3D whole-brain vessel wall cardiovascular magnetic resonance imaging: a study on the reliability in the quantification of intracranial vessel dimensions View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-06-14

AUTHORS

Na Zhang, Fan Zhang, Zixin Deng, Qi Yang, Marcio A. Diniz, Shlee S. Song, Konrad H. Schlick, M. Marcel Maya, Nestor Gonzalez, Debiao Li, Hairong Zheng, Xin Liu, Zhaoyang Fan

ABSTRACT

BackgroundOne of the potentially important applications of three-dimensional (3D) intracranial vessel wall (IVW) cardiovascular magnetic resonance (CMR) is to monitor disease progression and regression via quantitative measurement of IVW morphology during medical management or drug development. However, a prerequisite for this application is to validate that IVW morphologic measurements based on the modality are reliable. In this study we performed comprehensive reliability analysis for the recently proposed whole-brain IVW CMR technique.MethodsThirty-four healthy subjects and 10 patients with known intracranial atherosclerotic disease underwent repeat whole-brain IVW CMR scans. In 19 of the 34 subjects, two-dimensional (2D) turbo spin-echo (TSE) scan was performed to serve as a reference for the assessment of vessel dimensions. Lumen and wall volume, normalized wall index, mean and maximum wall thickness were measured in both 3D and 2D IVW CMR images. Scan-rescan, intra-observer, and inter-observer reproducibility of 3D IVW CMR in the quantification of IVW or plaque dimensions were respectively assessed in volunteers and patients as well as for different healthy subjectsub-groups (i.e. < 50 and ≥ 50 years). The agreement in vessel wall and lumen measurements between the 3D technique and the 2D TSE method was also investigated. In addition, the sample size required for future longitudinal clinical studies was calculated.ResultsThe intra-class correlation coefficient (ICC) and Bland-Altman plots indicated excellent reproducibility and inter-method agreement for all morphologic measurements (All ICCs > 0.75). In addition, all ICCs of patients were equal to or higher than that of healthy subjects except maximum wall thickness. In volunteers, all ICCs of the age group of ≥50 years were equal to or higher than that of the age group of < 50 years. Normalized wall index and mean and maximum wall thickness were significantly larger in the age group of ≥50 years. To detect 5% - 20% difference between placebo and treatment groups, normalized wall index requires the smallest sample size while lumen volume requires the highest sample size.ConclusionsWhole-brain 3D IVW CMR is a reliable imaging method for the quantification of intracranial vessel dimensions and could potentially be useful for monitoring plaque progression and regression. More... »

PAGES

39

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12968-018-0453-z

DOI

http://dx.doi.org/10.1186/s12968-018-0453-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1104560508

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29898736


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Case-Control Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cerebral Angiography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cerebral Arteries", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Disease Progression", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Interpretation, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Imaging, Three-Dimensional", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Intracranial Arteriosclerosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Angiography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Plaque, Atherosclerotic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Predictive Value of Tests", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prognosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China", 
          "id": "http://www.grid.ac/institutes/grid.410726.6", 
          "name": [
            "Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Ave., Shenzhen University Town, 518055, Shenzhen, China", 
            "Biomedical Imaging Research Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd., PACT 400, 90048, Los Angeles, CA, USA", 
            "Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Na", 
        "id": "sg:person.0662511555.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0662511555.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Biomedical Imaging Research Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd., PACT 400, 90048, Los Angeles, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.50956.3f", 
          "name": [
            "Biomedical Imaging Research Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd., PACT 400, 90048, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Fan", 
        "id": "sg:person.012157667240.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012157667240.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Bioengineering, University of California, Los Angeles, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.266100.3", 
          "name": [
            "Biomedical Imaging Research Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd., PACT 400, 90048, Los Angeles, CA, USA", 
            "Department of Bioengineering, University of California, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Deng", 
        "givenName": "Zixin", 
        "id": "sg:person.01116105253.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01116105253.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Biomedical Imaging Research Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd., PACT 400, 90048, Los Angeles, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.50956.3f", 
          "name": [
            "Biomedical Imaging Research Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd., PACT 400, 90048, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Qi", 
        "id": "sg:person.01353064311.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353064311.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Biostatistics and Bioinformatics Research Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.50956.3f", 
          "name": [
            "Biostatistics and Bioinformatics Research Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Diniz", 
        "givenName": "Marcio A.", 
        "id": "sg:person.0674764362.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0674764362.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.50956.3f", 
          "name": [
            "Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Song", 
        "givenName": "Shlee S.", 
        "id": "sg:person.01250536717.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01250536717.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.50956.3f", 
          "name": [
            "Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schlick", 
        "givenName": "Konrad H.", 
        "id": "sg:person.01233011553.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01233011553.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Cedars-Sinai Medical Center, Los Angeles, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.50956.3f", 
          "name": [
            "Department of Radiology, Cedars-Sinai Medical Center, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Marcel Maya", 
        "givenName": "M.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.50956.3f", 
          "name": [
            "Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gonzalez", 
        "givenName": "Nestor", 
        "id": "sg:person.0776303674.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0776303674.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Medicine, University of California, Los Angeles, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.19006.3e", 
          "name": [
            "Biomedical Imaging Research Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd., PACT 400, 90048, Los Angeles, CA, USA", 
            "Department of Bioengineering, University of California, Los Angeles, CA, USA", 
            "Department of Medicine, University of California, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Debiao", 
        "id": "sg:person.01152021525.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152021525.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China", 
          "id": "http://www.grid.ac/institutes/grid.410726.6", 
          "name": [
            "Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Ave., Shenzhen University Town, 518055, Shenzhen, China", 
            "Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zheng", 
        "givenName": "Hairong", 
        "id": "sg:person.01232134512.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01232134512.60"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China", 
          "id": "http://www.grid.ac/institutes/grid.410726.6", 
          "name": [
            "Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Ave., Shenzhen University Town, 518055, Shenzhen, China", 
            "Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Xin", 
        "id": "sg:person.015547527234.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015547527234.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Medicine, University of California, Los Angeles, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.19006.3e", 
          "name": [
            "Biomedical Imaging Research Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd., PACT 400, 90048, Los Angeles, CA, USA", 
            "Department of Medicine, University of California, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fan", 
        "givenName": "Zhaoyang", 
        "id": "sg:person.01136172260.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136172260.58"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00330-013-2905-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050577405", 
          "https://doi.org/10.1007/s00330-013-2905-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12968-016-0237-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004616434", 
          "https://doi.org/10.1186/s12968-016-0237-2"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-06-14", 
    "datePublishedReg": "2018-06-14", 
    "description": "BackgroundOne of the potentially important applications of three-dimensional (3D) intracranial vessel wall (IVW) cardiovascular magnetic resonance (CMR) is to monitor disease progression and regression via quantitative measurement of IVW morphology during medical management or drug development. However, a prerequisite for this application is to validate that IVW morphologic measurements based on the modality are reliable. In this study we performed comprehensive reliability analysis for the recently proposed whole-brain IVW CMR technique.MethodsThirty-four healthy\u00a0subjects and 10 patients with known intracranial atherosclerotic disease underwent repeat whole-brain IVW CMR scans. In 19 of the 34 subjects, two-dimensional (2D) turbo spin-echo (TSE) scan was performed to serve as a reference for the assessment of vessel dimensions. Lumen and wall volume, normalized wall index, mean and maximum wall thickness were measured in both 3D and 2D IVW CMR images. Scan-rescan, intra-observer, and inter-observer reproducibility of 3D IVW CMR in the quantification of IVW or plaque dimensions were respectively assessed in volunteers and patients as well as for different healthy subjectsub-groups (i.e. <\u200950 and\u2009\u2265\u200950\u00a0years). The agreement in vessel wall and lumen measurements between the 3D technique and the 2D TSE method was also investigated. In addition, the sample size required for future longitudinal clinical studies was calculated.ResultsThe intra-class correlation coefficient (ICC) and Bland-Altman plots indicated excellent reproducibility and inter-method agreement for all morphologic measurements (All ICCs >\u20090.75). In addition, all ICCs of patients were equal to or higher than that of\u00a0healthy subjects except maximum wall thickness. In volunteers, all ICCs of the age group of \u226550\u00a0years were equal to or higher than that of the age group of <\u200950\u00a0years. Normalized wall index and mean and maximum wall thickness were significantly larger in the age group of \u226550\u00a0years. To detect 5% - 20% difference between placebo and treatment groups, normalized wall index requires the smallest sample size while lumen volume requires the highest sample size.ConclusionsWhole-brain 3D IVW CMR is a reliable imaging method for the quantification of intracranial vessel dimensions and could potentially be useful for monitoring plaque progression and regression.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s12968-018-0453-z", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7178320", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8330714", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2542522", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.100067747", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1030439", 
        "issn": [
          "1548-7679", 
          "1879-2855"
        ], 
        "name": "Journal of Cardiovascular Magnetic Resonance", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "20"
      }
    ], 
    "keywords": [
      "cardiovascular magnetic resonance", 
      "normalized wall index", 
      "intra-class correlation coefficient", 
      "maximum wall thickness", 
      "age groups", 
      "wall index", 
      "future longitudinal clinical studies", 
      "cardiovascular magnetic resonance imaging", 
      "longitudinal clinical study", 
      "morphologic measurements", 
      "reliable imaging method", 
      "magnetic resonance imaging", 
      "spin-echo scans", 
      "inter-observer reproducibility", 
      "Bland-Altman plots", 
      "medical management", 
      "disease progression", 
      "clinical studies", 
      "plaque progression", 
      "healthy subjects", 
      "sample size", 
      "treatment groups", 
      "inter-method agreement", 
      "wall thickness", 
      "CMR scans", 
      "vessel dimensions", 
      "plaque dimensions", 
      "resonance imaging", 
      "lumen volume", 
      "MethodsThirty-four", 
      "patients", 
      "CMR techniques", 
      "small sample size", 
      "wall volume", 
      "vessel wall", 
      "higher sample size", 
      "drug development", 
      "turbo spin echo scans", 
      "progression", 
      "volunteers", 
      "CMR images", 
      "subjects", 
      "scans", 
      "magnetic resonance", 
      "group", 
      "years", 
      "placebo", 
      "regression", 
      "index", 
      "imaging method", 
      "study", 
      "BackgroundOne", 
      "correlation coefficient", 
      "modalities", 
      "lumen", 
      "imaging", 
      "quantitative measurements", 
      "volume", 
      "IVW", 
      "assessment", 
      "quantification", 
      "management", 
      "differences", 
      "addition", 
      "reproducibility", 
      "excellent reproducibility", 
      "size", 
      "wall", 
      "measurements", 
      "development", 
      "technique", 
      "method", 
      "analysis", 
      "thickness", 
      "prerequisite", 
      "reference", 
      "reliability", 
      "resonance", 
      "morphology", 
      "TSE method", 
      "images", 
      "dimensions", 
      "agreement", 
      "applications", 
      "reliability analysis", 
      "coefficient", 
      "plots", 
      "important applications", 
      "comprehensive reliability analysis"
    ], 
    "name": "3D whole-brain vessel wall cardiovascular magnetic resonance imaging: a study on the reliability in the quantification of intracranial vessel dimensions", 
    "pagination": "39", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1104560508"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12968-018-0453-z"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29898736"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12968-018-0453-z", 
      "https://app.dimensions.ai/details/publication/pub.1104560508"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:45", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_794.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s12968-018-0453-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12968-018-0453-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12968-018-0453-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12968-018-0453-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12968-018-0453-z'


 

This table displays all metadata directly associated to this object as RDF triples.

347 TRIPLES      21 PREDICATES      135 URIs      125 LITERALS      26 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12968-018-0453-z schema:about N1ec2f7bbc45c457081ab350f6a1ae911
2 N1f48b1ec76a04895bfced0be68e8a40c
3 N340c2c65c1de4d1e81134dd0c0ba1209
4 N36e96b8a87b34a30a4365bd8c17fe3f8
5 N4af08348809d4c5baf729910b266a9cb
6 N5e2dfb4e06474aebb5fa88b68173630e
7 N6359cd0c147843bfaa175a27ac1415a0
8 N6affd0f9e8334d858eb4cd1937d52f1c
9 N6f32023ef4154c8aa46c8eb75a9fd8a0
10 N7bbebea082144ba2b52b1e0d59683f41
11 N7e292484b86c43448eebcbffea071c00
12 N8bc8ba4ee2ca475fa4fb053128dbbf2a
13 Na0eb06b69fec49e09e5b975c68eb6926
14 Nb815cf7004194a479cab57e62adf258d
15 Ncf8ce788171749b68a40634d36238d8d
16 Ne0897040f5f54d58a9a3d236b19c4cc8
17 Ne1ab26c3b37749eb8a51b269b051785a
18 Nf1d37047785f4937ab0e739b4f419362
19 Nfe57535a8309430fa16a707ea803781e
20 anzsrc-for:11
21 anzsrc-for:1103
22 schema:author Nc73d62869bd04db1b25f8b5f82ef9df5
23 schema:citation sg:pub.10.1007/s00330-013-2905-z
24 sg:pub.10.1186/s12968-016-0237-2
25 schema:datePublished 2018-06-14
26 schema:datePublishedReg 2018-06-14
27 schema:description BackgroundOne of the potentially important applications of three-dimensional (3D) intracranial vessel wall (IVW) cardiovascular magnetic resonance (CMR) is to monitor disease progression and regression via quantitative measurement of IVW morphology during medical management or drug development. However, a prerequisite for this application is to validate that IVW morphologic measurements based on the modality are reliable. In this study we performed comprehensive reliability analysis for the recently proposed whole-brain IVW CMR technique.MethodsThirty-four healthy subjects and 10 patients with known intracranial atherosclerotic disease underwent repeat whole-brain IVW CMR scans. In 19 of the 34 subjects, two-dimensional (2D) turbo spin-echo (TSE) scan was performed to serve as a reference for the assessment of vessel dimensions. Lumen and wall volume, normalized wall index, mean and maximum wall thickness were measured in both 3D and 2D IVW CMR images. Scan-rescan, intra-observer, and inter-observer reproducibility of 3D IVW CMR in the quantification of IVW or plaque dimensions were respectively assessed in volunteers and patients as well as for different healthy subjectsub-groups (i.e. < 50 and ≥ 50 years). The agreement in vessel wall and lumen measurements between the 3D technique and the 2D TSE method was also investigated. In addition, the sample size required for future longitudinal clinical studies was calculated.ResultsThe intra-class correlation coefficient (ICC) and Bland-Altman plots indicated excellent reproducibility and inter-method agreement for all morphologic measurements (All ICCs > 0.75). In addition, all ICCs of patients were equal to or higher than that of healthy subjects except maximum wall thickness. In volunteers, all ICCs of the age group of ≥50 years were equal to or higher than that of the age group of < 50 years. Normalized wall index and mean and maximum wall thickness were significantly larger in the age group of ≥50 years. To detect 5% - 20% difference between placebo and treatment groups, normalized wall index requires the smallest sample size while lumen volume requires the highest sample size.ConclusionsWhole-brain 3D IVW CMR is a reliable imaging method for the quantification of intracranial vessel dimensions and could potentially be useful for monitoring plaque progression and regression.
28 schema:genre article
29 schema:isAccessibleForFree true
30 schema:isPartOf Nefc6be2d07d04268b23b096f4a2d95bb
31 Nfd4e94fa1cab4133bcab5d25b025f647
32 sg:journal.1030439
33 schema:keywords BackgroundOne
34 Bland-Altman plots
35 CMR images
36 CMR scans
37 CMR techniques
38 IVW
39 MethodsThirty-four
40 TSE method
41 addition
42 age groups
43 agreement
44 analysis
45 applications
46 assessment
47 cardiovascular magnetic resonance
48 cardiovascular magnetic resonance imaging
49 clinical studies
50 coefficient
51 comprehensive reliability analysis
52 correlation coefficient
53 development
54 differences
55 dimensions
56 disease progression
57 drug development
58 excellent reproducibility
59 future longitudinal clinical studies
60 group
61 healthy subjects
62 higher sample size
63 images
64 imaging
65 imaging method
66 important applications
67 index
68 inter-method agreement
69 inter-observer reproducibility
70 intra-class correlation coefficient
71 longitudinal clinical study
72 lumen
73 lumen volume
74 magnetic resonance
75 magnetic resonance imaging
76 management
77 maximum wall thickness
78 measurements
79 medical management
80 method
81 modalities
82 morphologic measurements
83 morphology
84 normalized wall index
85 patients
86 placebo
87 plaque dimensions
88 plaque progression
89 plots
90 prerequisite
91 progression
92 quantification
93 quantitative measurements
94 reference
95 regression
96 reliability
97 reliability analysis
98 reliable imaging method
99 reproducibility
100 resonance
101 resonance imaging
102 sample size
103 scans
104 size
105 small sample size
106 spin-echo scans
107 study
108 subjects
109 technique
110 thickness
111 treatment groups
112 turbo spin echo scans
113 vessel dimensions
114 vessel wall
115 volume
116 volunteers
117 wall
118 wall index
119 wall thickness
120 wall volume
121 years
122 schema:name 3D whole-brain vessel wall cardiovascular magnetic resonance imaging: a study on the reliability in the quantification of intracranial vessel dimensions
123 schema:pagination 39
124 schema:productId N0eaf6813064e406198b5da48c100da7b
125 N6e4a49850d8b434c93914f93ee6dd454
126 Ne4bf9fb3ff3845f1a0a6799fc9b22341
127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104560508
128 https://doi.org/10.1186/s12968-018-0453-z
129 schema:sdDatePublished 2022-10-01T06:45
130 schema:sdLicense https://scigraph.springernature.com/explorer/license/
131 schema:sdPublisher Na96dfb670392416b860314d93fbd9424
132 schema:url https://doi.org/10.1186/s12968-018-0453-z
133 sgo:license sg:explorer/license/
134 sgo:sdDataset articles
135 rdf:type schema:ScholarlyArticle
136 N09ad59d151ce4bf1beb893bd627e34c7 schema:affiliation grid-institutes:grid.50956.3f
137 schema:familyName Marcel Maya
138 schema:givenName M.
139 rdf:type schema:Person
140 N0eaf6813064e406198b5da48c100da7b schema:name dimensions_id
141 schema:value pub.1104560508
142 rdf:type schema:PropertyValue
143 N13ca8bc03d1e46cd977d57220a0c4001 rdf:first sg:person.015547527234.48
144 rdf:rest N3cee43045234475da3e7ce97bf1b84df
145 N1ec2f7bbc45c457081ab350f6a1ae911 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Female
147 rdf:type schema:DefinedTerm
148 N1f48b1ec76a04895bfced0be68e8a40c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
149 schema:name Magnetic Resonance Angiography
150 rdf:type schema:DefinedTerm
151 N2ab9f46c8c18422082cf09a7688b7e8d rdf:first sg:person.01233011553.67
152 rdf:rest N8de81280cba441f38d9778c2516860f3
153 N340c2c65c1de4d1e81134dd0c0ba1209 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name Adult
155 rdf:type schema:DefinedTerm
156 N3577881f4d03404e8bd4225206c931f8 rdf:first sg:person.0776303674.07
157 rdf:rest N8ca2566979c74e11ad1ef8d9d81dbd04
158 N36e96b8a87b34a30a4365bd8c17fe3f8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
159 schema:name Cerebral Angiography
160 rdf:type schema:DefinedTerm
161 N3cee43045234475da3e7ce97bf1b84df rdf:first sg:person.01136172260.58
162 rdf:rest rdf:nil
163 N4af08348809d4c5baf729910b266a9cb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
164 schema:name Case-Control Studies
165 rdf:type schema:DefinedTerm
166 N5e2dfb4e06474aebb5fa88b68173630e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
167 schema:name Humans
168 rdf:type schema:DefinedTerm
169 N5f21e737db13448fa939f0c70d1ee311 rdf:first sg:person.0674764362.21
170 rdf:rest Ne3c60054f8094d21ad9c367c96b05f56
171 N6359cd0c147843bfaa175a27ac1415a0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
172 schema:name Aged
173 rdf:type schema:DefinedTerm
174 N6affd0f9e8334d858eb4cd1937d52f1c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
175 schema:name Prognosis
176 rdf:type schema:DefinedTerm
177 N6e4a49850d8b434c93914f93ee6dd454 schema:name pubmed_id
178 schema:value 29898736
179 rdf:type schema:PropertyValue
180 N6f32023ef4154c8aa46c8eb75a9fd8a0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
181 schema:name Plaque, Atherosclerotic
182 rdf:type schema:DefinedTerm
183 N7bbebea082144ba2b52b1e0d59683f41 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
184 schema:name Predictive Value of Tests
185 rdf:type schema:DefinedTerm
186 N7e292484b86c43448eebcbffea071c00 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
187 schema:name Prospective Studies
188 rdf:type schema:DefinedTerm
189 N8bc8ba4ee2ca475fa4fb053128dbbf2a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
190 schema:name Cerebral Arteries
191 rdf:type schema:DefinedTerm
192 N8ca2566979c74e11ad1ef8d9d81dbd04 rdf:first sg:person.01152021525.33
193 rdf:rest Nf4263f57bf28406b9a1b545fb136b7d1
194 N8de81280cba441f38d9778c2516860f3 rdf:first N09ad59d151ce4bf1beb893bd627e34c7
195 rdf:rest N3577881f4d03404e8bd4225206c931f8
196 Na0eb06b69fec49e09e5b975c68eb6926 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
197 schema:name Imaging, Three-Dimensional
198 rdf:type schema:DefinedTerm
199 Na96dfb670392416b860314d93fbd9424 schema:name Springer Nature - SN SciGraph project
200 rdf:type schema:Organization
201 Nb815cf7004194a479cab57e62adf258d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
202 schema:name Intracranial Arteriosclerosis
203 rdf:type schema:DefinedTerm
204 Nc73d62869bd04db1b25f8b5f82ef9df5 rdf:first sg:person.0662511555.50
205 rdf:rest Nf81f0b7709ba4f58a663ed7286513a2e
206 Ncf8ce788171749b68a40634d36238d8d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
207 schema:name Middle Aged
208 rdf:type schema:DefinedTerm
209 Nd0e8f1faee6b4a509dfa053688a5a422 rdf:first sg:person.01353064311.62
210 rdf:rest N5f21e737db13448fa939f0c70d1ee311
211 Ne0897040f5f54d58a9a3d236b19c4cc8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
212 schema:name Male
213 rdf:type schema:DefinedTerm
214 Ne1ab26c3b37749eb8a51b269b051785a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
215 schema:name Image Interpretation, Computer-Assisted
216 rdf:type schema:DefinedTerm
217 Ne3c60054f8094d21ad9c367c96b05f56 rdf:first sg:person.01250536717.52
218 rdf:rest N2ab9f46c8c18422082cf09a7688b7e8d
219 Ne4bf9fb3ff3845f1a0a6799fc9b22341 schema:name doi
220 schema:value 10.1186/s12968-018-0453-z
221 rdf:type schema:PropertyValue
222 Ne5fb83768971450e9c54b8f3fe72bb68 rdf:first sg:person.01116105253.25
223 rdf:rest Nd0e8f1faee6b4a509dfa053688a5a422
224 Nefc6be2d07d04268b23b096f4a2d95bb schema:issueNumber 1
225 rdf:type schema:PublicationIssue
226 Nf1d37047785f4937ab0e739b4f419362 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
227 schema:name Disease Progression
228 rdf:type schema:DefinedTerm
229 Nf4263f57bf28406b9a1b545fb136b7d1 rdf:first sg:person.01232134512.60
230 rdf:rest N13ca8bc03d1e46cd977d57220a0c4001
231 Nf81f0b7709ba4f58a663ed7286513a2e rdf:first sg:person.012157667240.75
232 rdf:rest Ne5fb83768971450e9c54b8f3fe72bb68
233 Nfd4e94fa1cab4133bcab5d25b025f647 schema:volumeNumber 20
234 rdf:type schema:PublicationVolume
235 Nfe57535a8309430fa16a707ea803781e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
236 schema:name Reproducibility of Results
237 rdf:type schema:DefinedTerm
238 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
239 schema:name Medical and Health Sciences
240 rdf:type schema:DefinedTerm
241 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
242 schema:name Clinical Sciences
243 rdf:type schema:DefinedTerm
244 sg:grant.100067747 http://pending.schema.org/fundedItem sg:pub.10.1186/s12968-018-0453-z
245 rdf:type schema:MonetaryGrant
246 sg:grant.2542522 http://pending.schema.org/fundedItem sg:pub.10.1186/s12968-018-0453-z
247 rdf:type schema:MonetaryGrant
248 sg:grant.7178320 http://pending.schema.org/fundedItem sg:pub.10.1186/s12968-018-0453-z
249 rdf:type schema:MonetaryGrant
250 sg:grant.8330714 http://pending.schema.org/fundedItem sg:pub.10.1186/s12968-018-0453-z
251 rdf:type schema:MonetaryGrant
252 sg:journal.1030439 schema:issn 1548-7679
253 1879-2855
254 schema:name Journal of Cardiovascular Magnetic Resonance
255 schema:publisher Springer Nature
256 rdf:type schema:Periodical
257 sg:person.01116105253.25 schema:affiliation grid-institutes:grid.266100.3
258 schema:familyName Deng
259 schema:givenName Zixin
260 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01116105253.25
261 rdf:type schema:Person
262 sg:person.01136172260.58 schema:affiliation grid-institutes:grid.19006.3e
263 schema:familyName Fan
264 schema:givenName Zhaoyang
265 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136172260.58
266 rdf:type schema:Person
267 sg:person.01152021525.33 schema:affiliation grid-institutes:grid.19006.3e
268 schema:familyName Li
269 schema:givenName Debiao
270 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152021525.33
271 rdf:type schema:Person
272 sg:person.012157667240.75 schema:affiliation grid-institutes:grid.50956.3f
273 schema:familyName Zhang
274 schema:givenName Fan
275 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012157667240.75
276 rdf:type schema:Person
277 sg:person.01232134512.60 schema:affiliation grid-institutes:grid.410726.6
278 schema:familyName Zheng
279 schema:givenName Hairong
280 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01232134512.60
281 rdf:type schema:Person
282 sg:person.01233011553.67 schema:affiliation grid-institutes:grid.50956.3f
283 schema:familyName Schlick
284 schema:givenName Konrad H.
285 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01233011553.67
286 rdf:type schema:Person
287 sg:person.01250536717.52 schema:affiliation grid-institutes:grid.50956.3f
288 schema:familyName Song
289 schema:givenName Shlee S.
290 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01250536717.52
291 rdf:type schema:Person
292 sg:person.01353064311.62 schema:affiliation grid-institutes:grid.50956.3f
293 schema:familyName Yang
294 schema:givenName Qi
295 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353064311.62
296 rdf:type schema:Person
297 sg:person.015547527234.48 schema:affiliation grid-institutes:grid.410726.6
298 schema:familyName Liu
299 schema:givenName Xin
300 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015547527234.48
301 rdf:type schema:Person
302 sg:person.0662511555.50 schema:affiliation grid-institutes:grid.410726.6
303 schema:familyName Zhang
304 schema:givenName Na
305 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0662511555.50
306 rdf:type schema:Person
307 sg:person.0674764362.21 schema:affiliation grid-institutes:grid.50956.3f
308 schema:familyName Diniz
309 schema:givenName Marcio A.
310 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0674764362.21
311 rdf:type schema:Person
312 sg:person.0776303674.07 schema:affiliation grid-institutes:grid.50956.3f
313 schema:familyName Gonzalez
314 schema:givenName Nestor
315 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0776303674.07
316 rdf:type schema:Person
317 sg:pub.10.1007/s00330-013-2905-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1050577405
318 https://doi.org/10.1007/s00330-013-2905-z
319 rdf:type schema:CreativeWork
320 sg:pub.10.1186/s12968-016-0237-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004616434
321 https://doi.org/10.1186/s12968-016-0237-2
322 rdf:type schema:CreativeWork
323 grid-institutes:grid.19006.3e schema:alternateName Department of Medicine, University of California, Los Angeles, CA, USA
324 schema:name Biomedical Imaging Research Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd., PACT 400, 90048, Los Angeles, CA, USA
325 Department of Bioengineering, University of California, Los Angeles, CA, USA
326 Department of Medicine, University of California, Los Angeles, CA, USA
327 rdf:type schema:Organization
328 grid-institutes:grid.266100.3 schema:alternateName Department of Bioengineering, University of California, Los Angeles, CA, USA
329 schema:name Biomedical Imaging Research Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd., PACT 400, 90048, Los Angeles, CA, USA
330 Department of Bioengineering, University of California, Los Angeles, CA, USA
331 rdf:type schema:Organization
332 grid-institutes:grid.410726.6 schema:alternateName Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China
333 schema:name Biomedical Imaging Research Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd., PACT 400, 90048, Los Angeles, CA, USA
334 Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Ave., Shenzhen University Town, 518055, Shenzhen, China
335 Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China
336 rdf:type schema:Organization
337 grid-institutes:grid.50956.3f schema:alternateName Biomedical Imaging Research Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd., PACT 400, 90048, Los Angeles, CA, USA
338 Biostatistics and Bioinformatics Research Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
339 Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
340 Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
341 Department of Radiology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
342 schema:name Biomedical Imaging Research Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd., PACT 400, 90048, Los Angeles, CA, USA
343 Biostatistics and Bioinformatics Research Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
344 Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
345 Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
346 Department of Radiology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
347 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...