Cardiovascular magnetic resonance black-blood thrombus imaging for the diagnosis of acute deep vein thrombosis at 1.5 Tesla View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Hanwei Chen, Xueping He, Guoxi Xie, Jianke Liang, Yufeng Ye, Wei Deng, Zhuonan He, Dexiang Liu, Debiao Li, Xin Liu, Zhaoyang Fan

ABSTRACT

BACKGROUND: The aim was to investigate the feasibility of a cardiovascular magnetic resonance (CMR) black-blood thrombus imaging (BBTI) technique, based on delay alternating with nutation for tailored excitation black-blood preparation and a variable flip angle turbo-spin-echo readout, for the diagnosis of acute deep vein thrombosis (DVT) at 1.5 T. METHODS: BBTI was conducted in 15 healthy subjects and 30 acute DVT patients. Contrast-enhanced CMR venography (CE-CMRV) was conducted for comparison and only performed in the patients. Apparent contrast-to-noise ratios between the thrombus and the muscle/lumen were calculated to determine whether BBTI could provide an adequate thrombus signal for diagnosis. Two blinded readers assessed the randomized BBTI images from all participants and made independent decisions on the presence or absence of thrombus at the segment level. Images obtained by CE-CMRV were also randomized and assessed by the two readers. Using the consensus CE-CMRV as a reference, the sensitivity, specificity, positive and negative predictive values, and accuracy of BBTI, as well as its diagnostic agreement with CE-CMRV, were calculated. Additionally, diagnostic confidence and interobserver diagnostic agreement were evaluated. RESULTS: The thrombi in the acute phase exhibited iso- or hyperintense signals on the BBTI images. All the healthy subjects were correctly identified from the participants based on the segment level. The diagnostic confidence of BBTI was comparable to that of CE-CMRV (3.69 ± 0.52 vs. 3.70 ± 0.47). High overall sensitivity (95.2%), SP (98.6%), positive predictive value (96.0%), negative predictive value (98.3%), and accuracy (97.7%), as well as excellent diagnostic and interobserver agreements, were achieved using BBTI. CONCLUSION: BBTI is a reliable, contrast-free technique for the diagnosis of acute DVT at 1.5 T. More... »

PAGES

42

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12968-018-0459-6

DOI

http://dx.doi.org/10.1186/s12968-018-0459-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1104981088

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29936910


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cardiorespiratory Medicine and Haematology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged, 80 and over", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Case-Control Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Feasibility Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Angiography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Observer Variation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phlebography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Predictive Value of Tests", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Venous Thrombosis", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Panyu District Central Hospital", 
          "id": "https://www.grid.ac/institutes/grid.459864.2", 
          "name": [
            "Department of Radiology, Guangzhou Panyu Central Hospital, 511400, Guangzhou, Guangdong, China", 
            "Medical Imaging Institute of Panyu, 511400, Guangzhou, Guangdong, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Hanwei", 
        "id": "sg:person.0607062163.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0607062163.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Panyu District Central Hospital", 
          "id": "https://www.grid.ac/institutes/grid.459864.2", 
          "name": [
            "Department of Radiology, Guangzhou Panyu Central Hospital, 511400, Guangzhou, Guangdong, China", 
            "Medical Imaging Institute of Panyu, 511400, Guangzhou, Guangdong, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "He", 
        "givenName": "Xueping", 
        "id": "sg:person.016055225063.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016055225063.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Guangzhou Medical University", 
          "id": "https://www.grid.ac/institutes/grid.410737.6", 
          "name": [
            "The Sixth Affiliated Hospital, Guangzhou Medical University, Xinzao, Panyu District, 511518, Qingyuan, Guangdong, China", 
            "Department of Biomedical Engineering of Basic Medical School, Guangzhou Medical University, 511436, Guangzhou, Guangdong, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xie", 
        "givenName": "Guoxi", 
        "id": "sg:person.01240364572.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01240364572.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Panyu District Central Hospital", 
          "id": "https://www.grid.ac/institutes/grid.459864.2", 
          "name": [
            "Department of Radiology, Guangzhou Panyu Central Hospital, 511400, Guangzhou, Guangdong, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liang", 
        "givenName": "Jianke", 
        "id": "sg:person.016652605463.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016652605463.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Panyu District Central Hospital", 
          "id": "https://www.grid.ac/institutes/grid.459864.2", 
          "name": [
            "Department of Radiology, Guangzhou Panyu Central Hospital, 511400, Guangzhou, Guangdong, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ye", 
        "givenName": "Yufeng", 
        "id": "sg:person.010750755763.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010750755763.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Panyu District Central Hospital", 
          "id": "https://www.grid.ac/institutes/grid.459864.2", 
          "name": [
            "Department of Radiology, Guangzhou Panyu Central Hospital, 511400, Guangzhou, Guangdong, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Deng", 
        "givenName": "Wei", 
        "id": "sg:person.07356014763.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07356014763.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Panyu District Central Hospital", 
          "id": "https://www.grid.ac/institutes/grid.459864.2", 
          "name": [
            "Department of Radiology, Guangzhou Panyu Central Hospital, 511400, Guangzhou, Guangdong, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "He", 
        "givenName": "Zhuonan", 
        "id": "sg:person.010153375363.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010153375363.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Panyu District Central Hospital", 
          "id": "https://www.grid.ac/institutes/grid.459864.2", 
          "name": [
            "Department of Radiology, Guangzhou Panyu Central Hospital, 511400, Guangzhou, Guangdong, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Dexiang", 
        "id": "sg:person.014452134371.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014452134371.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cedars-Sinai Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.50956.3f", 
          "name": [
            "Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, 90048, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Debiao", 
        "id": "sg:person.01152021525.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152021525.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shenzhen Institutes of Advanced Technology", 
          "id": "https://www.grid.ac/institutes/grid.458489.c", 
          "name": [
            "Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, Guangdong, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Xin", 
        "id": "sg:person.015203005124.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015203005124.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cedars-Sinai Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.50956.3f", 
          "name": [
            "Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, 90048, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fan", 
        "givenName": "Zhaoyang", 
        "id": "sg:person.01136172260.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136172260.58"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0140-6736(97)24041-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001400399"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.25785", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002669954"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jvir.2009.04.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004743432"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circulationaha.113.001371", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005253113"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circulationaha.113.001371", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005253113"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0741-5214(93)90325-g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007446971"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s003300000586", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008539791", 
          "https://doi.org/10.1007/s003300000586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.rvi.0000242502.40626.53", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010629886"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.rvi.0000242502.40626.53", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010629886"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.rvi.0000242502.40626.53", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010629886"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/atvbaha.108.162545", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012997263"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/atvbaha.108.162545", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012997263"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12968-016-0320-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014715046", 
          "https://doi.org/10.1186/s12968-016-0320-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12968-016-0320-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014715046", 
          "https://doi.org/10.1186/s12968-016-0320-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2141.2009.07732.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020402389"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2141.2009.07732.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020402389"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.1880060109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023456362"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.25667", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025561083"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.10607", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027192103"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/strokeaha.109.552588", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027528538"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/strokeaha.109.552588", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027528538"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(11)61904-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030252053"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.blre.2015.07.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032406350"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00270-013-0747-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034548551", 
          "https://doi.org/10.1007/s00270-013-0747-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.14131717", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034589508"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bjs.6077", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035908334"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0000000000000142", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038288140"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0000000000000142", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038288140"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1182/blood-2014-04-566380", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038946182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/archinte.159.5.445", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039925152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10334-009-0189-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042071819", 
          "https://doi.org/10.1007/s10334-009-0189-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10334-009-0189-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042071819", 
          "https://doi.org/10.1007/s10334-009-0189-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10334-009-0189-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042071819", 
          "https://doi.org/10.1007/s10334-009-0189-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.24142", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042401520"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/jth.12124", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043180326"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-006-0178-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043641001", 
          "https://doi.org/10.1007/s00330-006-0178-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1538-7836.2007.02468.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045565105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amepre.2009.12.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048537994"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2342-5-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048837898", 
          "https://doi.org/10.1186/1471-2342-5-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2342-5-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048837898", 
          "https://doi.org/10.1186/1471-2342-5-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2423052101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049677073"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-016-4555-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053118496", 
          "https://doi.org/10.1007/s00330-016-4555-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-016-4555-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053118496", 
          "https://doi.org/10.1007/s00330-016-4555-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1378/chest.11-2299", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067172031"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.12.9611", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069302904"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.180.1.1800227", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069325200"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2529310", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069974986"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7326/0003-4819-136-2-200201150-00006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073705295"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7326/0003-4819-140-12-200406150-00016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073707075"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077034352", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.189.1.8372185", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082779153"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "BACKGROUND: The aim was to investigate the feasibility of a cardiovascular magnetic resonance (CMR) black-blood thrombus imaging (BBTI) technique, based on delay alternating with nutation for tailored excitation black-blood preparation and a variable flip angle turbo-spin-echo readout, for the diagnosis of acute deep vein thrombosis (DVT) at 1.5\u00a0T.\nMETHODS: BBTI was conducted in 15 healthy subjects and 30 acute DVT patients. Contrast-enhanced CMR venography (CE-CMRV) was conducted for comparison and only performed in the patients. Apparent contrast-to-noise ratios between the thrombus and the muscle/lumen were calculated to determine whether BBTI could provide an adequate thrombus signal for diagnosis. Two blinded readers assessed the randomized BBTI images from all participants and made independent decisions on the presence or absence of thrombus at the segment level. Images obtained by CE-CMRV were also randomized and assessed by the two readers. Using the consensus CE-CMRV as a reference, the sensitivity, specificity, positive and negative predictive values, and accuracy of BBTI, as well as its diagnostic agreement with CE-CMRV, were calculated. Additionally, diagnostic confidence and interobserver diagnostic agreement were evaluated.\nRESULTS: The thrombi in the acute phase exhibited iso- or hyperintense signals on the BBTI images. All the healthy subjects were correctly identified from the participants based on the segment level. The diagnostic confidence of BBTI was comparable to that of CE-CMRV (3.69\u2009\u00b1\u20090.52 vs. 3.70\u2009\u00b1\u20090.47). High overall sensitivity (95.2%), SP (98.6%), positive predictive value (96.0%), negative predictive value (98.3%), and accuracy (97.7%), as well as excellent diagnostic and interobserver agreements, were achieved using BBTI.\nCONCLUSION: BBTI is a reliable, contrast-free technique for the diagnosis of acute DVT at 1.5\u00a0T.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12968-018-0459-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1030439", 
        "issn": [
          "1548-7679", 
          "1879-2855"
        ], 
        "name": "Journal of Cardiovascular Magnetic Resonance", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "20"
      }
    ], 
    "name": "Cardiovascular magnetic resonance black-blood thrombus imaging for the diagnosis of acute deep vein thrombosis at 1.5 Tesla", 
    "pagination": "42", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b9ca69b733ac5a560cfac4e1eeb74ad3d54dc2c6c4d2bfb79e9c517fc8ac6dc1"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29936910"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9815616"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12968-018-0459-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1104981088"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12968-018-0459-6", 
      "https://app.dimensions.ai/details/publication/pub.1104981088"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:47", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000358_0000000358/records_127461_00000011.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs12968-018-0459-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12968-018-0459-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12968-018-0459-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12968-018-0459-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12968-018-0459-6'


 

This table displays all metadata directly associated to this object as RDF triples.

337 TRIPLES      21 PREDICATES      84 URIs      37 LITERALS      25 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12968-018-0459-6 schema:about N179825b67f6844f19e64ab827472ec8e
2 N17ad3318fd1242fcaf06685411406db4
3 N479f8edbd35d44f38fd6121dc1f285d8
4 N49e1ef96bc754f94b7a04e874622ebc0
5 N5366e04491714cc1af2e6b36a19a1e04
6 N5a50e3c055b54897a97106473fad9199
7 N5c2d2fd200e245b9ad5b096b3f778c71
8 N8169b4d0573642afa4af980035d5f74f
9 N856651380b084179b6e3ac45c9db4e98
10 N94d69ed98409451cbf5a56a1b2427e2d
11 Na627555e0d474235b51c0a4272ad0891
12 Nb02c42c4847e4ee1b8bceda1bb90aa9c
13 Nd37606c4d3524e068781c06b99927b85
14 Ne1c629af37154cd59f30b4265111bb55
15 Ne9e507d3a4c24213ab76516942d456b6
16 Nf0b77bb9134f403d8c15deefee4c1f5d
17 anzsrc-for:11
18 anzsrc-for:1102
19 schema:author Naa5a54da266a4ba6a0f1b963c5494695
20 schema:citation sg:pub.10.1007/s00270-013-0747-3
21 sg:pub.10.1007/s00330-006-0178-5
22 sg:pub.10.1007/s00330-016-4555-4
23 sg:pub.10.1007/s003300000586
24 sg:pub.10.1007/s10334-009-0189-8
25 sg:pub.10.1186/1471-2342-5-6
26 sg:pub.10.1186/s12968-016-0320-8
27 https://app.dimensions.ai/details/publication/pub.1077034352
28 https://doi.org/10.1001/archinte.159.5.445
29 https://doi.org/10.1002/bjs.6077
30 https://doi.org/10.1002/jmri.1880060109
31 https://doi.org/10.1002/mrm.10607
32 https://doi.org/10.1002/mrm.24142
33 https://doi.org/10.1002/mrm.25667
34 https://doi.org/10.1002/mrm.25785
35 https://doi.org/10.1016/0741-5214(93)90325-g
36 https://doi.org/10.1016/j.amepre.2009.12.017
37 https://doi.org/10.1016/j.blre.2015.07.002
38 https://doi.org/10.1016/j.jvir.2009.04.034
39 https://doi.org/10.1016/s0140-6736(11)61904-1
40 https://doi.org/10.1016/s0140-6736(97)24041-9
41 https://doi.org/10.1097/01.rvi.0000242502.40626.53
42 https://doi.org/10.1097/rli.0000000000000142
43 https://doi.org/10.1111/j.1365-2141.2009.07732.x
44 https://doi.org/10.1111/j.1538-7836.2007.02468.x
45 https://doi.org/10.1111/jth.12124
46 https://doi.org/10.1148/radiol.14131717
47 https://doi.org/10.1148/radiol.2423052101
48 https://doi.org/10.1148/radiology.189.1.8372185
49 https://doi.org/10.1161/atvbaha.108.162545
50 https://doi.org/10.1161/circulationaha.113.001371
51 https://doi.org/10.1161/strokeaha.109.552588
52 https://doi.org/10.1182/blood-2014-04-566380
53 https://doi.org/10.1378/chest.11-2299
54 https://doi.org/10.2214/ajr.12.9611
55 https://doi.org/10.2214/ajr.180.1.1800227
56 https://doi.org/10.2307/2529310
57 https://doi.org/10.7326/0003-4819-136-2-200201150-00006
58 https://doi.org/10.7326/0003-4819-140-12-200406150-00016
59 schema:datePublished 2018-12
60 schema:datePublishedReg 2018-12-01
61 schema:description BACKGROUND: The aim was to investigate the feasibility of a cardiovascular magnetic resonance (CMR) black-blood thrombus imaging (BBTI) technique, based on delay alternating with nutation for tailored excitation black-blood preparation and a variable flip angle turbo-spin-echo readout, for the diagnosis of acute deep vein thrombosis (DVT) at 1.5 T. METHODS: BBTI was conducted in 15 healthy subjects and 30 acute DVT patients. Contrast-enhanced CMR venography (CE-CMRV) was conducted for comparison and only performed in the patients. Apparent contrast-to-noise ratios between the thrombus and the muscle/lumen were calculated to determine whether BBTI could provide an adequate thrombus signal for diagnosis. Two blinded readers assessed the randomized BBTI images from all participants and made independent decisions on the presence or absence of thrombus at the segment level. Images obtained by CE-CMRV were also randomized and assessed by the two readers. Using the consensus CE-CMRV as a reference, the sensitivity, specificity, positive and negative predictive values, and accuracy of BBTI, as well as its diagnostic agreement with CE-CMRV, were calculated. Additionally, diagnostic confidence and interobserver diagnostic agreement were evaluated. RESULTS: The thrombi in the acute phase exhibited iso- or hyperintense signals on the BBTI images. All the healthy subjects were correctly identified from the participants based on the segment level. The diagnostic confidence of BBTI was comparable to that of CE-CMRV (3.69 ± 0.52 vs. 3.70 ± 0.47). High overall sensitivity (95.2%), SP (98.6%), positive predictive value (96.0%), negative predictive value (98.3%), and accuracy (97.7%), as well as excellent diagnostic and interobserver agreements, were achieved using BBTI. CONCLUSION: BBTI is a reliable, contrast-free technique for the diagnosis of acute DVT at 1.5 T.
62 schema:genre research_article
63 schema:inLanguage en
64 schema:isAccessibleForFree true
65 schema:isPartOf N6f423b43f8d14ea0996ff57fcc259f3d
66 N7fe7c5b5f4874ca9b86bd475db6e943c
67 sg:journal.1030439
68 schema:name Cardiovascular magnetic resonance black-blood thrombus imaging for the diagnosis of acute deep vein thrombosis at 1.5 Tesla
69 schema:pagination 42
70 schema:productId N2288294e76e04b6db15038ab5431fa76
71 N9717c5c1a2f44ff9bd5417d757ba9950
72 Nd57d904ff7f64430b0ad7930aa0e43ec
73 Ne39a255e059c481b8f2c94b1139bd232
74 Nf07302e4d2f949d19fc095469e4bc24d
75 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104981088
76 https://doi.org/10.1186/s12968-018-0459-6
77 schema:sdDatePublished 2019-04-11T11:47
78 schema:sdLicense https://scigraph.springernature.com/explorer/license/
79 schema:sdPublisher N02c95af253854917b90a3256184444d8
80 schema:url https://link.springer.com/10.1186%2Fs12968-018-0459-6
81 sgo:license sg:explorer/license/
82 sgo:sdDataset articles
83 rdf:type schema:ScholarlyArticle
84 N02c95af253854917b90a3256184444d8 schema:name Springer Nature - SN SciGraph project
85 rdf:type schema:Organization
86 N09846b2468ee48bb84c2cc092771c1ea rdf:first sg:person.01136172260.58
87 rdf:rest rdf:nil
88 N1664dfa794ec4ee482bd8ec263d7cd04 rdf:first sg:person.01152021525.33
89 rdf:rest N1d82fa8890ae458997fc7f03cc315e58
90 N179825b67f6844f19e64ab827472ec8e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Middle Aged
92 rdf:type schema:DefinedTerm
93 N17ad3318fd1242fcaf06685411406db4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Aged, 80 and over
95 rdf:type schema:DefinedTerm
96 N1d82fa8890ae458997fc7f03cc315e58 rdf:first sg:person.015203005124.97
97 rdf:rest N09846b2468ee48bb84c2cc092771c1ea
98 N2288294e76e04b6db15038ab5431fa76 schema:name readcube_id
99 schema:value b9ca69b733ac5a560cfac4e1eeb74ad3d54dc2c6c4d2bfb79e9c517fc8ac6dc1
100 rdf:type schema:PropertyValue
101 N2ebc184c2f1a4bdd832cbd2e46a4667e rdf:first sg:person.014452134371.24
102 rdf:rest N1664dfa794ec4ee482bd8ec263d7cd04
103 N44e33798eb2c4bfc871d4bc0ebfc5ec2 rdf:first sg:person.07356014763.21
104 rdf:rest N5ee36152f3984c27ab3a54f3e675da6c
105 N479f8edbd35d44f38fd6121dc1f285d8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Case-Control Studies
107 rdf:type schema:DefinedTerm
108 N49e1ef96bc754f94b7a04e874622ebc0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Predictive Value of Tests
110 rdf:type schema:DefinedTerm
111 N5366e04491714cc1af2e6b36a19a1e04 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Humans
113 rdf:type schema:DefinedTerm
114 N5a50e3c055b54897a97106473fad9199 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Venous Thrombosis
116 rdf:type schema:DefinedTerm
117 N5c2d2fd200e245b9ad5b096b3f778c71 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Adult
119 rdf:type schema:DefinedTerm
120 N5cc780fadbe94d5fb08154adc8637501 rdf:first sg:person.010750755763.16
121 rdf:rest N44e33798eb2c4bfc871d4bc0ebfc5ec2
122 N5ee36152f3984c27ab3a54f3e675da6c rdf:first sg:person.010153375363.55
123 rdf:rest N2ebc184c2f1a4bdd832cbd2e46a4667e
124 N6f423b43f8d14ea0996ff57fcc259f3d schema:issueNumber 1
125 rdf:type schema:PublicationIssue
126 N72cc4780280845a6a4f2a50c0220d0ae rdf:first sg:person.01240364572.83
127 rdf:rest N761a8647f5e044d98a9698dd2c6e8853
128 N761a8647f5e044d98a9698dd2c6e8853 rdf:first sg:person.016652605463.52
129 rdf:rest N5cc780fadbe94d5fb08154adc8637501
130 N7fe7c5b5f4874ca9b86bd475db6e943c schema:volumeNumber 20
131 rdf:type schema:PublicationVolume
132 N8169b4d0573642afa4af980035d5f74f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Observer Variation
134 rdf:type schema:DefinedTerm
135 N856651380b084179b6e3ac45c9db4e98 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Prospective Studies
137 rdf:type schema:DefinedTerm
138 N8a61046760634f7cafbc551fdf239fa0 rdf:first sg:person.016055225063.44
139 rdf:rest N72cc4780280845a6a4f2a50c0220d0ae
140 N94d69ed98409451cbf5a56a1b2427e2d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Feasibility Studies
142 rdf:type schema:DefinedTerm
143 N9717c5c1a2f44ff9bd5417d757ba9950 schema:name doi
144 schema:value 10.1186/s12968-018-0459-6
145 rdf:type schema:PropertyValue
146 Na627555e0d474235b51c0a4272ad0891 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name Phlebography
148 rdf:type schema:DefinedTerm
149 Naa5a54da266a4ba6a0f1b963c5494695 rdf:first sg:person.0607062163.73
150 rdf:rest N8a61046760634f7cafbc551fdf239fa0
151 Nb02c42c4847e4ee1b8bceda1bb90aa9c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Male
153 rdf:type schema:DefinedTerm
154 Nd37606c4d3524e068781c06b99927b85 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name Reproducibility of Results
156 rdf:type schema:DefinedTerm
157 Nd57d904ff7f64430b0ad7930aa0e43ec schema:name nlm_unique_id
158 schema:value 9815616
159 rdf:type schema:PropertyValue
160 Ne1c629af37154cd59f30b4265111bb55 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
161 schema:name Female
162 rdf:type schema:DefinedTerm
163 Ne39a255e059c481b8f2c94b1139bd232 schema:name dimensions_id
164 schema:value pub.1104981088
165 rdf:type schema:PropertyValue
166 Ne9e507d3a4c24213ab76516942d456b6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
167 schema:name Aged
168 rdf:type schema:DefinedTerm
169 Nf07302e4d2f949d19fc095469e4bc24d schema:name pubmed_id
170 schema:value 29936910
171 rdf:type schema:PropertyValue
172 Nf0b77bb9134f403d8c15deefee4c1f5d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
173 schema:name Magnetic Resonance Angiography
174 rdf:type schema:DefinedTerm
175 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
176 schema:name Medical and Health Sciences
177 rdf:type schema:DefinedTerm
178 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
179 schema:name Cardiorespiratory Medicine and Haematology
180 rdf:type schema:DefinedTerm
181 sg:journal.1030439 schema:issn 1548-7679
182 1879-2855
183 schema:name Journal of Cardiovascular Magnetic Resonance
184 rdf:type schema:Periodical
185 sg:person.010153375363.55 schema:affiliation https://www.grid.ac/institutes/grid.459864.2
186 schema:familyName He
187 schema:givenName Zhuonan
188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010153375363.55
189 rdf:type schema:Person
190 sg:person.010750755763.16 schema:affiliation https://www.grid.ac/institutes/grid.459864.2
191 schema:familyName Ye
192 schema:givenName Yufeng
193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010750755763.16
194 rdf:type schema:Person
195 sg:person.01136172260.58 schema:affiliation https://www.grid.ac/institutes/grid.50956.3f
196 schema:familyName Fan
197 schema:givenName Zhaoyang
198 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136172260.58
199 rdf:type schema:Person
200 sg:person.01152021525.33 schema:affiliation https://www.grid.ac/institutes/grid.50956.3f
201 schema:familyName Li
202 schema:givenName Debiao
203 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152021525.33
204 rdf:type schema:Person
205 sg:person.01240364572.83 schema:affiliation https://www.grid.ac/institutes/grid.410737.6
206 schema:familyName Xie
207 schema:givenName Guoxi
208 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01240364572.83
209 rdf:type schema:Person
210 sg:person.014452134371.24 schema:affiliation https://www.grid.ac/institutes/grid.459864.2
211 schema:familyName Liu
212 schema:givenName Dexiang
213 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014452134371.24
214 rdf:type schema:Person
215 sg:person.015203005124.97 schema:affiliation https://www.grid.ac/institutes/grid.458489.c
216 schema:familyName Liu
217 schema:givenName Xin
218 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015203005124.97
219 rdf:type schema:Person
220 sg:person.016055225063.44 schema:affiliation https://www.grid.ac/institutes/grid.459864.2
221 schema:familyName He
222 schema:givenName Xueping
223 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016055225063.44
224 rdf:type schema:Person
225 sg:person.016652605463.52 schema:affiliation https://www.grid.ac/institutes/grid.459864.2
226 schema:familyName Liang
227 schema:givenName Jianke
228 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016652605463.52
229 rdf:type schema:Person
230 sg:person.0607062163.73 schema:affiliation https://www.grid.ac/institutes/grid.459864.2
231 schema:familyName Chen
232 schema:givenName Hanwei
233 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0607062163.73
234 rdf:type schema:Person
235 sg:person.07356014763.21 schema:affiliation https://www.grid.ac/institutes/grid.459864.2
236 schema:familyName Deng
237 schema:givenName Wei
238 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07356014763.21
239 rdf:type schema:Person
240 sg:pub.10.1007/s00270-013-0747-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034548551
241 https://doi.org/10.1007/s00270-013-0747-3
242 rdf:type schema:CreativeWork
243 sg:pub.10.1007/s00330-006-0178-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043641001
244 https://doi.org/10.1007/s00330-006-0178-5
245 rdf:type schema:CreativeWork
246 sg:pub.10.1007/s00330-016-4555-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053118496
247 https://doi.org/10.1007/s00330-016-4555-4
248 rdf:type schema:CreativeWork
249 sg:pub.10.1007/s003300000586 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008539791
250 https://doi.org/10.1007/s003300000586
251 rdf:type schema:CreativeWork
252 sg:pub.10.1007/s10334-009-0189-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042071819
253 https://doi.org/10.1007/s10334-009-0189-8
254 rdf:type schema:CreativeWork
255 sg:pub.10.1186/1471-2342-5-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048837898
256 https://doi.org/10.1186/1471-2342-5-6
257 rdf:type schema:CreativeWork
258 sg:pub.10.1186/s12968-016-0320-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014715046
259 https://doi.org/10.1186/s12968-016-0320-8
260 rdf:type schema:CreativeWork
261 https://app.dimensions.ai/details/publication/pub.1077034352 schema:CreativeWork
262 https://doi.org/10.1001/archinte.159.5.445 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039925152
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1002/bjs.6077 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035908334
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1002/jmri.1880060109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023456362
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1002/mrm.10607 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027192103
269 rdf:type schema:CreativeWork
270 https://doi.org/10.1002/mrm.24142 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042401520
271 rdf:type schema:CreativeWork
272 https://doi.org/10.1002/mrm.25667 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025561083
273 rdf:type schema:CreativeWork
274 https://doi.org/10.1002/mrm.25785 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002669954
275 rdf:type schema:CreativeWork
276 https://doi.org/10.1016/0741-5214(93)90325-g schema:sameAs https://app.dimensions.ai/details/publication/pub.1007446971
277 rdf:type schema:CreativeWork
278 https://doi.org/10.1016/j.amepre.2009.12.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048537994
279 rdf:type schema:CreativeWork
280 https://doi.org/10.1016/j.blre.2015.07.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032406350
281 rdf:type schema:CreativeWork
282 https://doi.org/10.1016/j.jvir.2009.04.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004743432
283 rdf:type schema:CreativeWork
284 https://doi.org/10.1016/s0140-6736(11)61904-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030252053
285 rdf:type schema:CreativeWork
286 https://doi.org/10.1016/s0140-6736(97)24041-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001400399
287 rdf:type schema:CreativeWork
288 https://doi.org/10.1097/01.rvi.0000242502.40626.53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010629886
289 rdf:type schema:CreativeWork
290 https://doi.org/10.1097/rli.0000000000000142 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038288140
291 rdf:type schema:CreativeWork
292 https://doi.org/10.1111/j.1365-2141.2009.07732.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1020402389
293 rdf:type schema:CreativeWork
294 https://doi.org/10.1111/j.1538-7836.2007.02468.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1045565105
295 rdf:type schema:CreativeWork
296 https://doi.org/10.1111/jth.12124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043180326
297 rdf:type schema:CreativeWork
298 https://doi.org/10.1148/radiol.14131717 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034589508
299 rdf:type schema:CreativeWork
300 https://doi.org/10.1148/radiol.2423052101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049677073
301 rdf:type schema:CreativeWork
302 https://doi.org/10.1148/radiology.189.1.8372185 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082779153
303 rdf:type schema:CreativeWork
304 https://doi.org/10.1161/atvbaha.108.162545 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012997263
305 rdf:type schema:CreativeWork
306 https://doi.org/10.1161/circulationaha.113.001371 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005253113
307 rdf:type schema:CreativeWork
308 https://doi.org/10.1161/strokeaha.109.552588 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027528538
309 rdf:type schema:CreativeWork
310 https://doi.org/10.1182/blood-2014-04-566380 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038946182
311 rdf:type schema:CreativeWork
312 https://doi.org/10.1378/chest.11-2299 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067172031
313 rdf:type schema:CreativeWork
314 https://doi.org/10.2214/ajr.12.9611 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069302904
315 rdf:type schema:CreativeWork
316 https://doi.org/10.2214/ajr.180.1.1800227 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069325200
317 rdf:type schema:CreativeWork
318 https://doi.org/10.2307/2529310 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069974986
319 rdf:type schema:CreativeWork
320 https://doi.org/10.7326/0003-4819-136-2-200201150-00006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073705295
321 rdf:type schema:CreativeWork
322 https://doi.org/10.7326/0003-4819-140-12-200406150-00016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073707075
323 rdf:type schema:CreativeWork
324 https://www.grid.ac/institutes/grid.410737.6 schema:alternateName Guangzhou Medical University
325 schema:name Department of Biomedical Engineering of Basic Medical School, Guangzhou Medical University, 511436, Guangzhou, Guangdong, China
326 The Sixth Affiliated Hospital, Guangzhou Medical University, Xinzao, Panyu District, 511518, Qingyuan, Guangdong, China
327 rdf:type schema:Organization
328 https://www.grid.ac/institutes/grid.458489.c schema:alternateName Shenzhen Institutes of Advanced Technology
329 schema:name Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, Guangdong, China
330 rdf:type schema:Organization
331 https://www.grid.ac/institutes/grid.459864.2 schema:alternateName Panyu District Central Hospital
332 schema:name Department of Radiology, Guangzhou Panyu Central Hospital, 511400, Guangzhou, Guangdong, China
333 Medical Imaging Institute of Panyu, 511400, Guangzhou, Guangdong, China
334 rdf:type schema:Organization
335 https://www.grid.ac/institutes/grid.50956.3f schema:alternateName Cedars-Sinai Medical Center
336 schema:name Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, 90048, Los Angeles, CA, USA
337 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...