Atherosclerosis T1-weighted characterization (CATCH): evaluation of the accuracy for identifying intraplaque hemorrhage with histological validation in carotid and coronary artery ... View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Wen Liu, Yibin Xie, Chuan Wang, Yanni Du, Christopher Nguyen, Zhenjia Wang, Zhaoyang Fan, Li Dong, Yi Liu, Xiaoming Bi, Jing An, Chengxiong Gu, Wei Yu, Debiao Li

ABSTRACT

BACKGROUND: Coronary high intensity plaques (CHIPs) detected using cardiovascular magnetic resonance (CMR) coronary atherosclerosis T1-weighted characterization with integrated anatomical reference (CATCH) have been shown to be positively associated with high-risk morphology observed on intracoronary optical coherence tomography (OCT). This study sought to validate whether CHIPs detected on CATCH indicate the presence of intraplaque hemorrhage (IPH) through ex vivo imaging of carotid and coronary plaque specimens, with histopathology as the standard reference. METHODS: Ten patients scheduled to undergo carotid endarterectomy underwent CMR with the conventional T1-weighted (T1w) sequence. Eleven carotid atherosclerotic plaques removed at carotid endarterectomy and six coronary artery endarterectomy specimens removed from patients undergoing coronary artery bypass grafting (CABG) were scanned ex vivo using both the conventional T1w sequence and CATCH. Both in vivo and ex vivo images were examined for the presence of IPH. The sensitivity, specificity, and Cohen Kappa (k) value of each scan were calculated using matched histological sections as the reference. k value between each scan in the discrimination of IPH was also computed. RESULTS: A total of 236 in vivo locations, 328 ex vivo and matching histology locations were included for the analysis. Sensitivity, specificity, and k value were 76.7%, 95.3%, and 0.75 for in vivo T1w imaging, 77.2%, 97.4%, and 0.78 for ex vivo T1w imaging, and 95.0%, 92.1%, and 0.84 for ex vivo CATCH, respectively. Moderate agreement was reached between in vivo T1w imaging, ex vivo T1w imaging, and ex vivo CATCH for the detection of IPH: between in vivo T1w imaging and ex vivo CATCH (k = 0.68), between ex vivo T1w imaging and ex vivo CATCH (k = 0.74), between in vivo T1w imaging and ex vivo T1w imaging (k = 0.83). None of the coronary artery plaque locations showed IPH. CONCLUSION: This study demonstrated that carotid CHIPs detected by CATCH can be used to assess for IPH, a high-risk plaque feature. More... »

PAGES

27

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12968-018-0447-x

DOI

http://dx.doi.org/10.1186/s12968-018-0447-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1103553668

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29695254


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cardiorespiratory Medicine and Haematology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biopsy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Carotid Arteries", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Carotid Artery Diseases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Coronary Artery Disease", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Coronary Vessels", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Endarterectomy, Carotid", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hemorrhage", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Plaque, Atherosclerotic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Predictive Value of Tests", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Preliminary Data", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Capital Medical University", 
          "id": "https://www.grid.ac/institutes/grid.24696.3f", 
          "name": [
            "Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Wen", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cedars-Sinai Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.50956.3f", 
          "name": [
            "Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xie", 
        "givenName": "Yibin", 
        "id": "sg:person.01320556462.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320556462.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Capital Medical University", 
          "id": "https://www.grid.ac/institutes/grid.24696.3f", 
          "name": [
            "Department of Cardiac Surgery, Anzhen Hospital, Capital Medical University, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Chuan", 
        "id": "sg:person.011720445033.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011720445033.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Capital Medical University", 
          "id": "https://www.grid.ac/institutes/grid.24696.3f", 
          "name": [
            "Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Du", 
        "givenName": "Yanni", 
        "id": "sg:person.013574027142.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013574027142.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nguyen", 
        "givenName": "Christopher", 
        "id": "sg:person.01331047206.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331047206.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Capital Medical University", 
          "id": "https://www.grid.ac/institutes/grid.24696.3f", 
          "name": [
            "Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Zhenjia", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cedars-Sinai Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.50956.3f", 
          "name": [
            "Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fan", 
        "givenName": "Zhaoyang", 
        "id": "sg:person.01136172260.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136172260.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Capital Medical University", 
          "id": "https://www.grid.ac/institutes/grid.24696.3f", 
          "name": [
            "Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dong", 
        "givenName": "Li", 
        "id": "sg:person.01161036206.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01161036206.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Capital Medical University", 
          "id": "https://www.grid.ac/institutes/grid.24696.3f", 
          "name": [
            "Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Yi", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "MR R&D, Siemens Healthineers, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bi", 
        "givenName": "Xiaoming", 
        "id": "sg:person.01066244563.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066244563.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "MR Collaborations NE Asia, Siemens Healthcare, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "An", 
        "givenName": "Jing", 
        "id": "sg:person.01340437625.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01340437625.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Capital Medical University", 
          "id": "https://www.grid.ac/institutes/grid.24696.3f", 
          "name": [
            "Department of Cardiac Surgery, Anzhen Hospital, Capital Medical University, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gu", 
        "givenName": "Chengxiong", 
        "id": "sg:person.01102435001.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01102435001.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Capital Medical University", 
          "id": "https://www.grid.ac/institutes/grid.24696.3f", 
          "name": [
            "Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yu", 
        "givenName": "Wei", 
        "id": "sg:person.01143631075.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143631075.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California Los Angeles", 
          "id": "https://www.grid.ac/institutes/grid.19006.3e", 
          "name": [
            "Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA", 
            "Departments of Medicine and Bioengineering, University of California, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Debiao", 
        "id": "sg:person.01152021525.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152021525.33"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.jcmg.2016.06.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005581873"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.0000028591.44554.f9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009264013"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.athoracsur.2005.05.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014554834"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/hc4201.097839", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015268610"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circulationaha.104.504167", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018658938"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcmg.2015.06.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022737446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mri.2008.05.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029059848"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcmg.2012.03.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030151261"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.09090535", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032991700"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.str.0000125856.25309.86", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036260692"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.str.0000125856.25309.86", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036260692"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejm199201233260406", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036966223"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.0000441139.02102.80", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040460683"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.0000441139.02102.80", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040460683"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circulationaha.110.965442", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042784997"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.90.4.2126", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045901551"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jacc.2013.11.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050126481"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1055/s-0037-1613461", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1075277394"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "BACKGROUND: Coronary high intensity plaques (CHIPs) detected using cardiovascular magnetic resonance (CMR) coronary atherosclerosis T1-weighted characterization with integrated anatomical reference (CATCH) have been shown to be positively associated with high-risk morphology observed on intracoronary optical coherence tomography (OCT). This study sought to validate whether CHIPs detected on CATCH indicate the presence of intraplaque hemorrhage (IPH) through ex vivo imaging of carotid and coronary plaque specimens, with histopathology as the standard reference.\nMETHODS: Ten patients scheduled to undergo carotid endarterectomy underwent CMR with the conventional T1-weighted (T1w) sequence. Eleven carotid atherosclerotic plaques removed at carotid endarterectomy and six coronary artery endarterectomy specimens removed from patients undergoing coronary artery bypass grafting (CABG) were scanned ex vivo using both the conventional T1w sequence and CATCH. Both in vivo and ex vivo images were examined for the presence of IPH. The sensitivity, specificity, and Cohen Kappa (k) value of each scan were calculated using matched histological sections as the reference. k value between each scan in the discrimination of IPH was also computed.\nRESULTS: A total of 236 in vivo locations, 328 ex vivo and matching histology locations were included for the analysis. Sensitivity, specificity, and k value were 76.7%, 95.3%, and 0.75 for in vivo T1w imaging, 77.2%, 97.4%, and 0.78 for ex vivo T1w imaging, and 95.0%, 92.1%, and 0.84 for ex vivo CATCH, respectively. Moderate agreement was reached between in vivo T1w imaging, ex vivo T1w imaging, and ex vivo CATCH for the detection of IPH: between in vivo T1w imaging and ex vivo CATCH (k\u2009=\u20090.68), between ex vivo T1w imaging and ex vivo CATCH (k\u2009=\u20090.74), between in vivo T1w imaging and ex vivo T1w imaging (k\u2009=\u20090.83). None of the coronary artery plaque locations showed IPH.\nCONCLUSION: This study demonstrated that carotid CHIPs detected by CATCH can be used to assess for IPH, a high-risk plaque feature.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12968-018-0447-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.5008516", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1030439", 
        "issn": [
          "1548-7679", 
          "1879-2855"
        ], 
        "name": "Journal of Cardiovascular Magnetic Resonance", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "20"
      }
    ], 
    "name": "Atherosclerosis T1-weighted characterization (CATCH): evaluation of the accuracy for identifying intraplaque hemorrhage with histological validation in carotid and coronary artery specimens", 
    "pagination": "27", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c6761d185f31102055abeb427ad5b2fc819cd72a257c9855a87fb5288f78e979"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29695254"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9815616"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12968-018-0447-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1103553668"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12968-018-0447-x", 
      "https://app.dimensions.ai/details/publication/pub.1103553668"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:40", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000358_0000000358/records_127438_00000011.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs12968-018-0447-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12968-018-0447-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12968-018-0447-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12968-018-0447-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12968-018-0447-x'


 

This table displays all metadata directly associated to this object as RDF triples.

289 TRIPLES      21 PREDICATES      62 URIs      38 LITERALS      26 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12968-018-0447-x schema:about N0148b355fa664742a8845720881bcf36
2 N1b586c23f24d4be4bc38297f1d1fdf69
3 N343afdd5acfc426a9e5172d03cbfa952
4 N35013f31b36049ce95cb3e009c2cc0b9
5 N35e23934fe5147b68982bf20efb2a293
6 N4fb103c2a8aa496db24c5a7e47d946af
7 N5bb5ba6f4592471291a7760ebfc346d3
8 N6cfe8b7938f54934995e06a781debeb4
9 N763aff3e57e04108b6579295e7493b6e
10 N83e4c49fc17a4d6fbf7592a96adc10d1
11 N95ef6eac90864cec86426f04fe7611e0
12 Nae155194e6d04a1e8681f94186a7c5b2
13 Nb97e7b1364d84495bbd61d0f8b5d8874
14 Nd05d60c7f5e0482aa022d4b2fd361bbc
15 Ndcbba6dd163a48a0b183b79f59e1a9ee
16 Ne5fd6ed6788440e49f794aa6d765fde7
17 Nfb932d3c8d1b41088f6a9f08bd04608d
18 anzsrc-for:11
19 anzsrc-for:1102
20 schema:author N9807e574d8924b47bca572122930a03e
21 schema:citation https://doi.org/10.1016/j.athoracsur.2005.05.034
22 https://doi.org/10.1016/j.jacc.2013.11.034
23 https://doi.org/10.1016/j.jcmg.2012.03.014
24 https://doi.org/10.1016/j.jcmg.2015.06.013
25 https://doi.org/10.1016/j.jcmg.2016.06.014
26 https://doi.org/10.1016/j.mri.2008.05.002
27 https://doi.org/10.1055/s-0037-1613461
28 https://doi.org/10.1056/nejm199201233260406
29 https://doi.org/10.1148/radiol.09090535
30 https://doi.org/10.1161/01.cir.0000028591.44554.f9
31 https://doi.org/10.1161/01.cir.0000441139.02102.80
32 https://doi.org/10.1161/01.cir.90.4.2126
33 https://doi.org/10.1161/01.str.0000125856.25309.86
34 https://doi.org/10.1161/circulationaha.104.504167
35 https://doi.org/10.1161/circulationaha.110.965442
36 https://doi.org/10.1161/hc4201.097839
37 schema:datePublished 2018-12
38 schema:datePublishedReg 2018-12-01
39 schema:description BACKGROUND: Coronary high intensity plaques (CHIPs) detected using cardiovascular magnetic resonance (CMR) coronary atherosclerosis T1-weighted characterization with integrated anatomical reference (CATCH) have been shown to be positively associated with high-risk morphology observed on intracoronary optical coherence tomography (OCT). This study sought to validate whether CHIPs detected on CATCH indicate the presence of intraplaque hemorrhage (IPH) through ex vivo imaging of carotid and coronary plaque specimens, with histopathology as the standard reference. METHODS: Ten patients scheduled to undergo carotid endarterectomy underwent CMR with the conventional T1-weighted (T1w) sequence. Eleven carotid atherosclerotic plaques removed at carotid endarterectomy and six coronary artery endarterectomy specimens removed from patients undergoing coronary artery bypass grafting (CABG) were scanned ex vivo using both the conventional T1w sequence and CATCH. Both in vivo and ex vivo images were examined for the presence of IPH. The sensitivity, specificity, and Cohen Kappa (k) value of each scan were calculated using matched histological sections as the reference. k value between each scan in the discrimination of IPH was also computed. RESULTS: A total of 236 in vivo locations, 328 ex vivo and matching histology locations were included for the analysis. Sensitivity, specificity, and k value were 76.7%, 95.3%, and 0.75 for in vivo T1w imaging, 77.2%, 97.4%, and 0.78 for ex vivo T1w imaging, and 95.0%, 92.1%, and 0.84 for ex vivo CATCH, respectively. Moderate agreement was reached between in vivo T1w imaging, ex vivo T1w imaging, and ex vivo CATCH for the detection of IPH: between in vivo T1w imaging and ex vivo CATCH (k = 0.68), between ex vivo T1w imaging and ex vivo CATCH (k = 0.74), between in vivo T1w imaging and ex vivo T1w imaging (k = 0.83). None of the coronary artery plaque locations showed IPH. CONCLUSION: This study demonstrated that carotid CHIPs detected by CATCH can be used to assess for IPH, a high-risk plaque feature.
40 schema:genre research_article
41 schema:inLanguage en
42 schema:isAccessibleForFree true
43 schema:isPartOf N859a574afd724916a2f640f7b4e5e7fc
44 Ncbaf9193664145eba28e3e304b4b0bc0
45 sg:journal.1030439
46 schema:name Atherosclerosis T1-weighted characterization (CATCH): evaluation of the accuracy for identifying intraplaque hemorrhage with histological validation in carotid and coronary artery specimens
47 schema:pagination 27
48 schema:productId N3717c2309fa745cba7e6f379cef99895
49 N629b7fb4d00f4f93bebb7888aa9a5e0a
50 Nd344cb3ec3b24b7084c6b9cc49be5118
51 Ndaceb3aca2004689a9301cfd37559d7f
52 Ne79acb54e240490aa299a8c92072a2d8
53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103553668
54 https://doi.org/10.1186/s12968-018-0447-x
55 schema:sdDatePublished 2019-04-11T11:40
56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
57 schema:sdPublisher N9a9748bdbeb1439caaf9f82ca9733f1a
58 schema:url https://link.springer.com/10.1186%2Fs12968-018-0447-x
59 sgo:license sg:explorer/license/
60 sgo:sdDataset articles
61 rdf:type schema:ScholarlyArticle
62 N002fa5c634ff45deac8871784c362446 schema:name MR R&D, Siemens Healthineers, Los Angeles, CA, USA
63 rdf:type schema:Organization
64 N0148b355fa664742a8845720881bcf36 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
65 schema:name Preliminary Data
66 rdf:type schema:DefinedTerm
67 N028d01498765432da4e2d2009a96aee8 rdf:first sg:person.01102435001.75
68 rdf:rest Nb220c639ca374164ab1c8d00f813fbba
69 N02c5d0bf219242128ca2cdcd460d40bb rdf:first N9e24ebf06a2f4956818b7a5ccad17497
70 rdf:rest Nb5892cfab0d74ecd9b128379cbac25d6
71 N1b586c23f24d4be4bc38297f1d1fdf69 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
72 schema:name Aged
73 rdf:type schema:DefinedTerm
74 N28e9f0d8e7a14e4da9b98818cd07c810 rdf:first N5ccb0ba5570b41f586ead200b37fa45a
75 rdf:rest N2a79a3e730134394ba4ea1ff34b9682f
76 N2a79a3e730134394ba4ea1ff34b9682f rdf:first sg:person.01136172260.58
77 rdf:rest Nbe1d387b3a174fbcb481ee2d56d980c4
78 N343afdd5acfc426a9e5172d03cbfa952 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
79 schema:name Female
80 rdf:type schema:DefinedTerm
81 N35013f31b36049ce95cb3e009c2cc0b9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
82 schema:name Predictive Value of Tests
83 rdf:type schema:DefinedTerm
84 N35e23934fe5147b68982bf20efb2a293 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
85 schema:name Carotid Arteries
86 rdf:type schema:DefinedTerm
87 N3717c2309fa745cba7e6f379cef99895 schema:name doi
88 schema:value 10.1186/s12968-018-0447-x
89 rdf:type schema:PropertyValue
90 N41b56c443e1a4cfaa6ad0f69e0c36360 rdf:first sg:person.01152021525.33
91 rdf:rest rdf:nil
92 N41b89e6586a94f1ba0506442860a57f6 rdf:first sg:person.01331047206.43
93 rdf:rest N28e9f0d8e7a14e4da9b98818cd07c810
94 N4fb103c2a8aa496db24c5a7e47d946af schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Male
96 rdf:type schema:DefinedTerm
97 N5bb5ba6f4592471291a7760ebfc346d3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Magnetic Resonance Imaging
99 rdf:type schema:DefinedTerm
100 N5ccb0ba5570b41f586ead200b37fa45a schema:affiliation https://www.grid.ac/institutes/grid.24696.3f
101 schema:familyName Wang
102 schema:givenName Zhenjia
103 rdf:type schema:Person
104 N629b7fb4d00f4f93bebb7888aa9a5e0a schema:name pubmed_id
105 schema:value 29695254
106 rdf:type schema:PropertyValue
107 N6cfe8b7938f54934995e06a781debeb4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Carotid Artery Diseases
109 rdf:type schema:DefinedTerm
110 N763aff3e57e04108b6579295e7493b6e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Reproducibility of Results
112 rdf:type schema:DefinedTerm
113 N79f622e652cb432f882bd970569fff13 schema:name MR Collaborations NE Asia, Siemens Healthcare, Beijing, China
114 rdf:type schema:Organization
115 N837416273be44ad8b06ac7c54f2c3cec schema:name Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
116 rdf:type schema:Organization
117 N83e4c49fc17a4d6fbf7592a96adc10d1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Endarterectomy, Carotid
119 rdf:type schema:DefinedTerm
120 N859a574afd724916a2f640f7b4e5e7fc schema:issueNumber 1
121 rdf:type schema:PublicationIssue
122 N88defaac7fc6411684ab14dbaac57997 rdf:first sg:person.01340437625.65
123 rdf:rest N028d01498765432da4e2d2009a96aee8
124 N95ef6eac90864cec86426f04fe7611e0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Coronary Artery Disease
126 rdf:type schema:DefinedTerm
127 N9807e574d8924b47bca572122930a03e rdf:first Nd18356d3bf4e47e6883275eeeb77db09
128 rdf:rest Nf559f6b845d0466ebff8b3059a35e281
129 N9a9748bdbeb1439caaf9f82ca9733f1a schema:name Springer Nature - SN SciGraph project
130 rdf:type schema:Organization
131 N9e24ebf06a2f4956818b7a5ccad17497 schema:affiliation https://www.grid.ac/institutes/grid.24696.3f
132 schema:familyName Liu
133 schema:givenName Yi
134 rdf:type schema:Person
135 Na08331104f694dbfa035c9390d3accdd rdf:first sg:person.013574027142.54
136 rdf:rest N41b89e6586a94f1ba0506442860a57f6
137 Nae155194e6d04a1e8681f94186a7c5b2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Middle Aged
139 rdf:type schema:DefinedTerm
140 Nb220c639ca374164ab1c8d00f813fbba rdf:first sg:person.01143631075.45
141 rdf:rest N41b56c443e1a4cfaa6ad0f69e0c36360
142 Nb5892cfab0d74ecd9b128379cbac25d6 rdf:first sg:person.01066244563.44
143 rdf:rest N88defaac7fc6411684ab14dbaac57997
144 Nb97e7b1364d84495bbd61d0f8b5d8874 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Humans
146 rdf:type schema:DefinedTerm
147 Nbe1d387b3a174fbcb481ee2d56d980c4 rdf:first sg:person.01161036206.83
148 rdf:rest N02c5d0bf219242128ca2cdcd460d40bb
149 Ncbaf9193664145eba28e3e304b4b0bc0 schema:volumeNumber 20
150 rdf:type schema:PublicationVolume
151 Nd05d60c7f5e0482aa022d4b2fd361bbc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Coronary Vessels
153 rdf:type schema:DefinedTerm
154 Nd18356d3bf4e47e6883275eeeb77db09 schema:affiliation https://www.grid.ac/institutes/grid.24696.3f
155 schema:familyName Liu
156 schema:givenName Wen
157 rdf:type schema:Person
158 Nd344cb3ec3b24b7084c6b9cc49be5118 schema:name readcube_id
159 schema:value c6761d185f31102055abeb427ad5b2fc819cd72a257c9855a87fb5288f78e979
160 rdf:type schema:PropertyValue
161 Ndaceb3aca2004689a9301cfd37559d7f schema:name dimensions_id
162 schema:value pub.1103553668
163 rdf:type schema:PropertyValue
164 Ndcbba6dd163a48a0b183b79f59e1a9ee schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
165 schema:name Biopsy
166 rdf:type schema:DefinedTerm
167 Ne5fd6ed6788440e49f794aa6d765fde7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
168 schema:name Plaque, Atherosclerotic
169 rdf:type schema:DefinedTerm
170 Ne79acb54e240490aa299a8c92072a2d8 schema:name nlm_unique_id
171 schema:value 9815616
172 rdf:type schema:PropertyValue
173 Ne81b05fb9a214a6882ae82d6e4e8f3b7 rdf:first sg:person.011720445033.41
174 rdf:rest Na08331104f694dbfa035c9390d3accdd
175 Nf559f6b845d0466ebff8b3059a35e281 rdf:first sg:person.01320556462.83
176 rdf:rest Ne81b05fb9a214a6882ae82d6e4e8f3b7
177 Nfb932d3c8d1b41088f6a9f08bd04608d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
178 schema:name Hemorrhage
179 rdf:type schema:DefinedTerm
180 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
181 schema:name Medical and Health Sciences
182 rdf:type schema:DefinedTerm
183 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
184 schema:name Cardiorespiratory Medicine and Haematology
185 rdf:type schema:DefinedTerm
186 sg:grant.5008516 http://pending.schema.org/fundedItem sg:pub.10.1186/s12968-018-0447-x
187 rdf:type schema:MonetaryGrant
188 sg:journal.1030439 schema:issn 1548-7679
189 1879-2855
190 schema:name Journal of Cardiovascular Magnetic Resonance
191 rdf:type schema:Periodical
192 sg:person.01066244563.44 schema:affiliation N002fa5c634ff45deac8871784c362446
193 schema:familyName Bi
194 schema:givenName Xiaoming
195 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066244563.44
196 rdf:type schema:Person
197 sg:person.01102435001.75 schema:affiliation https://www.grid.ac/institutes/grid.24696.3f
198 schema:familyName Gu
199 schema:givenName Chengxiong
200 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01102435001.75
201 rdf:type schema:Person
202 sg:person.01136172260.58 schema:affiliation https://www.grid.ac/institutes/grid.50956.3f
203 schema:familyName Fan
204 schema:givenName Zhaoyang
205 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136172260.58
206 rdf:type schema:Person
207 sg:person.01143631075.45 schema:affiliation https://www.grid.ac/institutes/grid.24696.3f
208 schema:familyName Yu
209 schema:givenName Wei
210 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143631075.45
211 rdf:type schema:Person
212 sg:person.01152021525.33 schema:affiliation https://www.grid.ac/institutes/grid.19006.3e
213 schema:familyName Li
214 schema:givenName Debiao
215 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152021525.33
216 rdf:type schema:Person
217 sg:person.01161036206.83 schema:affiliation https://www.grid.ac/institutes/grid.24696.3f
218 schema:familyName Dong
219 schema:givenName Li
220 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01161036206.83
221 rdf:type schema:Person
222 sg:person.011720445033.41 schema:affiliation https://www.grid.ac/institutes/grid.24696.3f
223 schema:familyName Wang
224 schema:givenName Chuan
225 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011720445033.41
226 rdf:type schema:Person
227 sg:person.01320556462.83 schema:affiliation https://www.grid.ac/institutes/grid.50956.3f
228 schema:familyName Xie
229 schema:givenName Yibin
230 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320556462.83
231 rdf:type schema:Person
232 sg:person.01331047206.43 schema:affiliation N837416273be44ad8b06ac7c54f2c3cec
233 schema:familyName Nguyen
234 schema:givenName Christopher
235 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331047206.43
236 rdf:type schema:Person
237 sg:person.01340437625.65 schema:affiliation N79f622e652cb432f882bd970569fff13
238 schema:familyName An
239 schema:givenName Jing
240 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01340437625.65
241 rdf:type schema:Person
242 sg:person.013574027142.54 schema:affiliation https://www.grid.ac/institutes/grid.24696.3f
243 schema:familyName Du
244 schema:givenName Yanni
245 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013574027142.54
246 rdf:type schema:Person
247 https://doi.org/10.1016/j.athoracsur.2005.05.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014554834
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1016/j.jacc.2013.11.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050126481
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1016/j.jcmg.2012.03.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030151261
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1016/j.jcmg.2015.06.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022737446
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1016/j.jcmg.2016.06.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005581873
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1016/j.mri.2008.05.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029059848
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1055/s-0037-1613461 schema:sameAs https://app.dimensions.ai/details/publication/pub.1075277394
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1056/nejm199201233260406 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036966223
262 rdf:type schema:CreativeWork
263 https://doi.org/10.1148/radiol.09090535 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032991700
264 rdf:type schema:CreativeWork
265 https://doi.org/10.1161/01.cir.0000028591.44554.f9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009264013
266 rdf:type schema:CreativeWork
267 https://doi.org/10.1161/01.cir.0000441139.02102.80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040460683
268 rdf:type schema:CreativeWork
269 https://doi.org/10.1161/01.cir.90.4.2126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045901551
270 rdf:type schema:CreativeWork
271 https://doi.org/10.1161/01.str.0000125856.25309.86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036260692
272 rdf:type schema:CreativeWork
273 https://doi.org/10.1161/circulationaha.104.504167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018658938
274 rdf:type schema:CreativeWork
275 https://doi.org/10.1161/circulationaha.110.965442 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042784997
276 rdf:type schema:CreativeWork
277 https://doi.org/10.1161/hc4201.097839 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015268610
278 rdf:type schema:CreativeWork
279 https://www.grid.ac/institutes/grid.19006.3e schema:alternateName University of California Los Angeles
280 schema:name Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
281 Departments of Medicine and Bioengineering, University of California, Los Angeles, CA, USA
282 rdf:type schema:Organization
283 https://www.grid.ac/institutes/grid.24696.3f schema:alternateName Capital Medical University
284 schema:name Department of Cardiac Surgery, Anzhen Hospital, Capital Medical University, Beijing, China
285 Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
286 rdf:type schema:Organization
287 https://www.grid.ac/institutes/grid.50956.3f schema:alternateName Cedars-Sinai Medical Center
288 schema:name Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
289 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...