Atherosclerosis T1-weighted characterization (CATCH): evaluation of the accuracy for identifying intraplaque hemorrhage with histological validation in carotid and coronary artery ... View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-04-26

AUTHORS

Wen Liu, Yibin Xie, Chuan Wang, Yanni Du, Christopher Nguyen, Zhenjia Wang, Zhaoyang Fan, Li Dong, Yi Liu, Xiaoming Bi, Jing An, Chengxiong Gu, Wei Yu, Debiao Li

ABSTRACT

BackgroundCoronary high intensity plaques (CHIPs) detected using cardiovascular magnetic resonance (CMR) coronary atherosclerosis T1-weighted characterization with integrated anatomical reference (CATCH) have been shown to be positively associated with high-risk morphology observed on intracoronary optical coherence tomography (OCT). This study sought to validate whether CHIPs detected on CATCH indicate the presence of intraplaque hemorrhage (IPH) through ex vivo imaging of carotid and coronary plaque specimens, with histopathology as the standard reference.MethodsTen patients scheduled to undergo carotid endarterectomy underwent CMR with the conventional T1-weighted (T1w) sequence. Eleven carotid atherosclerotic plaques removed at carotid endarterectomy and six coronary artery endarterectomy specimens removed from patients undergoing coronary artery bypass grafting (CABG) were scanned ex vivo using both the conventional T1w sequence and CATCH. Both in vivo and ex vivo images were examined for the presence of IPH. The sensitivity, specificity, and Cohen Kappa (k) value of each scan were calculated using matched histological sections as the reference. k value between each scan in the discrimination of IPH was also computed.ResultsA total of 236 in vivo locations, 328 ex vivo and matching histology locations were included for the analysis. Sensitivity, specificity, and k value were 76.7%, 95.3%, and 0.75 for in vivo T1w imaging, 77.2%, 97.4%, and 0.78 for ex vivo T1w imaging, and 95.0%, 92.1%, and 0.84 for ex vivo CATCH, respectively. Moderate agreement was reached between in vivo T1w imaging, ex vivo T1w imaging, and ex vivo CATCH for the detection of IPH: between in vivo T1w imaging and ex vivo CATCH (k = 0.68), between ex vivo T1w imaging and ex vivo CATCH (k = 0.74), between in vivo T1w imaging and ex vivo T1w imaging (k = 0.83). None of the coronary artery plaque locations showed IPH.ConclusionThis study demonstrated that carotid CHIPs detected by CATCH can be used to assess for IPH, a high-risk plaque feature. More... »

PAGES

27

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12968-018-0447-x

DOI

http://dx.doi.org/10.1186/s12968-018-0447-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1103553668

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29695254


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cardiorespiratory Medicine and Haematology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biopsy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Carotid Arteries", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Carotid Artery Diseases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Coronary Artery Disease", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Coronary Vessels", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Endarterectomy, Carotid", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hemorrhage", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Plaque, Atherosclerotic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Predictive Value of Tests", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Preliminary Data", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.411606.4", 
          "name": [
            "Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Wen", 
        "id": "sg:person.012016701452.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012016701452.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.50956.3f", 
          "name": [
            "Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xie", 
        "givenName": "Yibin", 
        "id": "sg:person.01320556462.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320556462.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Cardiac Surgery, Anzhen Hospital, Capital Medical University, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.24696.3f", 
          "name": [
            "Department of Cardiac Surgery, Anzhen Hospital, Capital Medical University, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Chuan", 
        "id": "sg:person.011720445033.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011720445033.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.411606.4", 
          "name": [
            "Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Du", 
        "givenName": "Yanni", 
        "id": "sg:person.016310523671.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016310523671.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA", 
          "id": "http://www.grid.ac/institutes/grid.32224.35", 
          "name": [
            "Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nguyen", 
        "givenName": "Christopher", 
        "id": "sg:person.01331047206.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331047206.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.411606.4", 
          "name": [
            "Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Zhenjia", 
        "id": "sg:person.015602164052.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015602164052.93"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.50956.3f", 
          "name": [
            "Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fan", 
        "givenName": "Zhaoyang", 
        "id": "sg:person.01136172260.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136172260.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.411606.4", 
          "name": [
            "Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dong", 
        "givenName": "Li", 
        "id": "sg:person.01161036206.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01161036206.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.411606.4", 
          "name": [
            "Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Yi", 
        "id": "sg:person.010472053652.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010472053652.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "MR R&D, Siemens Healthineers, Los Angeles, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.415886.6", 
          "name": [
            "MR R&D, Siemens Healthineers, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bi", 
        "givenName": "Xiaoming", 
        "id": "sg:person.01066244563.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066244563.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "MR Collaborations NE Asia, Siemens Healthcare, Beijing, China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "MR Collaborations NE Asia, Siemens Healthcare, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "An", 
        "givenName": "Jing", 
        "id": "sg:person.01066175422.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066175422.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Cardiac Surgery, Anzhen Hospital, Capital Medical University, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.24696.3f", 
          "name": [
            "Department of Cardiac Surgery, Anzhen Hospital, Capital Medical University, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gu", 
        "givenName": "Chengxiong", 
        "id": "sg:person.01102435001.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01102435001.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.411606.4", 
          "name": [
            "Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yu", 
        "givenName": "Wei", 
        "id": "sg:person.01143631075.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143631075.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Departments of Medicine and Bioengineering, University of California, Los Angeles, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.19006.3e", 
          "name": [
            "Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA", 
            "Departments of Medicine and Bioengineering, University of California, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Debiao", 
        "id": "sg:person.01152021525.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152021525.33"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2018-04-26", 
    "datePublishedReg": "2018-04-26", 
    "description": "BackgroundCoronary high intensity plaques (CHIPs) detected using cardiovascular magnetic resonance (CMR) coronary atherosclerosis T1-weighted characterization with integrated anatomical reference (CATCH) have been shown to be positively associated with high-risk morphology observed on intracoronary optical coherence tomography (OCT). This study sought to validate whether CHIPs detected on CATCH indicate the presence of intraplaque hemorrhage (IPH) through ex vivo imaging of carotid and coronary plaque specimens, with histopathology as the standard reference.MethodsTen patients scheduled to undergo carotid endarterectomy underwent CMR with the conventional T1-weighted (T1w) sequence. Eleven carotid atherosclerotic plaques removed at carotid endarterectomy and six coronary artery endarterectomy specimens removed from patients undergoing coronary artery bypass grafting (CABG) were scanned ex vivo using both the conventional T1w sequence and CATCH. Both in vivo and ex vivo images were examined for the presence of IPH. The sensitivity, specificity, and Cohen Kappa (k) value of each scan were calculated using matched histological sections as the reference. k value between each scan in the discrimination of IPH was also computed.ResultsA total of 236 in vivo locations, 328 ex vivo and matching histology locations were included for the analysis. Sensitivity, specificity, and k value were 76.7%, 95.3%, and 0.75 for in vivo T1w imaging, 77.2%, 97.4%, and 0.78 for ex vivo T1w imaging, and 95.0%, 92.1%, and 0.84 for ex vivo CATCH, respectively. Moderate agreement was reached between in vivo T1w imaging, ex vivo T1w imaging, and ex vivo CATCH for the detection of IPH: between in vivo T1w imaging and ex vivo CATCH (k\u2009=\u20090.68), between ex vivo T1w imaging and ex vivo CATCH (k\u2009=\u20090.74), between in vivo T1w imaging and ex vivo T1w imaging (k\u2009=\u20090.83). None of the coronary artery plaque locations showed IPH.ConclusionThis study demonstrated that carotid CHIPs detected by CATCH can be used to assess for IPH, a high-risk plaque feature.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s12968-018-0447-x", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.5008516", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8347877", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1030439", 
        "issn": [
          "1548-7679", 
          "1879-2855"
        ], 
        "name": "Journal of Cardiovascular Magnetic Resonance", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "20"
      }
    ], 
    "keywords": [
      "intraplaque hemorrhage", 
      "optical coherence tomography", 
      "ex vivo", 
      "carotid endarterectomy", 
      "presence of IPH", 
      "detection of IPH", 
      "high-risk plaque features", 
      "high-intensity plaques", 
      "high-risk morphology", 
      "coronary artery bypass", 
      "coronary artery endarterectomy", 
      "carotid atherosclerotic plaques", 
      "intracoronary optical coherence tomography", 
      "artery bypass", 
      "artery endarterectomy", 
      "MethodsTen patients", 
      "plaque features", 
      "ResultsA total", 
      "coronary artery", 
      "atherosclerotic plaques", 
      "ConclusionThis study", 
      "plaque specimens", 
      "coherence tomography", 
      "endarterectomy", 
      "T1W sequence", 
      "Cohen's kappa values", 
      "plaque location", 
      "ex vivo images", 
      "histological validation", 
      "moderate agreement", 
      "conventional T1", 
      "histological sections", 
      "hemorrhage", 
      "kappa values", 
      "patients", 
      "carotid", 
      "anatomical reference", 
      "vivo", 
      "plaques", 
      "scans", 
      "vivo location", 
      "artery", 
      "histopathology", 
      "bypass", 
      "T1", 
      "standard reference", 
      "specificity", 
      "tomography", 
      "CMR", 
      "total", 
      "study", 
      "vivo images", 
      "sensitivity", 
      "presence", 
      "evaluation", 
      "specimens", 
      "values", 
      "location", 
      "reference", 
      "discrimination", 
      "detection", 
      "analysis", 
      "catch", 
      "validation", 
      "features", 
      "sections", 
      "K values", 
      "characterization", 
      "sequence", 
      "morphology", 
      "images", 
      "accuracy", 
      "agreement", 
      "chip"
    ], 
    "name": "Atherosclerosis T1-weighted characterization (CATCH): evaluation of the accuracy for identifying intraplaque hemorrhage with histological validation in carotid and coronary artery specimens", 
    "pagination": "27", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1103553668"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12968-018-0447-x"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29695254"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12968-018-0447-x", 
      "https://app.dimensions.ai/details/publication/pub.1103553668"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T21:03", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_762.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s12968-018-0447-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12968-018-0447-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12968-018-0447-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12968-018-0447-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12968-018-0447-x'


 

This table displays all metadata directly associated to this object as RDF triples.

317 TRIPLES      20 PREDICATES      116 URIs      108 LITERALS      24 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12968-018-0447-x schema:about N0c65947a0e204d1aba78d8e977135b44
2 N1b3b3a6dc78f42acabb85ddf8605cb31
3 N5f4f46ba84b6428dafc327dce6bac942
4 N78fd3a4519534a1a9d59e15931d7d879
5 N7b271e764e484828b8c4739ce5eac656
6 N866a4f85b75c4652b06e55853ddfb7ee
7 N898926a35f244ff28c6784350aea3516
8 N8cf0d57683e946c5aed3dc2b4e199ee4
9 N8f16d568f1d3463fa436c90b40cba132
10 Na511c069b7534063848fc90acfe07084
11 Naa3d2e235336474388e2338cba19a6fb
12 Ncd84211eac69417e8f45b9024b3b6a50
13 Nd744ee698cd147e7b9d1768ea90d735a
14 Ndf0fd2ca95a246ac9ba6315940018bde
15 Nf68d0bf35c564f9887b67dc79fd640ba
16 Nfae559cab861454cbd5014a52c3b7b1f
17 Nfd48aa4fc33643bfbe036b4bf41f40cc
18 anzsrc-for:11
19 anzsrc-for:1102
20 schema:author N5f13a2a09aaf4bb1b58c81af483ed8c2
21 schema:datePublished 2018-04-26
22 schema:datePublishedReg 2018-04-26
23 schema:description BackgroundCoronary high intensity plaques (CHIPs) detected using cardiovascular magnetic resonance (CMR) coronary atherosclerosis T1-weighted characterization with integrated anatomical reference (CATCH) have been shown to be positively associated with high-risk morphology observed on intracoronary optical coherence tomography (OCT). This study sought to validate whether CHIPs detected on CATCH indicate the presence of intraplaque hemorrhage (IPH) through ex vivo imaging of carotid and coronary plaque specimens, with histopathology as the standard reference.MethodsTen patients scheduled to undergo carotid endarterectomy underwent CMR with the conventional T1-weighted (T1w) sequence. Eleven carotid atherosclerotic plaques removed at carotid endarterectomy and six coronary artery endarterectomy specimens removed from patients undergoing coronary artery bypass grafting (CABG) were scanned ex vivo using both the conventional T1w sequence and CATCH. Both in vivo and ex vivo images were examined for the presence of IPH. The sensitivity, specificity, and Cohen Kappa (k) value of each scan were calculated using matched histological sections as the reference. k value between each scan in the discrimination of IPH was also computed.ResultsA total of 236 in vivo locations, 328 ex vivo and matching histology locations were included for the analysis. Sensitivity, specificity, and k value were 76.7%, 95.3%, and 0.75 for in vivo T1w imaging, 77.2%, 97.4%, and 0.78 for ex vivo T1w imaging, and 95.0%, 92.1%, and 0.84 for ex vivo CATCH, respectively. Moderate agreement was reached between in vivo T1w imaging, ex vivo T1w imaging, and ex vivo CATCH for the detection of IPH: between in vivo T1w imaging and ex vivo CATCH (k = 0.68), between ex vivo T1w imaging and ex vivo CATCH (k = 0.74), between in vivo T1w imaging and ex vivo T1w imaging (k = 0.83). None of the coronary artery plaque locations showed IPH.ConclusionThis study demonstrated that carotid CHIPs detected by CATCH can be used to assess for IPH, a high-risk plaque feature.
24 schema:genre article
25 schema:isAccessibleForFree true
26 schema:isPartOf N24e6ab48a14b4ca584ea3be6763a92b6
27 N29fff63f01d14561a0e65f5e5a115708
28 sg:journal.1030439
29 schema:keywords CMR
30 Cohen's kappa values
31 ConclusionThis study
32 K values
33 MethodsTen patients
34 ResultsA total
35 T1
36 T1W sequence
37 accuracy
38 agreement
39 analysis
40 anatomical reference
41 artery
42 artery bypass
43 artery endarterectomy
44 atherosclerotic plaques
45 bypass
46 carotid
47 carotid atherosclerotic plaques
48 carotid endarterectomy
49 catch
50 characterization
51 chip
52 coherence tomography
53 conventional T1
54 coronary artery
55 coronary artery bypass
56 coronary artery endarterectomy
57 detection
58 detection of IPH
59 discrimination
60 endarterectomy
61 evaluation
62 ex vivo
63 ex vivo images
64 features
65 hemorrhage
66 high-intensity plaques
67 high-risk morphology
68 high-risk plaque features
69 histological sections
70 histological validation
71 histopathology
72 images
73 intracoronary optical coherence tomography
74 intraplaque hemorrhage
75 kappa values
76 location
77 moderate agreement
78 morphology
79 optical coherence tomography
80 patients
81 plaque features
82 plaque location
83 plaque specimens
84 plaques
85 presence
86 presence of IPH
87 reference
88 scans
89 sections
90 sensitivity
91 sequence
92 specificity
93 specimens
94 standard reference
95 study
96 tomography
97 total
98 validation
99 values
100 vivo
101 vivo images
102 vivo location
103 schema:name Atherosclerosis T1-weighted characterization (CATCH): evaluation of the accuracy for identifying intraplaque hemorrhage with histological validation in carotid and coronary artery specimens
104 schema:pagination 27
105 schema:productId N66c77d136f9847bf82468826169cbe61
106 N6ad3c2a0b2f24fb5a2d4b4d52c87d8ac
107 Nde2836d10b77489085608d31c1f1a9d6
108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103553668
109 https://doi.org/10.1186/s12968-018-0447-x
110 schema:sdDatePublished 2022-11-24T21:03
111 schema:sdLicense https://scigraph.springernature.com/explorer/license/
112 schema:sdPublisher Nc47c737691d44252a9d4a20855bbcc88
113 schema:url https://doi.org/10.1186/s12968-018-0447-x
114 sgo:license sg:explorer/license/
115 sgo:sdDataset articles
116 rdf:type schema:ScholarlyArticle
117 N03262ef6a5b34634b2816c852d2bda1d rdf:first sg:person.01320556462.83
118 rdf:rest N43959383e2794a6e8a8aad145f24e72c
119 N0c65947a0e204d1aba78d8e977135b44 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Humans
121 rdf:type schema:DefinedTerm
122 N182aeea56c6a48469bc30b8bce611aa6 rdf:first sg:person.01066244563.44
123 rdf:rest Nea9549d7bbdd49d9880ed117b7295e7a
124 N1b3b3a6dc78f42acabb85ddf8605cb31 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Magnetic Resonance Imaging
126 rdf:type schema:DefinedTerm
127 N24e6ab48a14b4ca584ea3be6763a92b6 schema:issueNumber 1
128 rdf:type schema:PublicationIssue
129 N29fff63f01d14561a0e65f5e5a115708 schema:volumeNumber 20
130 rdf:type schema:PublicationVolume
131 N412af106622343bdb913a315b61fb05e rdf:first sg:person.01331047206.43
132 rdf:rest Ne373e3ef30ee4c01948ce6614593127e
133 N43959383e2794a6e8a8aad145f24e72c rdf:first sg:person.011720445033.41
134 rdf:rest Naabcdb44621e4032a66d730c09fd2310
135 N5f13a2a09aaf4bb1b58c81af483ed8c2 rdf:first sg:person.012016701452.48
136 rdf:rest N03262ef6a5b34634b2816c852d2bda1d
137 N5f4f46ba84b6428dafc327dce6bac942 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Male
139 rdf:type schema:DefinedTerm
140 N615eb89886e44a038a4a7ac895028013 rdf:first sg:person.01152021525.33
141 rdf:rest rdf:nil
142 N66c77d136f9847bf82468826169cbe61 schema:name pubmed_id
143 schema:value 29695254
144 rdf:type schema:PropertyValue
145 N6ad3c2a0b2f24fb5a2d4b4d52c87d8ac schema:name doi
146 schema:value 10.1186/s12968-018-0447-x
147 rdf:type schema:PropertyValue
148 N6aff90dcc07b4b1eb0b2bb8993b5c49c rdf:first sg:person.01136172260.58
149 rdf:rest Nbd525e4e89ef44e09c7b5a9e642163fc
150 N78fd3a4519534a1a9d59e15931d7d879 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Aged
152 rdf:type schema:DefinedTerm
153 N7b271e764e484828b8c4739ce5eac656 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name Biopsy
155 rdf:type schema:DefinedTerm
156 N866a4f85b75c4652b06e55853ddfb7ee schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
157 schema:name Plaque, Atherosclerotic
158 rdf:type schema:DefinedTerm
159 N898926a35f244ff28c6784350aea3516 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
160 schema:name Female
161 rdf:type schema:DefinedTerm
162 N8cf0d57683e946c5aed3dc2b4e199ee4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
163 schema:name Coronary Vessels
164 rdf:type schema:DefinedTerm
165 N8f16d568f1d3463fa436c90b40cba132 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
166 schema:name Predictive Value of Tests
167 rdf:type schema:DefinedTerm
168 N95ec92ad04384278a595c8a164feaa37 rdf:first sg:person.010472053652.04
169 rdf:rest N182aeea56c6a48469bc30b8bce611aa6
170 Na511c069b7534063848fc90acfe07084 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
171 schema:name Reproducibility of Results
172 rdf:type schema:DefinedTerm
173 Naa3d2e235336474388e2338cba19a6fb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
174 schema:name Middle Aged
175 rdf:type schema:DefinedTerm
176 Naabcdb44621e4032a66d730c09fd2310 rdf:first sg:person.016310523671.44
177 rdf:rest N412af106622343bdb913a315b61fb05e
178 Nbd525e4e89ef44e09c7b5a9e642163fc rdf:first sg:person.01161036206.83
179 rdf:rest N95ec92ad04384278a595c8a164feaa37
180 Nc47c737691d44252a9d4a20855bbcc88 schema:name Springer Nature - SN SciGraph project
181 rdf:type schema:Organization
182 Ncd84211eac69417e8f45b9024b3b6a50 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
183 schema:name Hemorrhage
184 rdf:type schema:DefinedTerm
185 Nd0d7106f7eb248a396f4522b82c33123 rdf:first sg:person.01102435001.75
186 rdf:rest Nf43d99f7bb66457b8d3582d756e9a212
187 Nd744ee698cd147e7b9d1768ea90d735a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
188 schema:name Endarterectomy, Carotid
189 rdf:type schema:DefinedTerm
190 Nde2836d10b77489085608d31c1f1a9d6 schema:name dimensions_id
191 schema:value pub.1103553668
192 rdf:type schema:PropertyValue
193 Ndf0fd2ca95a246ac9ba6315940018bde schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
194 schema:name Preliminary Data
195 rdf:type schema:DefinedTerm
196 Ne373e3ef30ee4c01948ce6614593127e rdf:first sg:person.015602164052.93
197 rdf:rest N6aff90dcc07b4b1eb0b2bb8993b5c49c
198 Nea9549d7bbdd49d9880ed117b7295e7a rdf:first sg:person.01066175422.29
199 rdf:rest Nd0d7106f7eb248a396f4522b82c33123
200 Nf43d99f7bb66457b8d3582d756e9a212 rdf:first sg:person.01143631075.45
201 rdf:rest N615eb89886e44a038a4a7ac895028013
202 Nf68d0bf35c564f9887b67dc79fd640ba schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
203 schema:name Carotid Artery Diseases
204 rdf:type schema:DefinedTerm
205 Nfae559cab861454cbd5014a52c3b7b1f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
206 schema:name Carotid Arteries
207 rdf:type schema:DefinedTerm
208 Nfd48aa4fc33643bfbe036b4bf41f40cc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
209 schema:name Coronary Artery Disease
210 rdf:type schema:DefinedTerm
211 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
212 schema:name Medical and Health Sciences
213 rdf:type schema:DefinedTerm
214 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
215 schema:name Cardiorespiratory Medicine and Haematology
216 rdf:type schema:DefinedTerm
217 sg:grant.5008516 http://pending.schema.org/fundedItem sg:pub.10.1186/s12968-018-0447-x
218 rdf:type schema:MonetaryGrant
219 sg:grant.8347877 http://pending.schema.org/fundedItem sg:pub.10.1186/s12968-018-0447-x
220 rdf:type schema:MonetaryGrant
221 sg:journal.1030439 schema:issn 1548-7679
222 1879-2855
223 schema:name Journal of Cardiovascular Magnetic Resonance
224 schema:publisher Springer Nature
225 rdf:type schema:Periodical
226 sg:person.010472053652.04 schema:affiliation grid-institutes:grid.411606.4
227 schema:familyName Liu
228 schema:givenName Yi
229 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010472053652.04
230 rdf:type schema:Person
231 sg:person.01066175422.29 schema:affiliation grid-institutes:None
232 schema:familyName An
233 schema:givenName Jing
234 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066175422.29
235 rdf:type schema:Person
236 sg:person.01066244563.44 schema:affiliation grid-institutes:grid.415886.6
237 schema:familyName Bi
238 schema:givenName Xiaoming
239 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066244563.44
240 rdf:type schema:Person
241 sg:person.01102435001.75 schema:affiliation grid-institutes:grid.24696.3f
242 schema:familyName Gu
243 schema:givenName Chengxiong
244 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01102435001.75
245 rdf:type schema:Person
246 sg:person.01136172260.58 schema:affiliation grid-institutes:grid.50956.3f
247 schema:familyName Fan
248 schema:givenName Zhaoyang
249 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136172260.58
250 rdf:type schema:Person
251 sg:person.01143631075.45 schema:affiliation grid-institutes:grid.411606.4
252 schema:familyName Yu
253 schema:givenName Wei
254 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143631075.45
255 rdf:type schema:Person
256 sg:person.01152021525.33 schema:affiliation grid-institutes:grid.19006.3e
257 schema:familyName Li
258 schema:givenName Debiao
259 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152021525.33
260 rdf:type schema:Person
261 sg:person.01161036206.83 schema:affiliation grid-institutes:grid.411606.4
262 schema:familyName Dong
263 schema:givenName Li
264 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01161036206.83
265 rdf:type schema:Person
266 sg:person.011720445033.41 schema:affiliation grid-institutes:grid.24696.3f
267 schema:familyName Wang
268 schema:givenName Chuan
269 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011720445033.41
270 rdf:type schema:Person
271 sg:person.012016701452.48 schema:affiliation grid-institutes:grid.411606.4
272 schema:familyName Liu
273 schema:givenName Wen
274 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012016701452.48
275 rdf:type schema:Person
276 sg:person.01320556462.83 schema:affiliation grid-institutes:grid.50956.3f
277 schema:familyName Xie
278 schema:givenName Yibin
279 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320556462.83
280 rdf:type schema:Person
281 sg:person.01331047206.43 schema:affiliation grid-institutes:grid.32224.35
282 schema:familyName Nguyen
283 schema:givenName Christopher
284 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331047206.43
285 rdf:type schema:Person
286 sg:person.015602164052.93 schema:affiliation grid-institutes:grid.411606.4
287 schema:familyName Wang
288 schema:givenName Zhenjia
289 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015602164052.93
290 rdf:type schema:Person
291 sg:person.016310523671.44 schema:affiliation grid-institutes:grid.411606.4
292 schema:familyName Du
293 schema:givenName Yanni
294 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016310523671.44
295 rdf:type schema:Person
296 grid-institutes:None schema:alternateName MR Collaborations NE Asia, Siemens Healthcare, Beijing, China
297 schema:name MR Collaborations NE Asia, Siemens Healthcare, Beijing, China
298 rdf:type schema:Organization
299 grid-institutes:grid.19006.3e schema:alternateName Departments of Medicine and Bioengineering, University of California, Los Angeles, CA, USA
300 schema:name Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
301 Departments of Medicine and Bioengineering, University of California, Los Angeles, CA, USA
302 rdf:type schema:Organization
303 grid-institutes:grid.24696.3f schema:alternateName Department of Cardiac Surgery, Anzhen Hospital, Capital Medical University, Beijing, China
304 schema:name Department of Cardiac Surgery, Anzhen Hospital, Capital Medical University, Beijing, China
305 rdf:type schema:Organization
306 grid-institutes:grid.32224.35 schema:alternateName Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
307 schema:name Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
308 rdf:type schema:Organization
309 grid-institutes:grid.411606.4 schema:alternateName Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
310 schema:name Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
311 rdf:type schema:Organization
312 grid-institutes:grid.415886.6 schema:alternateName MR R&D, Siemens Healthineers, Los Angeles, CA, USA
313 schema:name MR R&D, Siemens Healthineers, Los Angeles, CA, USA
314 rdf:type schema:Organization
315 grid-institutes:grid.50956.3f schema:alternateName Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
316 schema:name Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
317 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...