Atherosclerosis T1-weighted characterization (CATCH): evaluation of the accuracy for identifying intraplaque hemorrhage with histological validation in carotid and coronary artery ... View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Wen Liu, Yibin Xie, Chuan Wang, Yanni Du, Christopher Nguyen, Zhenjia Wang, Zhaoyang Fan, Li Dong, Yi Liu, Xiaoming Bi, Jing An, Chengxiong Gu, Wei Yu, Debiao Li

ABSTRACT

BACKGROUND: Coronary high intensity plaques (CHIPs) detected using cardiovascular magnetic resonance (CMR) coronary atherosclerosis T1-weighted characterization with integrated anatomical reference (CATCH) have been shown to be positively associated with high-risk morphology observed on intracoronary optical coherence tomography (OCT). This study sought to validate whether CHIPs detected on CATCH indicate the presence of intraplaque hemorrhage (IPH) through ex vivo imaging of carotid and coronary plaque specimens, with histopathology as the standard reference. METHODS: Ten patients scheduled to undergo carotid endarterectomy underwent CMR with the conventional T1-weighted (T1w) sequence. Eleven carotid atherosclerotic plaques removed at carotid endarterectomy and six coronary artery endarterectomy specimens removed from patients undergoing coronary artery bypass grafting (CABG) were scanned ex vivo using both the conventional T1w sequence and CATCH. Both in vivo and ex vivo images were examined for the presence of IPH. The sensitivity, specificity, and Cohen Kappa (k) value of each scan were calculated using matched histological sections as the reference. k value between each scan in the discrimination of IPH was also computed. RESULTS: A total of 236 in vivo locations, 328 ex vivo and matching histology locations were included for the analysis. Sensitivity, specificity, and k value were 76.7%, 95.3%, and 0.75 for in vivo T1w imaging, 77.2%, 97.4%, and 0.78 for ex vivo T1w imaging, and 95.0%, 92.1%, and 0.84 for ex vivo CATCH, respectively. Moderate agreement was reached between in vivo T1w imaging, ex vivo T1w imaging, and ex vivo CATCH for the detection of IPH: between in vivo T1w imaging and ex vivo CATCH (k = 0.68), between ex vivo T1w imaging and ex vivo CATCH (k = 0.74), between in vivo T1w imaging and ex vivo T1w imaging (k = 0.83). None of the coronary artery plaque locations showed IPH. CONCLUSION: This study demonstrated that carotid CHIPs detected by CATCH can be used to assess for IPH, a high-risk plaque feature. More... »

PAGES

27

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12968-018-0447-x

DOI

http://dx.doi.org/10.1186/s12968-018-0447-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1103553668

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29695254


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cardiorespiratory Medicine and Haematology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biopsy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Carotid Arteries", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Carotid Artery Diseases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Coronary Artery Disease", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Coronary Vessels", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Endarterectomy, Carotid", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hemorrhage", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Plaque, Atherosclerotic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Predictive Value of Tests", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Preliminary Data", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Capital Medical University", 
          "id": "https://www.grid.ac/institutes/grid.24696.3f", 
          "name": [
            "Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Wen", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cedars-Sinai Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.50956.3f", 
          "name": [
            "Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xie", 
        "givenName": "Yibin", 
        "id": "sg:person.01320556462.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320556462.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Capital Medical University", 
          "id": "https://www.grid.ac/institutes/grid.24696.3f", 
          "name": [
            "Department of Cardiac Surgery, Anzhen Hospital, Capital Medical University, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Chuan", 
        "id": "sg:person.011720445033.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011720445033.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Capital Medical University", 
          "id": "https://www.grid.ac/institutes/grid.24696.3f", 
          "name": [
            "Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Du", 
        "givenName": "Yanni", 
        "id": "sg:person.013574027142.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013574027142.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nguyen", 
        "givenName": "Christopher", 
        "id": "sg:person.01331047206.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331047206.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Capital Medical University", 
          "id": "https://www.grid.ac/institutes/grid.24696.3f", 
          "name": [
            "Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Zhenjia", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cedars-Sinai Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.50956.3f", 
          "name": [
            "Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fan", 
        "givenName": "Zhaoyang", 
        "id": "sg:person.01136172260.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136172260.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Capital Medical University", 
          "id": "https://www.grid.ac/institutes/grid.24696.3f", 
          "name": [
            "Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dong", 
        "givenName": "Li", 
        "id": "sg:person.01161036206.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01161036206.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Capital Medical University", 
          "id": "https://www.grid.ac/institutes/grid.24696.3f", 
          "name": [
            "Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Yi", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "MR R&D, Siemens Healthineers, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bi", 
        "givenName": "Xiaoming", 
        "id": "sg:person.01066244563.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066244563.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "MR Collaborations NE Asia, Siemens Healthcare, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "An", 
        "givenName": "Jing", 
        "id": "sg:person.01340437625.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01340437625.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Capital Medical University", 
          "id": "https://www.grid.ac/institutes/grid.24696.3f", 
          "name": [
            "Department of Cardiac Surgery, Anzhen Hospital, Capital Medical University, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gu", 
        "givenName": "Chengxiong", 
        "id": "sg:person.01102435001.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01102435001.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Capital Medical University", 
          "id": "https://www.grid.ac/institutes/grid.24696.3f", 
          "name": [
            "Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yu", 
        "givenName": "Wei", 
        "id": "sg:person.01143631075.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143631075.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California Los Angeles", 
          "id": "https://www.grid.ac/institutes/grid.19006.3e", 
          "name": [
            "Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA", 
            "Departments of Medicine and Bioengineering, University of California, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Debiao", 
        "id": "sg:person.01152021525.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152021525.33"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.jcmg.2016.06.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005581873"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.0000028591.44554.f9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009264013"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.athoracsur.2005.05.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014554834"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/hc4201.097839", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015268610"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circulationaha.104.504167", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018658938"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcmg.2015.06.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022737446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mri.2008.05.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029059848"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcmg.2012.03.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030151261"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.09090535", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032991700"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.str.0000125856.25309.86", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036260692"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.str.0000125856.25309.86", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036260692"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejm199201233260406", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036966223"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.0000441139.02102.80", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040460683"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.0000441139.02102.80", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040460683"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circulationaha.110.965442", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042784997"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.90.4.2126", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045901551"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jacc.2013.11.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050126481"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1055/s-0037-1613461", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1075277394"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "BACKGROUND: Coronary high intensity plaques (CHIPs) detected using cardiovascular magnetic resonance (CMR) coronary atherosclerosis T1-weighted characterization with integrated anatomical reference (CATCH) have been shown to be positively associated with high-risk morphology observed on intracoronary optical coherence tomography (OCT). This study sought to validate whether CHIPs detected on CATCH indicate the presence of intraplaque hemorrhage (IPH) through ex vivo imaging of carotid and coronary plaque specimens, with histopathology as the standard reference.\nMETHODS: Ten patients scheduled to undergo carotid endarterectomy underwent CMR with the conventional T1-weighted (T1w) sequence. Eleven carotid atherosclerotic plaques removed at carotid endarterectomy and six coronary artery endarterectomy specimens removed from patients undergoing coronary artery bypass grafting (CABG) were scanned ex vivo using both the conventional T1w sequence and CATCH. Both in vivo and ex vivo images were examined for the presence of IPH. The sensitivity, specificity, and Cohen Kappa (k) value of each scan were calculated using matched histological sections as the reference. k value between each scan in the discrimination of IPH was also computed.\nRESULTS: A total of 236 in vivo locations, 328 ex vivo and matching histology locations were included for the analysis. Sensitivity, specificity, and k value were 76.7%, 95.3%, and 0.75 for in vivo T1w imaging, 77.2%, 97.4%, and 0.78 for ex vivo T1w imaging, and 95.0%, 92.1%, and 0.84 for ex vivo CATCH, respectively. Moderate agreement was reached between in vivo T1w imaging, ex vivo T1w imaging, and ex vivo CATCH for the detection of IPH: between in vivo T1w imaging and ex vivo CATCH (k\u2009=\u20090.68), between ex vivo T1w imaging and ex vivo CATCH (k\u2009=\u20090.74), between in vivo T1w imaging and ex vivo T1w imaging (k\u2009=\u20090.83). None of the coronary artery plaque locations showed IPH.\nCONCLUSION: This study demonstrated that carotid CHIPs detected by CATCH can be used to assess for IPH, a high-risk plaque feature.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12968-018-0447-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.5008516", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1030439", 
        "issn": [
          "1548-7679", 
          "1879-2855"
        ], 
        "name": "Journal of Cardiovascular Magnetic Resonance", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "20"
      }
    ], 
    "name": "Atherosclerosis T1-weighted characterization (CATCH): evaluation of the accuracy for identifying intraplaque hemorrhage with histological validation in carotid and coronary artery specimens", 
    "pagination": "27", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c6761d185f31102055abeb427ad5b2fc819cd72a257c9855a87fb5288f78e979"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29695254"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9815616"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12968-018-0447-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1103553668"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12968-018-0447-x", 
      "https://app.dimensions.ai/details/publication/pub.1103553668"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:40", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000358_0000000358/records_127438_00000011.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs12968-018-0447-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12968-018-0447-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12968-018-0447-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12968-018-0447-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12968-018-0447-x'


 

This table displays all metadata directly associated to this object as RDF triples.

289 TRIPLES      21 PREDICATES      62 URIs      38 LITERALS      26 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12968-018-0447-x schema:about N0903e58b02784da68569eeb3ca64ea88
2 N14d0bd07d65f465e82c2e961fa5d9764
3 N244427d06fdd46d0b4db7460516864f2
4 N3e3ce435ce4b47e499e6284dee3b1286
5 N43b67abe3916482788c2532a13d70f85
6 N48d3896e7e2b4d15a1536390cb902c32
7 N5054bc11f27246f2add2fd9c98e3b3c1
8 N567cd294b0ee4567b877a61f7ef3ec00
9 N573201b954bc480fad09a33e08197fda
10 N5a6a59e63939411baf574fccd4c48e8b
11 N7c950db5bd9d4d539a63e949490c1798
12 N8edf12a9d8084932ad0ca4d5e1da2c8f
13 Nc041d39d259b4816a1f9f892a7533a96
14 Nd7a513795dd54b44af79c011d7666917
15 Ne16d0395cdfa4ece97dcbe54124b2add
16 Ne43e1a960a8642738cab0a2745983ce9
17 Nf5b624315f99433ea0c72e3fb555d2a5
18 anzsrc-for:11
19 anzsrc-for:1102
20 schema:author Ne75e2e7aba414361a484189f1c51b0bc
21 schema:citation https://doi.org/10.1016/j.athoracsur.2005.05.034
22 https://doi.org/10.1016/j.jacc.2013.11.034
23 https://doi.org/10.1016/j.jcmg.2012.03.014
24 https://doi.org/10.1016/j.jcmg.2015.06.013
25 https://doi.org/10.1016/j.jcmg.2016.06.014
26 https://doi.org/10.1016/j.mri.2008.05.002
27 https://doi.org/10.1055/s-0037-1613461
28 https://doi.org/10.1056/nejm199201233260406
29 https://doi.org/10.1148/radiol.09090535
30 https://doi.org/10.1161/01.cir.0000028591.44554.f9
31 https://doi.org/10.1161/01.cir.0000441139.02102.80
32 https://doi.org/10.1161/01.cir.90.4.2126
33 https://doi.org/10.1161/01.str.0000125856.25309.86
34 https://doi.org/10.1161/circulationaha.104.504167
35 https://doi.org/10.1161/circulationaha.110.965442
36 https://doi.org/10.1161/hc4201.097839
37 schema:datePublished 2018-12
38 schema:datePublishedReg 2018-12-01
39 schema:description BACKGROUND: Coronary high intensity plaques (CHIPs) detected using cardiovascular magnetic resonance (CMR) coronary atherosclerosis T1-weighted characterization with integrated anatomical reference (CATCH) have been shown to be positively associated with high-risk morphology observed on intracoronary optical coherence tomography (OCT). This study sought to validate whether CHIPs detected on CATCH indicate the presence of intraplaque hemorrhage (IPH) through ex vivo imaging of carotid and coronary plaque specimens, with histopathology as the standard reference. METHODS: Ten patients scheduled to undergo carotid endarterectomy underwent CMR with the conventional T1-weighted (T1w) sequence. Eleven carotid atherosclerotic plaques removed at carotid endarterectomy and six coronary artery endarterectomy specimens removed from patients undergoing coronary artery bypass grafting (CABG) were scanned ex vivo using both the conventional T1w sequence and CATCH. Both in vivo and ex vivo images were examined for the presence of IPH. The sensitivity, specificity, and Cohen Kappa (k) value of each scan were calculated using matched histological sections as the reference. k value between each scan in the discrimination of IPH was also computed. RESULTS: A total of 236 in vivo locations, 328 ex vivo and matching histology locations were included for the analysis. Sensitivity, specificity, and k value were 76.7%, 95.3%, and 0.75 for in vivo T1w imaging, 77.2%, 97.4%, and 0.78 for ex vivo T1w imaging, and 95.0%, 92.1%, and 0.84 for ex vivo CATCH, respectively. Moderate agreement was reached between in vivo T1w imaging, ex vivo T1w imaging, and ex vivo CATCH for the detection of IPH: between in vivo T1w imaging and ex vivo CATCH (k = 0.68), between ex vivo T1w imaging and ex vivo CATCH (k = 0.74), between in vivo T1w imaging and ex vivo T1w imaging (k = 0.83). None of the coronary artery plaque locations showed IPH. CONCLUSION: This study demonstrated that carotid CHIPs detected by CATCH can be used to assess for IPH, a high-risk plaque feature.
40 schema:genre research_article
41 schema:inLanguage en
42 schema:isAccessibleForFree true
43 schema:isPartOf N7bb5e6be712440f599e783cdabad78f2
44 Na39acf8b811d4b40acf2ae6e827f99f7
45 sg:journal.1030439
46 schema:name Atherosclerosis T1-weighted characterization (CATCH): evaluation of the accuracy for identifying intraplaque hemorrhage with histological validation in carotid and coronary artery specimens
47 schema:pagination 27
48 schema:productId N8e3b72efe22e4963a934df1180005d90
49 Na00840187d484628ad74f08286ae7f8a
50 Nc7de4a07e6004ebc94ebdc82afb33bd5
51 Nf331333ae7554f65873d8cecc3dda061
52 Nf64e5e8f1684401885980e7b045ea4be
53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103553668
54 https://doi.org/10.1186/s12968-018-0447-x
55 schema:sdDatePublished 2019-04-11T11:40
56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
57 schema:sdPublisher N9143190f7d614298a4ce65c83e9b8517
58 schema:url https://link.springer.com/10.1186%2Fs12968-018-0447-x
59 sgo:license sg:explorer/license/
60 sgo:sdDataset articles
61 rdf:type schema:ScholarlyArticle
62 N0903e58b02784da68569eeb3ca64ea88 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
63 schema:name Endarterectomy, Carotid
64 rdf:type schema:DefinedTerm
65 N117bb248418f404b9f8a5878bf0a7a7b rdf:first sg:person.01152021525.33
66 rdf:rest rdf:nil
67 N14d0bd07d65f465e82c2e961fa5d9764 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
68 schema:name Hemorrhage
69 rdf:type schema:DefinedTerm
70 N1a61236d3b734b5f8d4fc0b098ef6a66 rdf:first sg:person.01102435001.75
71 rdf:rest N2b7e703bd11742c9a899493141320639
72 N244427d06fdd46d0b4db7460516864f2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
73 schema:name Aged
74 rdf:type schema:DefinedTerm
75 N2b7e703bd11742c9a899493141320639 rdf:first sg:person.01143631075.45
76 rdf:rest N117bb248418f404b9f8a5878bf0a7a7b
77 N35c232c38a174243b3688b6c2c613364 rdf:first sg:person.01066244563.44
78 rdf:rest Nd7da64db9d5f4452bc429fa8b63ca224
79 N377c40c4c5364462a220e9023b6c11db rdf:first sg:person.01161036206.83
80 rdf:rest Ndf9aac0af7534c60a618a19aa2ae3d7a
81 N3e3ce435ce4b47e499e6284dee3b1286 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
82 schema:name Magnetic Resonance Imaging
83 rdf:type schema:DefinedTerm
84 N4328cae14c1e439eacc034b026d6bf1c rdf:first sg:person.01331047206.43
85 rdf:rest N7a54f3b6cbf147579f678604d7e8177a
86 N43b67abe3916482788c2532a13d70f85 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Humans
88 rdf:type schema:DefinedTerm
89 N441e9627b4a7423fb609fd5135f07de6 schema:name MR R&D, Siemens Healthineers, Los Angeles, CA, USA
90 rdf:type schema:Organization
91 N4830996f3725435ea6ed34d17e974543 schema:name MR Collaborations NE Asia, Siemens Healthcare, Beijing, China
92 rdf:type schema:Organization
93 N48d3896e7e2b4d15a1536390cb902c32 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Coronary Vessels
95 rdf:type schema:DefinedTerm
96 N5054bc11f27246f2add2fd9c98e3b3c1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Carotid Artery Diseases
98 rdf:type schema:DefinedTerm
99 N567cd294b0ee4567b877a61f7ef3ec00 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Male
101 rdf:type schema:DefinedTerm
102 N573201b954bc480fad09a33e08197fda schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Carotid Arteries
104 rdf:type schema:DefinedTerm
105 N5a6a59e63939411baf574fccd4c48e8b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Predictive Value of Tests
107 rdf:type schema:DefinedTerm
108 N776e0cfa08f14424af1d96773d39ebf9 rdf:first sg:person.013574027142.54
109 rdf:rest N4328cae14c1e439eacc034b026d6bf1c
110 N7a54f3b6cbf147579f678604d7e8177a rdf:first Nb1c5d194f37949689e25ff29d8742c78
111 rdf:rest N806804d5c859494cb753be018ffe3de1
112 N7bb5e6be712440f599e783cdabad78f2 schema:volumeNumber 20
113 rdf:type schema:PublicationVolume
114 N7c950db5bd9d4d539a63e949490c1798 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Preliminary Data
116 rdf:type schema:DefinedTerm
117 N7cbd9e7915054b1caef09bdbaf509403 schema:name Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
118 rdf:type schema:Organization
119 N806804d5c859494cb753be018ffe3de1 rdf:first sg:person.01136172260.58
120 rdf:rest N377c40c4c5364462a220e9023b6c11db
121 N8e3b72efe22e4963a934df1180005d90 schema:name dimensions_id
122 schema:value pub.1103553668
123 rdf:type schema:PropertyValue
124 N8edf12a9d8084932ad0ca4d5e1da2c8f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Female
126 rdf:type schema:DefinedTerm
127 N9143190f7d614298a4ce65c83e9b8517 schema:name Springer Nature - SN SciGraph project
128 rdf:type schema:Organization
129 N9df214b048984f05a33277791e9d74f8 schema:affiliation https://www.grid.ac/institutes/grid.24696.3f
130 schema:familyName Liu
131 schema:givenName Yi
132 rdf:type schema:Person
133 Na00840187d484628ad74f08286ae7f8a schema:name pubmed_id
134 schema:value 29695254
135 rdf:type schema:PropertyValue
136 Na39acf8b811d4b40acf2ae6e827f99f7 schema:issueNumber 1
137 rdf:type schema:PublicationIssue
138 Nb1c5d194f37949689e25ff29d8742c78 schema:affiliation https://www.grid.ac/institutes/grid.24696.3f
139 schema:familyName Wang
140 schema:givenName Zhenjia
141 rdf:type schema:Person
142 Nc041d39d259b4816a1f9f892a7533a96 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Biopsy
144 rdf:type schema:DefinedTerm
145 Nc14c89eb0069435db35b7b1dac3a85dd schema:affiliation https://www.grid.ac/institutes/grid.24696.3f
146 schema:familyName Liu
147 schema:givenName Wen
148 rdf:type schema:Person
149 Nc3643ef522954db9bbada5ab9b387c44 rdf:first sg:person.01320556462.83
150 rdf:rest Nd478a4a5368c4d9b9898ec7b9eb7eb78
151 Nc7de4a07e6004ebc94ebdc82afb33bd5 schema:name doi
152 schema:value 10.1186/s12968-018-0447-x
153 rdf:type schema:PropertyValue
154 Nd478a4a5368c4d9b9898ec7b9eb7eb78 rdf:first sg:person.011720445033.41
155 rdf:rest N776e0cfa08f14424af1d96773d39ebf9
156 Nd7a513795dd54b44af79c011d7666917 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
157 schema:name Reproducibility of Results
158 rdf:type schema:DefinedTerm
159 Nd7da64db9d5f4452bc429fa8b63ca224 rdf:first sg:person.01340437625.65
160 rdf:rest N1a61236d3b734b5f8d4fc0b098ef6a66
161 Ndf9aac0af7534c60a618a19aa2ae3d7a rdf:first N9df214b048984f05a33277791e9d74f8
162 rdf:rest N35c232c38a174243b3688b6c2c613364
163 Ne16d0395cdfa4ece97dcbe54124b2add schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
164 schema:name Middle Aged
165 rdf:type schema:DefinedTerm
166 Ne43e1a960a8642738cab0a2745983ce9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
167 schema:name Plaque, Atherosclerotic
168 rdf:type schema:DefinedTerm
169 Ne75e2e7aba414361a484189f1c51b0bc rdf:first Nc14c89eb0069435db35b7b1dac3a85dd
170 rdf:rest Nc3643ef522954db9bbada5ab9b387c44
171 Nf331333ae7554f65873d8cecc3dda061 schema:name nlm_unique_id
172 schema:value 9815616
173 rdf:type schema:PropertyValue
174 Nf5b624315f99433ea0c72e3fb555d2a5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
175 schema:name Coronary Artery Disease
176 rdf:type schema:DefinedTerm
177 Nf64e5e8f1684401885980e7b045ea4be schema:name readcube_id
178 schema:value c6761d185f31102055abeb427ad5b2fc819cd72a257c9855a87fb5288f78e979
179 rdf:type schema:PropertyValue
180 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
181 schema:name Medical and Health Sciences
182 rdf:type schema:DefinedTerm
183 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
184 schema:name Cardiorespiratory Medicine and Haematology
185 rdf:type schema:DefinedTerm
186 sg:grant.5008516 http://pending.schema.org/fundedItem sg:pub.10.1186/s12968-018-0447-x
187 rdf:type schema:MonetaryGrant
188 sg:journal.1030439 schema:issn 1548-7679
189 1879-2855
190 schema:name Journal of Cardiovascular Magnetic Resonance
191 rdf:type schema:Periodical
192 sg:person.01066244563.44 schema:affiliation N441e9627b4a7423fb609fd5135f07de6
193 schema:familyName Bi
194 schema:givenName Xiaoming
195 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066244563.44
196 rdf:type schema:Person
197 sg:person.01102435001.75 schema:affiliation https://www.grid.ac/institutes/grid.24696.3f
198 schema:familyName Gu
199 schema:givenName Chengxiong
200 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01102435001.75
201 rdf:type schema:Person
202 sg:person.01136172260.58 schema:affiliation https://www.grid.ac/institutes/grid.50956.3f
203 schema:familyName Fan
204 schema:givenName Zhaoyang
205 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136172260.58
206 rdf:type schema:Person
207 sg:person.01143631075.45 schema:affiliation https://www.grid.ac/institutes/grid.24696.3f
208 schema:familyName Yu
209 schema:givenName Wei
210 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143631075.45
211 rdf:type schema:Person
212 sg:person.01152021525.33 schema:affiliation https://www.grid.ac/institutes/grid.19006.3e
213 schema:familyName Li
214 schema:givenName Debiao
215 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152021525.33
216 rdf:type schema:Person
217 sg:person.01161036206.83 schema:affiliation https://www.grid.ac/institutes/grid.24696.3f
218 schema:familyName Dong
219 schema:givenName Li
220 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01161036206.83
221 rdf:type schema:Person
222 sg:person.011720445033.41 schema:affiliation https://www.grid.ac/institutes/grid.24696.3f
223 schema:familyName Wang
224 schema:givenName Chuan
225 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011720445033.41
226 rdf:type schema:Person
227 sg:person.01320556462.83 schema:affiliation https://www.grid.ac/institutes/grid.50956.3f
228 schema:familyName Xie
229 schema:givenName Yibin
230 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320556462.83
231 rdf:type schema:Person
232 sg:person.01331047206.43 schema:affiliation N7cbd9e7915054b1caef09bdbaf509403
233 schema:familyName Nguyen
234 schema:givenName Christopher
235 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331047206.43
236 rdf:type schema:Person
237 sg:person.01340437625.65 schema:affiliation N4830996f3725435ea6ed34d17e974543
238 schema:familyName An
239 schema:givenName Jing
240 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01340437625.65
241 rdf:type schema:Person
242 sg:person.013574027142.54 schema:affiliation https://www.grid.ac/institutes/grid.24696.3f
243 schema:familyName Du
244 schema:givenName Yanni
245 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013574027142.54
246 rdf:type schema:Person
247 https://doi.org/10.1016/j.athoracsur.2005.05.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014554834
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1016/j.jacc.2013.11.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050126481
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1016/j.jcmg.2012.03.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030151261
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1016/j.jcmg.2015.06.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022737446
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1016/j.jcmg.2016.06.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005581873
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1016/j.mri.2008.05.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029059848
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1055/s-0037-1613461 schema:sameAs https://app.dimensions.ai/details/publication/pub.1075277394
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1056/nejm199201233260406 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036966223
262 rdf:type schema:CreativeWork
263 https://doi.org/10.1148/radiol.09090535 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032991700
264 rdf:type schema:CreativeWork
265 https://doi.org/10.1161/01.cir.0000028591.44554.f9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009264013
266 rdf:type schema:CreativeWork
267 https://doi.org/10.1161/01.cir.0000441139.02102.80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040460683
268 rdf:type schema:CreativeWork
269 https://doi.org/10.1161/01.cir.90.4.2126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045901551
270 rdf:type schema:CreativeWork
271 https://doi.org/10.1161/01.str.0000125856.25309.86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036260692
272 rdf:type schema:CreativeWork
273 https://doi.org/10.1161/circulationaha.104.504167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018658938
274 rdf:type schema:CreativeWork
275 https://doi.org/10.1161/circulationaha.110.965442 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042784997
276 rdf:type schema:CreativeWork
277 https://doi.org/10.1161/hc4201.097839 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015268610
278 rdf:type schema:CreativeWork
279 https://www.grid.ac/institutes/grid.19006.3e schema:alternateName University of California Los Angeles
280 schema:name Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
281 Departments of Medicine and Bioengineering, University of California, Los Angeles, CA, USA
282 rdf:type schema:Organization
283 https://www.grid.ac/institutes/grid.24696.3f schema:alternateName Capital Medical University
284 schema:name Department of Cardiac Surgery, Anzhen Hospital, Capital Medical University, Beijing, China
285 Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
286 rdf:type schema:Organization
287 https://www.grid.ac/institutes/grid.50956.3f schema:alternateName Cedars-Sinai Medical Center
288 schema:name Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
289 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...