4c4e
126 N217b20fc194a4df3b82d18d4ab08b4ed schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Female
128 rdf:type schema:DefinedTerm
129 N296cd65b5e77442c876c3e198eff4c4e rdf:first sg:person.07417576007.44
130 rdf:rest N99ba2afa3d5b4965b27b394c02085bee
131 N2cffec20379340c1b04d8b2bcece9fa3 schema:issueNumber 1
132 rdf:type schema:PublicationIssue
133 N42ad3a113956441781b9e220b68c1b3d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Cerebral Arteries
135 rdf:type schema:DefinedTerm
136 N48bf792667a949808628c316ba8e402a rdf:first sg:person.014237513130.72
137 rdf:rest Nb9810f2a718a4eaeb8821b284fe2e0bc
138 N4feed868403c4edebf6c1e43233c47f3 schema:name pubmed_id
139 schema:value 29880054
140 rdf:type schema:PropertyValue
141 N525352c7c4d04cb788924c55377f9996 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Prognosis
143 rdf:type schema:DefinedTerm
144 N5d8a4018368647ac89c762f5c6190e10 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Risk Assessment
146 rdf:type schema:DefinedTerm
147 N6cfc4c56e2c54728bec9564de2645230 rdf:first sg:person.01152021525.33
148 rdf:rest Nd7d3aa75f5194612a736b66b10153cfb
149 N7f4d200e8d8341998a774cb67ac0ec3b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
150 schema:name Magnetic Resonance Imaging
151 rdf:type schema:DefinedTerm
152 N82083a3256574a68bd8f3ee264bf4fd0 rdf:first sg:person.010317006007.02
153 rdf:rest N6cfc4c56e2c54728bec9564de2645230
154 N86bd74185000429395bd7ff93eecd24e schema:volumeNumber 20
155 rdf:type schema:PublicationVolume
156 N8b03ceb6eb6e4f0da2d321bef9a7f451 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
157 schema:name Predictive Value of Tests
158 rdf:type schema:DefinedTerm
159 N99ba2afa3d5b4965b27b394c02085bee rdf:first sg:person.011201276663.24
160 rdf:rest N48bf792667a949808628c316ba8e402a
161 Na2d4bef4bcb34fbab0cf1eb7370c606e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
162 schema:name Male
163 rdf:type schema:DefinedTerm
164 Nb31ba734a44349b68682a11ee2dc4fa1 schema:name dimensions_id
165 schema:value pub.1104460760
166 rdf:type schema:PropertyValue
167 Nb53da6ab973147929a608f26c36a6862 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
168 schema:name Humans
169 rdf:type schema:DefinedTerm
170 Nb8872c2550664bdaa8946582a6f98dde schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
171 schema:name Stroke
172 rdf:type schema:DefinedTerm
173 Nb9810f2a718a4eaeb8821b284fe2e0bc rdf:first sg:person.01136172260.58
174 rdf:rest N82083a3256574a68bd8f3ee264bf4fd0
175 Nb9f24b8dccec4bde9c572a9d527f0ec6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
176 schema:name Risk Factors
177 rdf:type schema:DefinedTerm
178 Nbafed90c57934711abcaaf6f7d95bd76 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
179 schema:name Asymptomatic Diseases
180 rdf:type schema:DefinedTerm
181 Nc30faa8e00a243d1869394a8b65def29 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
182 schema:name Adult
183 rdf:type schema:DefinedTerm
184 Ncaee58a99ac346e7b66416647a9aba10 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
185 schema:name Intracranial Arteriosclerosis
186 rdf:type schema:DefinedTerm
187 Nd7d3aa75f5194612a736b66b10153cfb rdf:first sg:person.016632236313.05
188 rdf:rest Nfa94e3f99a3248e7bb8b2b64f55eed0c
189 Ndfa14933e5cd4c9da7f02b4d14b94c41 schema:name doi
190 schema:value 10.1186/s12968-018-0465-8
191 rdf:type schema:PropertyValue
192 Neaa1ea22f9c74be4a384677cc5710139 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
193 schema:name Middle Aged
194 rdf:type schema:DefinedTerm
195 Nf5fd088d9bce49859f6c4af2092f5321 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
196 schema:name Basal Ganglia Cerebrovascular Disease
197 rdf:type schema:DefinedTerm
198 Nfa94e3f99a3248e7bb8b2b64f55eed0c rdf:first sg:person.01353064311.62
199 rdf:rest rdf:nil
200 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
201 schema:name Medical and Health Sciences
202 rdf:type schema:DefinedTerm
203 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
204 schema:name Cardiorespiratory Medicine and Haematology
205 rdf:type schema:DefinedTerm
206 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
207 schema:name Neurosciences
208 rdf:type schema:DefinedTerm
209 sg:grant.2542522 http://pending.schema.org/fundedItem sg:pub.10.1186/s12968-018-0465-8
210 rdf:type schema:MonetaryGrant
211 sg:grant.8374654 http://pending.schema.org/fundedItem sg:pub.10.1186/s12968-018-0465-8
212 rdf:type schema:MonetaryGrant
213 sg:journal.1030439 schema:issn 1548-7679
214 1879-2855
215 schema:name Journal of Cardiovascular Magnetic Resonance
216 schema:publisher Springer Nature
217 rdf:type schema:Periodical
218 sg:person.010317006007.02 schema:affiliation grid-institutes:grid.413259.8
219 schema:familyName Ji
220 schema:givenName Xunming
221 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010317006007.02
222 rdf:type schema:Person
223 sg:person.011201276663.24 schema:affiliation grid-institutes:grid.24696.3f
224 schema:familyName Yang
225 schema:givenName Yujiao
226 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011201276663.24
227 rdf:type schema:Person
228 sg:person.01136172260.58 schema:affiliation grid-institutes:grid.50956.3f
229 schema:familyName Fan
230 schema:givenName Zhaoyang
231 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136172260.58
232 rdf:type schema:Person
233 sg:person.01152021525.33 schema:affiliation grid-institutes:grid.50956.3f
234 schema:familyName Li
235 schema:givenName Debiao
236 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152021525.33
237 rdf:type schema:Person
238 sg:person.012047171530.16 schema:affiliation grid-institutes:grid.413259.8
239 schema:familyName Wang
240 schema:givenName Mengnan
241 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012047171530.16
242 rdf:type schema:Person
243 sg:person.01353064311.62 schema:affiliation grid-institutes:grid.50956.3f
244 schema:familyName Yang
245 schema:givenName Qi
246 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353064311.62
247 rdf:type schema:Person
248 sg:person.014237513130.72 schema:affiliation grid-institutes:grid.413259.8
249 schema:familyName Miao
250 schema:givenName Huijuan
251 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014237513130.72
252 rdf:type schema:Person
253 sg:person.016632236313.05 schema:affiliation grid-institutes:grid.413259.8
254 schema:familyName Guo
255 schema:givenName Xiuhai
256 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016632236313.05
257 rdf:type schema:Person
258 sg:person.07417576007.44 schema:affiliation grid-institutes:grid.413259.8
259 schema:familyName Wu
260 schema:givenName Fang
261 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07417576007.44
262 rdf:type schema:Person
263 sg:pub.10.1007/s00330-015-4008-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009298470
264 https://doi.org/10.1007/s00330-015-4008-5
265 rdf:type schema:CreativeWork
266 sg:pub.10.1007/s11604-012-0058-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046800709
267 https://doi.org/10.1007/s11604-012-0058-7
268 rdf:type schema:CreativeWork
269 grid-institutes:grid.24696.3f schema:alternateName Department of Neurology, Sanbo Brain Hospital, Capital Medical University, 100093, Beijing, China
270 schema:name Department of Neurology, Sanbo Brain Hospital, Capital Medical University, 100093, Beijing, China
271 rdf:type schema:Organization
272 grid-institutes:grid.413259.8 schema:alternateName Department of Neurology, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China
273 Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China
274 Department of Radiology, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China
275 schema:name Department of Neurology, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China
276 Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China
277 Department of Radiology, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China
278 rdf:type schema:Organization
279 grid-institutes:grid.50956.3f schema:alternateName Biomedical Imaging Research Institute, Cedars Sinai Medical Center, 90048, Los Angeles, CA, USA
280 schema:name Biomedical Imaging Research Institute, Cedars Sinai Medical Center, 90048, Los Angeles, CA, USA
281 Department of Radiology, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China
282 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...