3D whole-brain vessel wall cardiovascular magnetic resonance imaging: a study on the reliability in the quantification of intracranial vessel dimensions View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-06-14

AUTHORS

Na Zhang, Fan Zhang, Zixin Deng, Qi Yang, Marcio A. Diniz, Shlee S. Song, Konrad H. Schlick, M. Marcel Maya, Nestor Gonzalez, Debiao Li, Hairong Zheng, Xin Liu, Zhaoyang Fan

ABSTRACT

BackgroundOne of the potentially important applications of three-dimensional (3D) intracranial vessel wall (IVW) cardiovascular magnetic resonance (CMR) is to monitor disease progression and regression via quantitative measurement of IVW morphology during medical management or drug development. However, a prerequisite for this application is to validate that IVW morphologic measurements based on the modality are reliable. In this study we performed comprehensive reliability analysis for the recently proposed whole-brain IVW CMR technique.MethodsThirty-four healthy subjects and 10 patients with known intracranial atherosclerotic disease underwent repeat whole-brain IVW CMR scans. In 19 of the 34 subjects, two-dimensional (2D) turbo spin-echo (TSE) scan was performed to serve as a reference for the assessment of vessel dimensions. Lumen and wall volume, normalized wall index, mean and maximum wall thickness were measured in both 3D and 2D IVW CMR images. Scan-rescan, intra-observer, and inter-observer reproducibility of 3D IVW CMR in the quantification of IVW or plaque dimensions were respectively assessed in volunteers and patients as well as for different healthy subjectsub-groups (i.e. < 50 and ≥ 50 years). The agreement in vessel wall and lumen measurements between the 3D technique and the 2D TSE method was also investigated. In addition, the sample size required for future longitudinal clinical studies was calculated.ResultsThe intra-class correlation coefficient (ICC) and Bland-Altman plots indicated excellent reproducibility and inter-method agreement for all morphologic measurements (All ICCs > 0.75). In addition, all ICCs of patients were equal to or higher than that of healthy subjects except maximum wall thickness. In volunteers, all ICCs of the age group of ≥50 years were equal to or higher than that of the age group of < 50 years. Normalized wall index and mean and maximum wall thickness were significantly larger in the age group of ≥50 years. To detect 5% - 20% difference between placebo and treatment groups, normalized wall index requires the smallest sample size while lumen volume requires the highest sample size.ConclusionsWhole-brain 3D IVW CMR is a reliable imaging method for the quantification of intracranial vessel dimensions and could potentially be useful for monitoring plaque progression and regression. More... »

PAGES

39

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12968-018-0453-z

DOI

http://dx.doi.org/10.1186/s12968-018-0453-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1104560508

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29898736


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Case-Control Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cerebral Angiography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cerebral Arteries", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Disease Progression", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Interpretation, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Imaging, Three-Dimensional", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Intracranial Arteriosclerosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Angiography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Plaque, Atherosclerotic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Predictive Value of Tests", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prognosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China", 
          "id": "http://www.grid.ac/institutes/grid.410726.6", 
          "name": [
            "Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Ave., Shenzhen University Town, 518055, Shenzhen, China", 
            "Biomedical Imaging Research Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd., PACT 400, 90048, Los Angeles, CA, USA", 
            "Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Na", 
        "id": "sg:person.0662511555.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0662511555.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Biomedical Imaging Research Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd., PACT 400, 90048, Los Angeles, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.50956.3f", 
          "name": [
            "Biomedical Imaging Research Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd., PACT 400, 90048, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Fan", 
        "id": "sg:person.012157667240.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012157667240.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Bioengineering, University of California, Los Angeles, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.19006.3e", 
          "name": [
            "Biomedical Imaging Research Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd., PACT 400, 90048, Los Angeles, CA, USA", 
            "Department of Bioengineering, University of California, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Deng", 
        "givenName": "Zixin", 
        "id": "sg:person.01116105253.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01116105253.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Biomedical Imaging Research Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd., PACT 400, 90048, Los Angeles, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.50956.3f", 
          "name": [
            "Biomedical Imaging Research Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd., PACT 400, 90048, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Qi", 
        "id": "sg:person.01353064311.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353064311.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Biostatistics and Bioinformatics Research Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.50956.3f", 
          "name": [
            "Biostatistics and Bioinformatics Research Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Diniz", 
        "givenName": "Marcio A.", 
        "id": "sg:person.0674764362.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0674764362.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.50956.3f", 
          "name": [
            "Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Song", 
        "givenName": "Shlee S.", 
        "id": "sg:person.01250536717.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01250536717.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.50956.3f", 
          "name": [
            "Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schlick", 
        "givenName": "Konrad H.", 
        "id": "sg:person.01233011553.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01233011553.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Cedars-Sinai Medical Center, Los Angeles, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.50956.3f", 
          "name": [
            "Department of Radiology, Cedars-Sinai Medical Center, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Marcel Maya", 
        "givenName": "M.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.50956.3f", 
          "name": [
            "Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gonzalez", 
        "givenName": "Nestor", 
        "id": "sg:person.0776303674.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0776303674.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Medicine, University of California, Los Angeles, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.19006.3e", 
          "name": [
            "Biomedical Imaging Research Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd., PACT 400, 90048, Los Angeles, CA, USA", 
            "Department of Bioengineering, University of California, Los Angeles, CA, USA", 
            "Department of Medicine, University of California, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Debiao", 
        "id": "sg:person.01152021525.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152021525.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China", 
          "id": "http://www.grid.ac/institutes/grid.410726.6", 
          "name": [
            "Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Ave., Shenzhen University Town, 518055, Shenzhen, China", 
            "Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zheng", 
        "givenName": "Hairong", 
        "id": "sg:person.01232134512.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01232134512.60"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China", 
          "id": "http://www.grid.ac/institutes/grid.410726.6", 
          "name": [
            "Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Ave., Shenzhen University Town, 518055, Shenzhen, China", 
            "Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Xin", 
        "id": "sg:person.015547527234.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015547527234.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Medicine, University of California, Los Angeles, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.19006.3e", 
          "name": [
            "Biomedical Imaging Research Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd., PACT 400, 90048, Los Angeles, CA, USA", 
            "Department of Medicine, University of California, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fan", 
        "givenName": "Zhaoyang", 
        "id": "sg:person.01136172260.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136172260.58"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/s12968-016-0237-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004616434", 
          "https://doi.org/10.1186/s12968-016-0237-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-013-2905-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050577405", 
          "https://doi.org/10.1007/s00330-013-2905-z"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-06-14", 
    "datePublishedReg": "2018-06-14", 
    "description": "BackgroundOne of the potentially important applications of three-dimensional (3D) intracranial vessel wall (IVW) cardiovascular magnetic resonance (CMR) is to monitor disease progression and regression via quantitative measurement of IVW morphology during medical management or drug development. However, a prerequisite for this application is to validate that IVW morphologic measurements based on the modality are reliable. In this study we performed comprehensive reliability analysis for the recently proposed whole-brain IVW CMR technique.MethodsThirty-four healthy\u00a0subjects and 10 patients with known intracranial atherosclerotic disease underwent repeat whole-brain IVW CMR scans. In 19 of the 34 subjects, two-dimensional (2D) turbo spin-echo (TSE) scan was performed to serve as a reference for the assessment of vessel dimensions. Lumen and wall volume, normalized wall index, mean and maximum wall thickness were measured in both 3D and 2D IVW CMR images. Scan-rescan, intra-observer, and inter-observer reproducibility of 3D IVW CMR in the quantification of IVW or plaque dimensions were respectively assessed in volunteers and patients as well as for different healthy subjectsub-groups (i.e. <\u200950 and\u2009\u2265\u200950\u00a0years). The agreement in vessel wall and lumen measurements between the 3D technique and the 2D TSE method was also investigated. In addition, the sample size required for future longitudinal clinical studies was calculated.ResultsThe intra-class correlation coefficient (ICC) and Bland-Altman plots indicated excellent reproducibility and inter-method agreement for all morphologic measurements (All ICCs >\u20090.75). In addition, all ICCs of patients were equal to or higher than that of\u00a0healthy subjects except maximum wall thickness. In volunteers, all ICCs of the age group of \u226550\u00a0years were equal to or higher than that of the age group of <\u200950\u00a0years. Normalized wall index and mean and maximum wall thickness were significantly larger in the age group of \u226550\u00a0years. To detect 5% - 20% difference between placebo and treatment groups, normalized wall index requires the smallest sample size while lumen volume requires the highest sample size.ConclusionsWhole-brain 3D IVW CMR is a reliable imaging method for the quantification of intracranial vessel dimensions and could potentially be useful for monitoring plaque progression and regression.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s12968-018-0453-z", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7178320", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8330714", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2542522", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.100067747", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1030439", 
        "issn": [
          "1548-7679", 
          "1879-2855"
        ], 
        "name": "Journal of Cardiovascular Magnetic Resonance", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "20"
      }
    ], 
    "keywords": [
      "cardiovascular magnetic resonance", 
      "normalized wall index", 
      "intra-class correlation coefficient", 
      "maximum wall thickness", 
      "age groups", 
      "wall index", 
      "future longitudinal clinical studies", 
      "cardiovascular magnetic resonance imaging", 
      "longitudinal clinical study", 
      "morphologic measurements", 
      "reliable imaging method", 
      "magnetic resonance imaging", 
      "spin-echo scans", 
      "inter-observer reproducibility", 
      "Bland-Altman plots", 
      "medical management", 
      "disease progression", 
      "clinical studies", 
      "plaque progression", 
      "healthy subjects", 
      "sample size", 
      "treatment groups", 
      "inter-method agreement", 
      "wall thickness", 
      "CMR scans", 
      "vessel dimensions", 
      "plaque dimensions", 
      "resonance imaging", 
      "lumen volume", 
      "MethodsThirty-four", 
      "patients", 
      "CMR techniques", 
      "small sample size", 
      "wall volume", 
      "vessel wall", 
      "higher sample size", 
      "drug development", 
      "turbo spin echo scans", 
      "progression", 
      "volunteers", 
      "CMR images", 
      "subjects", 
      "scans", 
      "magnetic resonance", 
      "group", 
      "years", 
      "placebo", 
      "regression", 
      "index", 
      "imaging method", 
      "study", 
      "BackgroundOne", 
      "correlation coefficient", 
      "modalities", 
      "lumen", 
      "imaging", 
      "quantitative measurements", 
      "volume", 
      "IVW", 
      "assessment", 
      "quantification", 
      "management", 
      "differences", 
      "addition", 
      "reproducibility", 
      "excellent reproducibility", 
      "size", 
      "wall", 
      "measurements", 
      "development", 
      "technique", 
      "method", 
      "analysis", 
      "thickness", 
      "prerequisite", 
      "reference", 
      "reliability", 
      "resonance", 
      "morphology", 
      "TSE method", 
      "images", 
      "dimensions", 
      "agreement", 
      "applications", 
      "reliability analysis", 
      "coefficient", 
      "plots", 
      "important applications", 
      "comprehensive reliability analysis"
    ], 
    "name": "3D whole-brain vessel wall cardiovascular magnetic resonance imaging: a study on the reliability in the quantification of intracranial vessel dimensions", 
    "pagination": "39", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1104560508"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12968-018-0453-z"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29898736"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12968-018-0453-z", 
      "https://app.dimensions.ai/details/publication/pub.1104560508"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:37", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_763.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s12968-018-0453-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12968-018-0453-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12968-018-0453-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12968-018-0453-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12968-018-0453-z'


 

This table displays all metadata directly associated to this object as RDF triples.

344 TRIPLES      21 PREDICATES      135 URIs      125 LITERALS      26 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12968-018-0453-z schema:about N076a26bd82eb44b68267b5af2dad2e00
2 N09cba46c25a844da92b578ce19df434c
3 N321aa6f82add42bdbd8e4639e3a18caa
4 N38c2cab8830e4b2082a8e18f8468d735
5 N39af8733995844359a20708eaad842f0
6 N46ac918db78847dc9a65624abdc330c6
7 N4c2d500cea3b483d8f18a6b018303425
8 N5069a7f4ca0b4d88ad83d0a6b9654d92
9 N6356b68c7f58422487ef607af5252d08
10 N7b7b0c3a9286476e97ce1c2144b21507
11 N86ab54886c1d49349283ca456db2dc63
12 N8c631ce020b6494aab8709154e29b982
13 N97464619b396479a98120bc0e443e194
14 Nb98f187d692a49699834f0162367ba6a
15 Nbbd0c28abec246c99a1fd35865cd467b
16 Nbca22b9a4d634f4cbffb5860d5652d84
17 Nc320930ee5344c0183dec21806f14fa3
18 Ndd2c08ffff254a41a7c6c8835e424b3e
19 Nfc66ee090ae341e1bb35caafdf6d4704
20 anzsrc-for:11
21 anzsrc-for:1103
22 schema:author Nd664757ac7d44601a7edf1399a04d81b
23 schema:citation sg:pub.10.1007/s00330-013-2905-z
24 sg:pub.10.1186/s12968-016-0237-2
25 schema:datePublished 2018-06-14
26 schema:datePublishedReg 2018-06-14
27 schema:description BackgroundOne of the potentially important applications of three-dimensional (3D) intracranial vessel wall (IVW) cardiovascular magnetic resonance (CMR) is to monitor disease progression and regression via quantitative measurement of IVW morphology during medical management or drug development. However, a prerequisite for this application is to validate that IVW morphologic measurements based on the modality are reliable. In this study we performed comprehensive reliability analysis for the recently proposed whole-brain IVW CMR technique.MethodsThirty-four healthy subjects and 10 patients with known intracranial atherosclerotic disease underwent repeat whole-brain IVW CMR scans. In 19 of the 34 subjects, two-dimensional (2D) turbo spin-echo (TSE) scan was performed to serve as a reference for the assessment of vessel dimensions. Lumen and wall volume, normalized wall index, mean and maximum wall thickness were measured in both 3D and 2D IVW CMR images. Scan-rescan, intra-observer, and inter-observer reproducibility of 3D IVW CMR in the quantification of IVW or plaque dimensions were respectively assessed in volunteers and patients as well as for different healthy subjectsub-groups (i.e. < 50 and ≥ 50 years). The agreement in vessel wall and lumen measurements between the 3D technique and the 2D TSE method was also investigated. In addition, the sample size required for future longitudinal clinical studies was calculated.ResultsThe intra-class correlation coefficient (ICC) and Bland-Altman plots indicated excellent reproducibility and inter-method agreement for all morphologic measurements (All ICCs > 0.75). In addition, all ICCs of patients were equal to or higher than that of healthy subjects except maximum wall thickness. In volunteers, all ICCs of the age group of ≥50 years were equal to or higher than that of the age group of < 50 years. Normalized wall index and mean and maximum wall thickness were significantly larger in the age group of ≥50 years. To detect 5% - 20% difference between placebo and treatment groups, normalized wall index requires the smallest sample size while lumen volume requires the highest sample size.ConclusionsWhole-brain 3D IVW CMR is a reliable imaging method for the quantification of intracranial vessel dimensions and could potentially be useful for monitoring plaque progression and regression.
28 schema:genre article
29 schema:isAccessibleForFree true
30 schema:isPartOf N609fe4678f8b463091e0715e31603c13
31 Na36727fe62ca44a3bbdcfa2fa28d758c
32 sg:journal.1030439
33 schema:keywords BackgroundOne
34 Bland-Altman plots
35 CMR images
36 CMR scans
37 CMR techniques
38 IVW
39 MethodsThirty-four
40 TSE method
41 addition
42 age groups
43 agreement
44 analysis
45 applications
46 assessment
47 cardiovascular magnetic resonance
48 cardiovascular magnetic resonance imaging
49 clinical studies
50 coefficient
51 comprehensive reliability analysis
52 correlation coefficient
53 development
54 differences
55 dimensions
56 disease progression
57 drug development
58 excellent reproducibility
59 future longitudinal clinical studies
60 group
61 healthy subjects
62 higher sample size
63 images
64 imaging
65 imaging method
66 important applications
67 index
68 inter-method agreement
69 inter-observer reproducibility
70 intra-class correlation coefficient
71 longitudinal clinical study
72 lumen
73 lumen volume
74 magnetic resonance
75 magnetic resonance imaging
76 management
77 maximum wall thickness
78 measurements
79 medical management
80 method
81 modalities
82 morphologic measurements
83 morphology
84 normalized wall index
85 patients
86 placebo
87 plaque dimensions
88 plaque progression
89 plots
90 prerequisite
91 progression
92 quantification
93 quantitative measurements
94 reference
95 regression
96 reliability
97 reliability analysis
98 reliable imaging method
99 reproducibility
100 resonance
101 resonance imaging
102 sample size
103 scans
104 size
105 small sample size
106 spin-echo scans
107 study
108 subjects
109 technique
110 thickness
111 treatment groups
112 turbo spin echo scans
113 vessel dimensions
114 vessel wall
115 volume
116 volunteers
117 wall
118 wall index
119 wall thickness
120 wall volume
121 years
122 schema:name 3D whole-brain vessel wall cardiovascular magnetic resonance imaging: a study on the reliability in the quantification of intracranial vessel dimensions
123 schema:pagination 39
124 schema:productId N66fa1e05db2443dd8addf239257864ce
125 Nc49ccb55bbcf4399a6cc7bf086d85138
126 Nebd45aa1a3134059bffec04958bb800d
127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104560508
128 https://doi.org/10.1186/s12968-018-0453-z
129 schema:sdDatePublished 2022-12-01T06:37
130 schema:sdLicense https://scigraph.springernature.com/explorer/license/
131 schema:sdPublisher N55c12c5a44d0453aaeb198aa71bceacc
132 schema:url https://doi.org/10.1186/s12968-018-0453-z
133 sgo:license sg:explorer/license/
134 sgo:sdDataset articles
135 rdf:type schema:ScholarlyArticle
136 N076a26bd82eb44b68267b5af2dad2e00 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Male
138 rdf:type schema:DefinedTerm
139 N09cba46c25a844da92b578ce19df434c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Aged
141 rdf:type schema:DefinedTerm
142 N1649577da90e44e8ab9b9f7a2dd895fb rdf:first sg:person.01353064311.62
143 rdf:rest Nc7c1d5db345f4d1eb3008e80f7c0fb59
144 N1c414242718b4dab91513255ac00c9e3 schema:affiliation grid-institutes:grid.50956.3f
145 schema:familyName Marcel Maya
146 schema:givenName M.
147 rdf:type schema:Person
148 N2fa9e8ce926544e49cf2aec3ef2055f1 rdf:first sg:person.01250536717.52
149 rdf:rest N94b20a05cf554d6993d9d171ffe57c25
150 N321aa6f82add42bdbd8e4639e3a18caa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Female
152 rdf:type schema:DefinedTerm
153 N38c2cab8830e4b2082a8e18f8468d735 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name Middle Aged
155 rdf:type schema:DefinedTerm
156 N39af8733995844359a20708eaad842f0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
157 schema:name Prognosis
158 rdf:type schema:DefinedTerm
159 N46ac918db78847dc9a65624abdc330c6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
160 schema:name Magnetic Resonance Angiography
161 rdf:type schema:DefinedTerm
162 N4c2d500cea3b483d8f18a6b018303425 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
163 schema:name Imaging, Three-Dimensional
164 rdf:type schema:DefinedTerm
165 N4db5c3434b494b89b8f2e96c502b6d57 rdf:first sg:person.015547527234.48
166 rdf:rest N9f548750053346c183b6b4aa91ad8208
167 N5069a7f4ca0b4d88ad83d0a6b9654d92 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
168 schema:name Cerebral Arteries
169 rdf:type schema:DefinedTerm
170 N55c12c5a44d0453aaeb198aa71bceacc schema:name Springer Nature - SN SciGraph project
171 rdf:type schema:Organization
172 N609fe4678f8b463091e0715e31603c13 schema:issueNumber 1
173 rdf:type schema:PublicationIssue
174 N611e49ef873845778ca4092e3c537a41 rdf:first sg:person.01152021525.33
175 rdf:rest Ncbb74c8c471147c08f195ce603101014
176 N6356b68c7f58422487ef607af5252d08 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
177 schema:name Humans
178 rdf:type schema:DefinedTerm
179 N66fa1e05db2443dd8addf239257864ce schema:name pubmed_id
180 schema:value 29898736
181 rdf:type schema:PropertyValue
182 N6b84fbdbc737416a9a158b26329ccd02 rdf:first N1c414242718b4dab91513255ac00c9e3
183 rdf:rest Ne69c37b8b9de470a90c69831965eb265
184 N7b7b0c3a9286476e97ce1c2144b21507 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
185 schema:name Case-Control Studies
186 rdf:type schema:DefinedTerm
187 N86ab54886c1d49349283ca456db2dc63 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
188 schema:name Reproducibility of Results
189 rdf:type schema:DefinedTerm
190 N8c631ce020b6494aab8709154e29b982 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
191 schema:name Image Interpretation, Computer-Assisted
192 rdf:type schema:DefinedTerm
193 N94b20a05cf554d6993d9d171ffe57c25 rdf:first sg:person.01233011553.67
194 rdf:rest N6b84fbdbc737416a9a158b26329ccd02
195 N97464619b396479a98120bc0e443e194 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
196 schema:name Prospective Studies
197 rdf:type schema:DefinedTerm
198 N9f548750053346c183b6b4aa91ad8208 rdf:first sg:person.01136172260.58
199 rdf:rest rdf:nil
200 Na36727fe62ca44a3bbdcfa2fa28d758c schema:volumeNumber 20
201 rdf:type schema:PublicationVolume
202 Nb98f187d692a49699834f0162367ba6a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
203 schema:name Adult
204 rdf:type schema:DefinedTerm
205 Nbbd0c28abec246c99a1fd35865cd467b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
206 schema:name Disease Progression
207 rdf:type schema:DefinedTerm
208 Nbca22b9a4d634f4cbffb5860d5652d84 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
209 schema:name Predictive Value of Tests
210 rdf:type schema:DefinedTerm
211 Nc320930ee5344c0183dec21806f14fa3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
212 schema:name Plaque, Atherosclerotic
213 rdf:type schema:DefinedTerm
214 Nc49ccb55bbcf4399a6cc7bf086d85138 schema:name doi
215 schema:value 10.1186/s12968-018-0453-z
216 rdf:type schema:PropertyValue
217 Nc7c1d5db345f4d1eb3008e80f7c0fb59 rdf:first sg:person.0674764362.21
218 rdf:rest N2fa9e8ce926544e49cf2aec3ef2055f1
219 Ncbb74c8c471147c08f195ce603101014 rdf:first sg:person.01232134512.60
220 rdf:rest N4db5c3434b494b89b8f2e96c502b6d57
221 Nd0d5c4badfd847da905b69fc5b1fac14 rdf:first sg:person.01116105253.25
222 rdf:rest N1649577da90e44e8ab9b9f7a2dd895fb
223 Nd664757ac7d44601a7edf1399a04d81b rdf:first sg:person.0662511555.50
224 rdf:rest Ndcd46ac664b646c08024acd68cd65a9a
225 Ndcd46ac664b646c08024acd68cd65a9a rdf:first sg:person.012157667240.75
226 rdf:rest Nd0d5c4badfd847da905b69fc5b1fac14
227 Ndd2c08ffff254a41a7c6c8835e424b3e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
228 schema:name Intracranial Arteriosclerosis
229 rdf:type schema:DefinedTerm
230 Ne69c37b8b9de470a90c69831965eb265 rdf:first sg:person.0776303674.07
231 rdf:rest N611e49ef873845778ca4092e3c537a41
232 Nebd45aa1a3134059bffec04958bb800d schema:name dimensions_id
233 schema:value pub.1104560508
234 rdf:type schema:PropertyValue
235 Nfc66ee090ae341e1bb35caafdf6d4704 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
236 schema:name Cerebral Angiography
237 rdf:type schema:DefinedTerm
238 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
239 schema:name Medical and Health Sciences
240 rdf:type schema:DefinedTerm
241 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
242 schema:name Clinical Sciences
243 rdf:type schema:DefinedTerm
244 sg:grant.100067747 http://pending.schema.org/fundedItem sg:pub.10.1186/s12968-018-0453-z
245 rdf:type schema:MonetaryGrant
246 sg:grant.2542522 http://pending.schema.org/fundedItem sg:pub.10.1186/s12968-018-0453-z
247 rdf:type schema:MonetaryGrant
248 sg:grant.7178320 http://pending.schema.org/fundedItem sg:pub.10.1186/s12968-018-0453-z
249 rdf:type schema:MonetaryGrant
250 sg:grant.8330714 http://pending.schema.org/fundedItem sg:pub.10.1186/s12968-018-0453-z
251 rdf:type schema:MonetaryGrant
252 sg:journal.1030439 schema:issn 1548-7679
253 1879-2855
254 schema:name Journal of Cardiovascular Magnetic Resonance
255 schema:publisher Springer Nature
256 rdf:type schema:Periodical
257 sg:person.01116105253.25 schema:affiliation grid-institutes:grid.19006.3e
258 schema:familyName Deng
259 schema:givenName Zixin
260 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01116105253.25
261 rdf:type schema:Person
262 sg:person.01136172260.58 schema:affiliation grid-institutes:grid.19006.3e
263 schema:familyName Fan
264 schema:givenName Zhaoyang
265 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136172260.58
266 rdf:type schema:Person
267 sg:person.01152021525.33 schema:affiliation grid-institutes:grid.19006.3e
268 schema:familyName Li
269 schema:givenName Debiao
270 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152021525.33
271 rdf:type schema:Person
272 sg:person.012157667240.75 schema:affiliation grid-institutes:grid.50956.3f
273 schema:familyName Zhang
274 schema:givenName Fan
275 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012157667240.75
276 rdf:type schema:Person
277 sg:person.01232134512.60 schema:affiliation grid-institutes:grid.410726.6
278 schema:familyName Zheng
279 schema:givenName Hairong
280 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01232134512.60
281 rdf:type schema:Person
282 sg:person.01233011553.67 schema:affiliation grid-institutes:grid.50956.3f
283 schema:familyName Schlick
284 schema:givenName Konrad H.
285 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01233011553.67
286 rdf:type schema:Person
287 sg:person.01250536717.52 schema:affiliation grid-institutes:grid.50956.3f
288 schema:familyName Song
289 schema:givenName Shlee S.
290 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01250536717.52
291 rdf:type schema:Person
292 sg:person.01353064311.62 schema:affiliation grid-institutes:grid.50956.3f
293 schema:familyName Yang
294 schema:givenName Qi
295 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353064311.62
296 rdf:type schema:Person
297 sg:person.015547527234.48 schema:affiliation grid-institutes:grid.410726.6
298 schema:familyName Liu
299 schema:givenName Xin
300 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015547527234.48
301 rdf:type schema:Person
302 sg:person.0662511555.50 schema:affiliation grid-institutes:grid.410726.6
303 schema:familyName Zhang
304 schema:givenName Na
305 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0662511555.50
306 rdf:type schema:Person
307 sg:person.0674764362.21 schema:affiliation grid-institutes:grid.50956.3f
308 schema:familyName Diniz
309 schema:givenName Marcio A.
310 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0674764362.21
311 rdf:type schema:Person
312 sg:person.0776303674.07 schema:affiliation grid-institutes:grid.50956.3f
313 schema:familyName Gonzalez
314 schema:givenName Nestor
315 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0776303674.07
316 rdf:type schema:Person
317 sg:pub.10.1007/s00330-013-2905-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1050577405
318 https://doi.org/10.1007/s00330-013-2905-z
319 rdf:type schema:CreativeWork
320 sg:pub.10.1186/s12968-016-0237-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004616434
321 https://doi.org/10.1186/s12968-016-0237-2
322 rdf:type schema:CreativeWork
323 grid-institutes:grid.19006.3e schema:alternateName Department of Bioengineering, University of California, Los Angeles, CA, USA
324 Department of Medicine, University of California, Los Angeles, CA, USA
325 schema:name Biomedical Imaging Research Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd., PACT 400, 90048, Los Angeles, CA, USA
326 Department of Bioengineering, University of California, Los Angeles, CA, USA
327 Department of Medicine, University of California, Los Angeles, CA, USA
328 rdf:type schema:Organization
329 grid-institutes:grid.410726.6 schema:alternateName Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China
330 schema:name Biomedical Imaging Research Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd., PACT 400, 90048, Los Angeles, CA, USA
331 Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Ave., Shenzhen University Town, 518055, Shenzhen, China
332 Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China
333 rdf:type schema:Organization
334 grid-institutes:grid.50956.3f schema:alternateName Biomedical Imaging Research Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd., PACT 400, 90048, Los Angeles, CA, USA
335 Biostatistics and Bioinformatics Research Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
336 Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
337 Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
338 Department of Radiology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
339 schema:name Biomedical Imaging Research Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd., PACT 400, 90048, Los Angeles, CA, USA
340 Biostatistics and Bioinformatics Research Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
341 Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
342 Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
343 Department of Radiology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
344 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...