Quantitative assessment of symptomatic intracranial atherosclerosis and lenticulostriate arteries in recent stroke patients using whole-brain high-resolution cardiovascular magnetic resonance imaging View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-06-07

AUTHORS

Mengnan Wang, Fang Wu, Yujiao Yang, Huijuan Miao, Zhaoyang Fan, Xunming Ji, Debiao Li, Xiuhai Guo, Qi Yang

ABSTRACT

BackgroundIt has been shown that intracranial atherosclerotic stenosis (ICAS) has heterogeneous features in terms of plaque instability and vascular remodeling. Therefore, quantitative information on the changes of intracranial atherosclerosis and lenticulostriate arteries (LSAs) may potentially improve understanding of the pathophysiological mechanisms underlying stroke and may guide the treatment and work-up strategies. Our present study aimed to use a novel whole-brain high-resolution cardiovascular magnetic resonance imaging (WB-HRCMR) to assess both ICAS plaques and LSAs in recent stroke patients.MethodsTwenty-nine symptomatic and 23 asymptomatic ICAS patients were enrolled in this study from Jan 2015 through Sep 2017 and all patients underwent WB-HRCMR. Intracranial atherosclerotic plaque burden, plaque enhancement volume, plaque enhancement index, as well as the number and length of LSAs were evaluated in two groups. Enhancement index was calculated as follows: ([Signal intensity (SI)plaque/SInormal wall on post-contrast imaging] − [SIplaque/SInormal wall on matched pre-contrast imaging])/(SIplaque / SInormal wall on matched pre-contrast imaging). Logistic regression analysis was used to investigate the independent high risk plaque and LSAs features associated with stroke.ResultsSymptomatic ICAS patients exhibited larger enhancement plaque volume (20.70 ± 3.07 mm3 vs. 6.71 ± 1.87 mm3P = 0.001) and higher enhancement index (0.44 ± 0.08 vs. 0.09 ± 0.06 P = 0.001) compared with the asymptomatic ICAS. The average length of LSAs in symptomatic ICAS (20.95 ± 0.87 mm) was shorter than in asymptomatic ICAS (24.04 ± 0.95 mm) (P = 0.02). Regression analysis showed that the enhancement index (100.43, 95% CI − 4.02-2510.96; P = 0.005) and the average length of LSAs (0.80, 95% CI − 0.65-0.99; P = 0.036) were independent factors for predicting of stroke.ConclusionWB-HRCMR enabled the comprehensive quantitative evaluation of intracranial atherosclerotic lesions and perforating arteries. Symptomatic ICAS had distinct plaque characteristics and shorter LSA length compared with asymptomatic ICAS. More... »

PAGES

35

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12968-018-0465-8

DOI

http://dx.doi.org/10.1186/s12968-018-0465-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1104460760

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29880054


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cardiorespiratory Medicine and Haematology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Asymptomatic Diseases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Basal Ganglia Cerebrovascular Disease", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cerebral Arteries", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Intracranial Arteriosclerosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Plaque, Atherosclerotic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Predictive Value of Tests", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prognosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Risk Assessment", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Risk Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Severity of Illness Index", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Stroke", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Neurology, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.413259.8", 
          "name": [
            "Department of Neurology, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Mengnan", 
        "id": "sg:person.012047171530.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012047171530.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.413259.8", 
          "name": [
            "Department of Radiology, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wu", 
        "givenName": "Fang", 
        "id": "sg:person.07417576007.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07417576007.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Neurology, Sanbo Brain Hospital, Capital Medical University, 100093, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.24696.3f", 
          "name": [
            "Department of Neurology, Sanbo Brain Hospital, Capital Medical University, 100093, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Yujiao", 
        "id": "sg:person.011201276663.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011201276663.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Neurology, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.413259.8", 
          "name": [
            "Department of Neurology, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Miao", 
        "givenName": "Huijuan", 
        "id": "sg:person.014237513130.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014237513130.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Biomedical Imaging Research Institute, Cedars Sinai Medical Center, 90048, Los Angeles, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.50956.3f", 
          "name": [
            "Biomedical Imaging Research Institute, Cedars Sinai Medical Center, 90048, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fan", 
        "givenName": "Zhaoyang", 
        "id": "sg:person.01136172260.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136172260.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.413259.8", 
          "name": [
            "Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ji", 
        "givenName": "Xunming", 
        "id": "sg:person.010317006007.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010317006007.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Biomedical Imaging Research Institute, Cedars Sinai Medical Center, 90048, Los Angeles, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.50956.3f", 
          "name": [
            "Biomedical Imaging Research Institute, Cedars Sinai Medical Center, 90048, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Debiao", 
        "id": "sg:person.01152021525.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152021525.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Neurology, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.413259.8", 
          "name": [
            "Department of Neurology, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Guo", 
        "givenName": "Xiuhai", 
        "id": "sg:person.016632236313.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016632236313.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Biomedical Imaging Research Institute, Cedars Sinai Medical Center, 90048, Los Angeles, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.50956.3f", 
          "name": [
            "Department of Radiology, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China", 
            "Biomedical Imaging Research Institute, Cedars Sinai Medical Center, 90048, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Qi", 
        "id": "sg:person.01353064311.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353064311.62"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11604-012-0058-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046800709", 
          "https://doi.org/10.1007/s11604-012-0058-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-015-4008-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009298470", 
          "https://doi.org/10.1007/s00330-015-4008-5"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-06-07", 
    "datePublishedReg": "2018-06-07", 
    "description": "BackgroundIt has been shown that intracranial atherosclerotic stenosis (ICAS) has heterogeneous features in terms of plaque instability and vascular remodeling. Therefore, quantitative information on the changes of intracranial atherosclerosis and lenticulostriate arteries (LSAs) may potentially improve understanding of the pathophysiological mechanisms underlying stroke and may guide the treatment and work-up strategies. Our present study aimed to use a novel whole-brain high-resolution cardiovascular magnetic resonance imaging (WB-HRCMR) to assess both ICAS plaques and LSAs in recent stroke patients.MethodsTwenty-nine symptomatic and 23 asymptomatic ICAS patients were enrolled in this study from Jan 2015 through Sep 2017 and all patients underwent WB-HRCMR. Intracranial atherosclerotic plaque burden, plaque enhancement volume, plaque enhancement index, as well as the number and length of LSAs were evaluated in two groups. Enhancement index was calculated as follows: ([Signal intensity (SI)plaque/SInormal wall on post-contrast imaging]\u2009\u2212\u2009[SIplaque/SInormal wall on matched pre-contrast imaging])/(SIplaque / SInormal wall on matched pre-contrast imaging). Logistic regression analysis was used to investigate the independent high risk plaque and LSAs features associated with stroke.ResultsSymptomatic ICAS patients exhibited larger enhancement plaque volume (20.70\u2009\u00b1\u20093.07\u00a0mm3 vs. 6.71\u2009\u00b1\u20091.87\u00a0mm3P\u2009=\u20090.001) and higher enhancement index (0.44\u2009\u00b1\u20090.08 vs. 0.09\u2009\u00b1\u20090.06 P\u2009=\u20090.001) compared with the asymptomatic ICAS. The average length of LSAs in symptomatic ICAS (20.95\u2009\u00b1\u20090.87\u00a0mm) was shorter than in asymptomatic ICAS (24.04\u2009\u00b1\u20090.95\u00a0mm) (P\u2009=\u20090.02). Regression analysis showed that the enhancement index (100.43, 95% CI\u2009\u2212\u20094.02-2510.96; P\u2009=\u20090.005) and the average length of LSAs (0.80, 95% CI\u2009\u2212\u20090.65-0.99; P\u2009=\u20090.036) were independent factors for predicting of stroke.ConclusionWB-HRCMR enabled the comprehensive quantitative evaluation of intracranial atherosclerotic lesions and perforating arteries. Symptomatic ICAS had distinct plaque characteristics and shorter LSA length compared with asymptomatic ICAS.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s12968-018-0465-8", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.8374654", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2542522", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1030439", 
        "issn": [
          "1548-7679", 
          "1879-2855"
        ], 
        "name": "Journal of Cardiovascular Magnetic Resonance", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "20"
      }
    ], 
    "keywords": [
      "asymptomatic intracranial atherosclerotic stenosis", 
      "intracranial atherosclerotic stenosis", 
      "symptomatic intracranial atherosclerotic stenosis", 
      "recent stroke patients", 
      "cardiovascular magnetic resonance imaging", 
      "lenticulostriate arteries", 
      "magnetic resonance imaging", 
      "intracranial atherosclerosis", 
      "stroke patients", 
      "resonance imaging", 
      "intracranial atherosclerotic lesions", 
      "symptomatic intracranial atherosclerosis", 
      "atherosclerotic plaque burden", 
      "high-risk plaques", 
      "logistic regression analysis", 
      "regression analysis", 
      "enhancement index", 
      "plaque burden", 
      "atherosclerotic stenosis", 
      "pathophysiological mechanisms", 
      "ICA plaques", 
      "plaque characteristics", 
      "ICAS patients", 
      "plaque volume", 
      "plaque instability", 
      "risk plaques", 
      "vascular remodeling", 
      "MethodsTwenty-nine", 
      "atherosclerotic lesions", 
      "independent factors", 
      "patients", 
      "average length", 
      "enhancement volume", 
      "artery", 
      "stroke", 
      "atherosclerosis", 
      "plaques", 
      "present study", 
      "imaging", 
      "index", 
      "stenosis", 
      "BackgroundIt", 
      "lesions", 
      "quantitative assessment", 
      "remodeling", 
      "treatment", 
      "burden", 
      "study", 
      "volume", 
      "group", 
      "comprehensive quantitative evaluation", 
      "quantitative evaluation", 
      "assessment", 
      "factors", 
      "length", 
      "evaluation", 
      "analysis", 
      "features", 
      "changes", 
      "mechanism", 
      "strategies", 
      "number", 
      "understanding", 
      "characteristics", 
      "quantitative information", 
      "heterogeneous features", 
      "information", 
      "instability", 
      "terms", 
      "work"
    ], 
    "name": "Quantitative assessment of symptomatic intracranial atherosclerosis and lenticulostriate arteries in recent stroke patients using whole-brain high-resolution cardiovascular magnetic resonance imaging", 
    "pagination": "35", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1104460760"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12968-018-0465-8"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29880054"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12968-018-0465-8", 
      "https://app.dimensions.ai/details/publication/pub.1104460760"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:45", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_792.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s12968-018-0465-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12968-018-0465-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12968-018-0465-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12968-018-0465-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12968-018-0465-8'


 

This table displays all metadata directly associated to this object as RDF triples.

282 TRIPLES      21 PREDICATES      115 URIs      104 LITERALS      24 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12968-018-0465-8 schema:about N013985b0c33443ffa1d1a60d067fe3b8
2 N51810564d56d493787b748cd18b4ee18
3 N597a0e5db36f4c57a8f4a7b984e82d06
4 N63a8e5b4705f4d71b6533fda70ee5110
5 N747fe6d29dbc43a1b572a2c4d571b5a0
6 N7bd5884527984ec8949b7d2f86d6b821
7 N86754a440db34390a2d043876323b380
8 N9c0ad65c653549be90578e549e454568
9 Na6b5c8355aa6449f89a5a0902c5ff1cf
10 Na86fb6fa61694ae8845c81b97e3e897d
11 Na8c3bd0eb52f407393ad90d9ad1b9557
12 Nb3ed5b51114248209812b527f2fa7132
13 Nc0160697b6cf4820aec3989090646140
14 Ne623d18770db4570869e66784b011eec
15 Ne7b98252855348fe82c0cb5be5d6d0bc
16 Nf734047ddbd14ee585bb5a543e82cc8f
17 Nfb172dcf169e40a083cc0a190d531084
18 anzsrc-for:11
19 anzsrc-for:1102
20 anzsrc-for:1109
21 schema:author Nb5181bb38fa24b9b848f4d2b65dcdcd2
22 schema:citation sg:pub.10.1007/s00330-015-4008-5
23 sg:pub.10.1007/s11604-012-0058-7
24 schema:datePublished 2018-06-07
25 schema:datePublishedReg 2018-06-07
26 schema:description BackgroundIt has been shown that intracranial atherosclerotic stenosis (ICAS) has heterogeneous features in terms of plaque instability and vascular remodeling. Therefore, quantitative information on the changes of intracranial atherosclerosis and lenticulostriate arteries (LSAs) may potentially improve understanding of the pathophysiological mechanisms underlying stroke and may guide the treatment and work-up strategies. Our present study aimed to use a novel whole-brain high-resolution cardiovascular magnetic resonance imaging (WB-HRCMR) to assess both ICAS plaques and LSAs in recent stroke patients.MethodsTwenty-nine symptomatic and 23 asymptomatic ICAS patients were enrolled in this study from Jan 2015 through Sep 2017 and all patients underwent WB-HRCMR. Intracranial atherosclerotic plaque burden, plaque enhancement volume, plaque enhancement index, as well as the number and length of LSAs were evaluated in two groups. Enhancement index was calculated as follows: ([Signal intensity (SI)plaque/SInormal wall on post-contrast imaging] − [SIplaque/SInormal wall on matched pre-contrast imaging])/(SIplaque / SInormal wall on matched pre-contrast imaging). Logistic regression analysis was used to investigate the independent high risk plaque and LSAs features associated with stroke.ResultsSymptomatic ICAS patients exhibited larger enhancement plaque volume (20.70 ± 3.07 mm3 vs. 6.71 ± 1.87 mm3P = 0.001) and higher enhancement index (0.44 ± 0.08 vs. 0.09 ± 0.06 P = 0.001) compared with the asymptomatic ICAS. The average length of LSAs in symptomatic ICAS (20.95 ± 0.87 mm) was shorter than in asymptomatic ICAS (24.04 ± 0.95 mm) (P = 0.02). Regression analysis showed that the enhancement index (100.43, 95% CI − 4.02-2510.96; P = 0.005) and the average length of LSAs (0.80, 95% CI − 0.65-0.99; P = 0.036) were independent factors for predicting of stroke.ConclusionWB-HRCMR enabled the comprehensive quantitative evaluation of intracranial atherosclerotic lesions and perforating arteries. Symptomatic ICAS had distinct plaque characteristics and shorter LSA length compared with asymptomatic ICAS.
27 schema:genre article
28 schema:isAccessibleForFree true
29 schema:isPartOf N2c93879b5529447bb8c482e6c1e9080e
30 N697d967339694bb39f1805dae8ae3d7e
31 sg:journal.1030439
32 schema:keywords BackgroundIt
33 ICA plaques
34 ICAS patients
35 MethodsTwenty-nine
36 analysis
37 artery
38 assessment
39 asymptomatic intracranial atherosclerotic stenosis
40 atherosclerosis
41 atherosclerotic lesions
42 atherosclerotic plaque burden
43 atherosclerotic stenosis
44 average length
45 burden
46 cardiovascular magnetic resonance imaging
47 changes
48 characteristics
49 comprehensive quantitative evaluation
50 enhancement index
51 enhancement volume
52 evaluation
53 factors
54 features
55 group
56 heterogeneous features
57 high-risk plaques
58 imaging
59 independent factors
60 index
61 information
62 instability
63 intracranial atherosclerosis
64 intracranial atherosclerotic lesions
65 intracranial atherosclerotic stenosis
66 length
67 lenticulostriate arteries
68 lesions
69 logistic regression analysis
70 magnetic resonance imaging
71 mechanism
72 number
73 pathophysiological mechanisms
74 patients
75 plaque burden
76 plaque characteristics
77 plaque instability
78 plaque volume
79 plaques
80 present study
81 quantitative assessment
82 quantitative evaluation
83 quantitative information
84 recent stroke patients
85 regression analysis
86 remodeling
87 resonance imaging
88 risk plaques
89 stenosis
90 strategies
91 stroke
92 stroke patients
93 study
94 symptomatic intracranial atherosclerosis
95 symptomatic intracranial atherosclerotic stenosis
96 terms
97 treatment
98 understanding
99 vascular remodeling
100 volume
101 work
102 schema:name Quantitative assessment of symptomatic intracranial atherosclerosis and lenticulostriate arteries in recent stroke patients using whole-brain high-resolution cardiovascular magnetic resonance imaging
103 schema:pagination 35
104 schema:productId N9bbf194759664c4f97a0454f63145149
105 N9e6a46a296344f159c5fb7df954eb4c2
106 Nbf650a6543d44dce8716f6825ddc5b6f
107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104460760
108 https://doi.org/10.1186/s12968-018-0465-8
109 schema:sdDatePublished 2022-10-01T06:45
110 schema:sdLicense https://scigraph.springernature.com/explorer/license/
111 schema:sdPublisher N574f7fee5772486ea8b4a2a1ddf397df
112 schema:url https://doi.org/10.1186/s12968-018-0465-8
113 sgo:license sg:explorer/license/
114 sgo:sdDataset articles
115 rdf:type schema:ScholarlyArticle
116 N013985b0c33443ffa1d1a60d067fe3b8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Intracranial Arteriosclerosis
118 rdf:type schema:DefinedTerm
119 N2c93879b5529447bb8c482e6c1e9080e schema:issueNumber 1
120 rdf:type schema:PublicationIssue
121 N51810564d56d493787b748cd18b4ee18 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Plaque, Atherosclerotic
123 rdf:type schema:DefinedTerm
124 N574f7fee5772486ea8b4a2a1ddf397df schema:name Springer Nature - SN SciGraph project
125 rdf:type schema:Organization
126 N597a0e5db36f4c57a8f4a7b984e82d06 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Severity of Illness Index
128 rdf:type schema:DefinedTerm
129 N5d5642e5186a4b139e377952350d6d14 rdf:first sg:person.016632236313.05
130 rdf:rest Nb34bf1668fb54df0bcc5f2a4d4ed1503
131 N63a8e5b4705f4d71b6533fda70ee5110 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Middle Aged
133 rdf:type schema:DefinedTerm
134 N697d967339694bb39f1805dae8ae3d7e schema:volumeNumber 20
135 rdf:type schema:PublicationVolume
136 N747fe6d29dbc43a1b572a2c4d571b5a0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Risk Assessment
138 rdf:type schema:DefinedTerm
139 N7bd5884527984ec8949b7d2f86d6b821 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Magnetic Resonance Imaging
141 rdf:type schema:DefinedTerm
142 N86754a440db34390a2d043876323b380 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Male
144 rdf:type schema:DefinedTerm
145 N9bbf194759664c4f97a0454f63145149 schema:name pubmed_id
146 schema:value 29880054
147 rdf:type schema:PropertyValue
148 N9c0ad65c653549be90578e549e454568 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
149 schema:name Prognosis
150 rdf:type schema:DefinedTerm
151 N9d95995b70124234aded999f3bd5967d rdf:first sg:person.07417576007.44
152 rdf:rest Nf8a608269b654d87b70186b9c5249e30
153 N9e6a46a296344f159c5fb7df954eb4c2 schema:name dimensions_id
154 schema:value pub.1104460760
155 rdf:type schema:PropertyValue
156 Na6b5c8355aa6449f89a5a0902c5ff1cf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
157 schema:name Adult
158 rdf:type schema:DefinedTerm
159 Na86fb6fa61694ae8845c81b97e3e897d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
160 schema:name Humans
161 rdf:type schema:DefinedTerm
162 Na8c3bd0eb52f407393ad90d9ad1b9557 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
163 schema:name Asymptomatic Diseases
164 rdf:type schema:DefinedTerm
165 Nb34bf1668fb54df0bcc5f2a4d4ed1503 rdf:first sg:person.01353064311.62
166 rdf:rest rdf:nil
167 Nb3ed5b51114248209812b527f2fa7132 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
168 schema:name Basal Ganglia Cerebrovascular Disease
169 rdf:type schema:DefinedTerm
170 Nb5181bb38fa24b9b848f4d2b65dcdcd2 rdf:first sg:person.012047171530.16
171 rdf:rest N9d95995b70124234aded999f3bd5967d
172 Nbe02ce19b0054d52b1e7a823e3b1a3f3 rdf:first sg:person.01152021525.33
173 rdf:rest N5d5642e5186a4b139e377952350d6d14
174 Nbf650a6543d44dce8716f6825ddc5b6f schema:name doi
175 schema:value 10.1186/s12968-018-0465-8
176 rdf:type schema:PropertyValue
177 Nc0160697b6cf4820aec3989090646140 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
178 schema:name Cerebral Arteries
179 rdf:type schema:DefinedTerm
180 Nc85428918fe546d2a3ac7790abaec920 rdf:first sg:person.01136172260.58
181 rdf:rest Nf590c4ffa411461a857d107eb3c8c72c
182 Ne4ba8a487d0949babd0c5d4f8afb5503 rdf:first sg:person.014237513130.72
183 rdf:rest Nc85428918fe546d2a3ac7790abaec920
184 Ne623d18770db4570869e66784b011eec schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
185 schema:name Risk Factors
186 rdf:type schema:DefinedTerm
187 Ne7b98252855348fe82c0cb5be5d6d0bc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
188 schema:name Female
189 rdf:type schema:DefinedTerm
190 Nf590c4ffa411461a857d107eb3c8c72c rdf:first sg:person.010317006007.02
191 rdf:rest Nbe02ce19b0054d52b1e7a823e3b1a3f3
192 Nf734047ddbd14ee585bb5a543e82cc8f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
193 schema:name Predictive Value of Tests
194 rdf:type schema:DefinedTerm
195 Nf8a608269b654d87b70186b9c5249e30 rdf:first sg:person.011201276663.24
196 rdf:rest Ne4ba8a487d0949babd0c5d4f8afb5503
197 Nfb172dcf169e40a083cc0a190d531084 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
198 schema:name Stroke
199 rdf:type schema:DefinedTerm
200 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
201 schema:name Medical and Health Sciences
202 rdf:type schema:DefinedTerm
203 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
204 schema:name Cardiorespiratory Medicine and Haematology
205 rdf:type schema:DefinedTerm
206 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
207 schema:name Neurosciences
208 rdf:type schema:DefinedTerm
209 sg:grant.2542522 http://pending.schema.org/fundedItem sg:pub.10.1186/s12968-018-0465-8
210 rdf:type schema:MonetaryGrant
211 sg:grant.8374654 http://pending.schema.org/fundedItem sg:pub.10.1186/s12968-018-0465-8
212 rdf:type schema:MonetaryGrant
213 sg:journal.1030439 schema:issn 1548-7679
214 1879-2855
215 schema:name Journal of Cardiovascular Magnetic Resonance
216 schema:publisher Springer Nature
217 rdf:type schema:Periodical
218 sg:person.010317006007.02 schema:affiliation grid-institutes:grid.413259.8
219 schema:familyName Ji
220 schema:givenName Xunming
221 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010317006007.02
222 rdf:type schema:Person
223 sg:person.011201276663.24 schema:affiliation grid-institutes:grid.24696.3f
224 schema:familyName Yang
225 schema:givenName Yujiao
226 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011201276663.24
227 rdf:type schema:Person
228 sg:person.01136172260.58 schema:affiliation grid-institutes:grid.50956.3f
229 schema:familyName Fan
230 schema:givenName Zhaoyang
231 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136172260.58
232 rdf:type schema:Person
233 sg:person.01152021525.33 schema:affiliation grid-institutes:grid.50956.3f
234 schema:familyName Li
235 schema:givenName Debiao
236 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152021525.33
237 rdf:type schema:Person
238 sg:person.012047171530.16 schema:affiliation grid-institutes:grid.413259.8
239 schema:familyName Wang
240 schema:givenName Mengnan
241 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012047171530.16
242 rdf:type schema:Person
243 sg:person.01353064311.62 schema:affiliation grid-institutes:grid.50956.3f
244 schema:familyName Yang
245 schema:givenName Qi
246 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353064311.62
247 rdf:type schema:Person
248 sg:person.014237513130.72 schema:affiliation grid-institutes:grid.413259.8
249 schema:familyName Miao
250 schema:givenName Huijuan
251 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014237513130.72
252 rdf:type schema:Person
253 sg:person.016632236313.05 schema:affiliation grid-institutes:grid.413259.8
254 schema:familyName Guo
255 schema:givenName Xiuhai
256 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016632236313.05
257 rdf:type schema:Person
258 sg:person.07417576007.44 schema:affiliation grid-institutes:grid.413259.8
259 schema:familyName Wu
260 schema:givenName Fang
261 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07417576007.44
262 rdf:type schema:Person
263 sg:pub.10.1007/s00330-015-4008-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009298470
264 https://doi.org/10.1007/s00330-015-4008-5
265 rdf:type schema:CreativeWork
266 sg:pub.10.1007/s11604-012-0058-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046800709
267 https://doi.org/10.1007/s11604-012-0058-7
268 rdf:type schema:CreativeWork
269 grid-institutes:grid.24696.3f schema:alternateName Department of Neurology, Sanbo Brain Hospital, Capital Medical University, 100093, Beijing, China
270 schema:name Department of Neurology, Sanbo Brain Hospital, Capital Medical University, 100093, Beijing, China
271 rdf:type schema:Organization
272 grid-institutes:grid.413259.8 schema:alternateName Department of Neurology, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China
273 Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China
274 Department of Radiology, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China
275 schema:name Department of Neurology, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China
276 Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China
277 Department of Radiology, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China
278 rdf:type schema:Organization
279 grid-institutes:grid.50956.3f schema:alternateName Biomedical Imaging Research Institute, Cedars Sinai Medical Center, 90048, Los Angeles, CA, USA
280 schema:name Biomedical Imaging Research Institute, Cedars Sinai Medical Center, 90048, Los Angeles, CA, USA
281 Department of Radiology, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China
282 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...