Simple motion correction strategy reduces respiratory-induced motion artifacts for k-t accelerated and compressed-sensing cardiovascular magnetic resonance perfusion imaging View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-02-01

AUTHORS

Ruixi Zhou, Wei Huang, Yang Yang, Xiao Chen, Daniel S Weller, Christopher M Kramer, Sebastian Kozerke, Michael Salerno

ABSTRACT

BACKGROUND: Cardiovascular magnetic resonance (CMR) stress perfusion imaging provides important diagnostic and prognostic information in coronary artery disease (CAD). Current clinical sequences have limited temporal and/or spatial resolution, and incomplete heart coverage. Techniques such as k-t principal component analysis (PCA) or k-t sparcity and low rank structure (SLR), which rely on the high degree of spatiotemporal correlation in first-pass perfusion data, can significantly accelerate image acquisition mitigating these problems. However, in the presence of respiratory motion, these techniques can suffer from significant degradation of image quality. A number of techniques based on non-rigid registration have been developed. However, to first approximation, breathing motion predominantly results in rigid motion of the heart. To this end, a simple robust motion correction strategy is proposed for k-t accelerated and compressed sensing (CS) perfusion imaging. METHODS: A simple respiratory motion compensation (MC) strategy for k-t accelerated and compressed-sensing CMR perfusion imaging to selectively correct respiratory motion of the heart was implemented based on linear k-space phase shifts derived from rigid motion registration of a region-of-interest (ROI) encompassing the heart. A variable density Poisson disk acquisition strategy was used to minimize coherent aliasing in the presence of respiratory motion, and images were reconstructed using k-t PCA and k-t SLR with or without motion correction. The strategy was evaluated in a CMR-extended cardiac torso digital (XCAT) phantom and in prospectively acquired first-pass perfusion studies in 12 subjects undergoing clinically ordered CMR studies. Phantom studies were assessed using the Structural Similarity Index (SSIM) and Root Mean Square Error (RMSE). In patient studies, image quality was scored in a blinded fashion by two experienced cardiologists. RESULTS: In the phantom experiments, images reconstructed with the MC strategy had higher SSIM (p < 0.01) and lower RMSE (p < 0.01) in the presence of respiratory motion. For patient studies, the MC strategy improved k-t PCA and k-t SLR reconstruction image quality (p < 0.01). The performance of k-t SLR without motion correction demonstrated improved image quality as compared to k-t PCA in the setting of respiratory motion (p < 0.01), while with motion correction there is a trend of better performance in k-t SLR as compared with motion corrected k-t PCA. CONCLUSIONS: Our simple and robust rigid motion compensation strategy greatly reduces motion artifacts and improves image quality for standard k-t PCA and k-t SLR techniques in setting of respiratory motion due to imperfect breath-holding. More... »

PAGES

6

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12968-018-0427-1

DOI

http://dx.doi.org/10.1186/s12968-018-0427-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1100730158

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29386056


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cardiorespiratory Medicine and Haematology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Artifacts", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Blood Flow Velocity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Breath Holding", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Coronary Artery Disease", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Coronary Circulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Interpretation, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Myocardial Perfusion Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phantoms, Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Predictive Value of Tests", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Respiration", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Biomedical Engineering, University of Virginia Health System, Charlottesville, VA, USA.", 
          "id": "http://www.grid.ac/institutes/grid.412587.d", 
          "name": [
            "Department of Medicine, University of Virginia Health System, Charlottesville, VA, USA.", 
            "Department of Biomedical Engineering, University of Virginia Health System, Charlottesville, VA, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhou", 
        "givenName": "Ruixi", 
        "id": "sg:person.011030056324.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011030056324.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Medicine, University of Virginia Health System, Charlottesville, VA, USA.", 
          "id": "http://www.grid.ac/institutes/grid.412587.d", 
          "name": [
            "Department of Medicine, University of Virginia Health System, Charlottesville, VA, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Huang", 
        "givenName": "Wei", 
        "id": "sg:person.012423017324.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012423017324.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Biomedical Engineering, University of Virginia Health System, Charlottesville, VA, USA.", 
          "id": "http://www.grid.ac/institutes/grid.412587.d", 
          "name": [
            "Department of Medicine, University of Virginia Health System, Charlottesville, VA, USA.", 
            "Department of Biomedical Engineering, University of Virginia Health System, Charlottesville, VA, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Yang", 
        "id": "sg:person.012135136157.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012135136157.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Medical Imaging Technologies, Siemens Healthineers, Princeton, NJ, USA.", 
          "id": "http://www.grid.ac/institutes/grid.415886.6", 
          "name": [
            "Medical Imaging Technologies, Siemens Healthineers, Princeton, NJ, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Xiao", 
        "id": "sg:person.01203320171.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01203320171.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA, USA.", 
          "id": "http://www.grid.ac/institutes/grid.27755.32", 
          "name": [
            "Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Weller", 
        "givenName": "Daniel S", 
        "id": "sg:person.01142342663.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01142342663.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology and Medical Imaging, University of Virginia Health System, Charlottesville, VA, USA.", 
          "id": "http://www.grid.ac/institutes/grid.412587.d", 
          "name": [
            "Department of Medicine, University of Virginia Health System, Charlottesville, VA, USA.", 
            "Department of Radiology and Medical Imaging, University of Virginia Health System, Charlottesville, VA, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kramer", 
        "givenName": "Christopher M", 
        "id": "sg:person.01316244413.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01316244413.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Information Technology and Electrical Engineering, Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland.", 
          "id": "http://www.grid.ac/institutes/grid.482286.2", 
          "name": [
            "Department of Information Technology and Electrical Engineering, Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kozerke", 
        "givenName": "Sebastian", 
        "id": "sg:person.01000767510.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01000767510.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology and Medical Imaging, University of Virginia Health System, Charlottesville, VA, USA. ms5pc@virginia.edu.", 
          "id": "http://www.grid.ac/institutes/grid.412587.d", 
          "name": [
            "Department of Medicine, University of Virginia Health System, Charlottesville, VA, USA. ms5pc@virginia.edu.", 
            "Department of Biomedical Engineering, University of Virginia Health System, Charlottesville, VA, USA. ms5pc@virginia.edu.", 
            "Department of Radiology and Medical Imaging, University of Virginia Health System, Charlottesville, VA, USA. ms5pc@virginia.edu."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Salerno", 
        "givenName": "Michael", 
        "id": "sg:person.01017617022.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01017617022.52"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/s12968-014-0090-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026937404", 
          "https://doi.org/10.1186/s12968-014-0090-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12968-014-0063-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003182106", 
          "https://doi.org/10.1186/s12968-014-0063-3"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-02-01", 
    "datePublishedReg": "2018-02-01", 
    "description": "BACKGROUND: Cardiovascular magnetic resonance (CMR) stress perfusion imaging provides important diagnostic and prognostic information in coronary artery disease (CAD). Current clinical sequences have limited temporal and/or spatial resolution, and incomplete heart coverage. Techniques such as k-t principal component analysis (PCA) or k-t sparcity and low rank structure (SLR), which rely on the high degree of spatiotemporal correlation in first-pass perfusion data, can significantly accelerate image acquisition mitigating these problems. However, in the presence of respiratory motion, these techniques can suffer from significant degradation of image quality. A number of techniques based on non-rigid registration have been developed. However, to first approximation, breathing motion predominantly results in rigid motion of the heart. To this end, a simple robust motion correction strategy is proposed for k-t accelerated and compressed sensing (CS) perfusion imaging.\nMETHODS: A simple respiratory motion compensation (MC) strategy for k-t accelerated and compressed-sensing CMR perfusion imaging to selectively correct respiratory motion of the heart was implemented based on linear k-space phase shifts derived from rigid motion registration of a region-of-interest (ROI) encompassing the heart. A variable density Poisson disk acquisition strategy was used to minimize coherent aliasing in the presence of respiratory motion, and images were reconstructed using k-t PCA and k-t SLR with or without motion correction. The strategy was evaluated in a CMR-extended cardiac torso digital (XCAT) phantom and in prospectively acquired first-pass perfusion studies in 12 subjects undergoing clinically ordered CMR studies. Phantom studies were assessed using the Structural Similarity Index (SSIM) and Root Mean Square Error (RMSE). In patient studies, image quality was scored in a blinded fashion by two experienced cardiologists.\nRESULTS: In the phantom experiments, images reconstructed with the MC strategy had higher SSIM (p\u00a0<\u20090.01) and lower RMSE (p\u00a0<\u20090.01) in the presence of respiratory motion. For patient studies, the MC strategy improved k-t PCA and k-t SLR reconstruction image quality (p\u00a0<\u20090.01). The performance of k-t SLR without motion correction demonstrated improved image quality as compared to k-t PCA in the setting of respiratory motion (p\u00a0<\u20090.01), while with motion correction there is a trend of better performance in k-t SLR as compared with motion corrected k-t PCA.\nCONCLUSIONS: Our simple and robust rigid motion compensation strategy greatly reduces motion artifacts and improves image quality for standard k-t PCA and k-t SLR techniques in setting of respiratory motion due to imperfect breath-holding.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s12968-018-0427-1", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6616869", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2419852", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1030439", 
        "issn": [
          "1548-7679", 
          "1879-2855"
        ], 
        "name": "Journal of Cardiovascular Magnetic Resonance", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "20"
      }
    ], 
    "keywords": [
      "structural similarity index", 
      "image quality", 
      "motion correction strategies", 
      "root mean square error", 
      "motion correction", 
      "motion compensation strategy", 
      "respiratory motion", 
      "higher structural similarity index", 
      "reconstruction image quality", 
      "low-rank structure", 
      "non-rigid registration", 
      "motion registration", 
      "MC strategy", 
      "correction strategy", 
      "digital phantom", 
      "image acquisition", 
      "principal component analysis", 
      "improved image quality", 
      "number of techniques", 
      "spatiotemporal correlation", 
      "mean square error", 
      "better performance", 
      "lowest root mean square error", 
      "similarity index", 
      "rigid motion", 
      "motion artifacts", 
      "images", 
      "square error", 
      "rank structure", 
      "registration", 
      "artifacts", 
      "technique", 
      "performance", 
      "component analysis", 
      "SLR", 
      "quality", 
      "acquisition strategies", 
      "perfusion data", 
      "experienced cardiologists", 
      "clinical sequences", 
      "information", 
      "phantom experiments", 
      "aliasing", 
      "compensation strategy", 
      "patient studies", 
      "motion", 
      "strategies", 
      "significant degradation", 
      "error", 
      "phantom study", 
      "linear k", 
      "spatial resolution", 
      "acquisition", 
      "first-pass perfusion studies", 
      "high degree", 
      "data", 
      "experiments", 
      "coverage", 
      "fashion", 
      "sparcity", 
      "setting", 
      "interest", 
      "phantom", 
      "number", 
      "end", 
      "sequence", 
      "correction", 
      "resolution", 
      "approximation", 
      "SLR technique", 
      "phase shift", 
      "trends", 
      "CMR perfusion", 
      "analysis", 
      "structure", 
      "coronary artery disease", 
      "imaging", 
      "first approximation", 
      "degree", 
      "study", 
      "cardiologists", 
      "cardiovascular magnetic resonance perfusion", 
      "stress perfusion imaging", 
      "CMR studies", 
      "magnetic resonance perfusion", 
      "degradation", 
      "artery disease", 
      "heart", 
      "prognostic information", 
      "blinded fashion", 
      "perfusion imaging", 
      "correlation", 
      "perfusion studies", 
      "index", 
      "region", 
      "perfusion", 
      "subjects", 
      "problem", 
      "presence", 
      "shift", 
      "disease", 
      "Cardiovascular magnetic resonance (CMR) stress perfusion imaging", 
      "magnetic resonance (CMR) stress perfusion imaging", 
      "resonance (CMR) stress perfusion imaging", 
      "Current clinical sequences", 
      "incomplete heart coverage", 
      "heart coverage", 
      "first-pass perfusion data", 
      "simple robust motion correction strategy", 
      "robust motion correction strategy", 
      "sensing (CS) perfusion", 
      "simple respiratory motion compensation (MC) strategy", 
      "respiratory motion compensation (MC) strategy", 
      "compressed-sensing CMR perfusion", 
      "space phase shifts", 
      "rigid motion registration", 
      "variable density Poisson disk acquisition strategy", 
      "density Poisson disk acquisition strategy", 
      "Poisson disk acquisition strategy", 
      "disk acquisition strategy", 
      "coherent aliasing", 
      "CMR-extended cardiac torso digital (XCAT) phantom", 
      "cardiac torso digital (XCAT) phantom", 
      "torso digital (XCAT) phantom", 
      "SLR reconstruction image quality", 
      "robust rigid motion compensation strategy", 
      "rigid motion compensation strategy", 
      "Simple motion correction strategy", 
      "respiratory-induced motion artifacts", 
      "compressed-sensing cardiovascular magnetic resonance perfusion", 
      "resonance perfusion"
    ], 
    "name": "Simple motion correction strategy reduces respiratory-induced motion artifacts for k-t accelerated and compressed-sensing cardiovascular magnetic resonance perfusion imaging", 
    "pagination": "6", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1100730158"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12968-018-0427-1"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29386056"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12968-018-0427-1", 
      "https://app.dimensions.ai/details/publication/pub.1100730158"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:34", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_792.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s12968-018-0427-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12968-018-0427-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12968-018-0427-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12968-018-0427-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12968-018-0427-1'


 

This table displays all metadata directly associated to this object as RDF triples.

323 TRIPLES      22 PREDICATES      172 URIs      162 LITERALS      20 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12968-018-0427-1 schema:about N0a7a802989694d3e83a0eb94e14cc1ef
2 N10cbd4feb84843c6936816c300768405
3 N13693f5592744752b6e705861c11844a
4 N3ba8c00dfd8f467cae3f6173e678de5e
5 N3c8156024f1848b49fe447fd3c3e6ec9
6 N7997f894102945b19d6d82c23564eb1c
7 N84ef6c48ef35478b9baeec84917f14f0
8 N86465f5c24b24a329d4a1bc59249ab38
9 Nab77285cd17a4bde912ea332fc6513bd
10 Nb3c4e6a6c0254af5adf50590c0f1ee79
11 Nd566a3e3c33949bbb2f3a95f80796f53
12 Ndab45d45738f4ea29625ca7a210eb735
13 Ne520aa5fcbb24011973ca79201f2d3cf
14 anzsrc-for:11
15 anzsrc-for:1102
16 schema:author Nf35e3de11ec54540aa575d97ca6d29a6
17 schema:citation sg:pub.10.1186/s12968-014-0063-3
18 sg:pub.10.1186/s12968-014-0090-0
19 schema:datePublished 2018-02-01
20 schema:datePublishedReg 2018-02-01
21 schema:description BACKGROUND: Cardiovascular magnetic resonance (CMR) stress perfusion imaging provides important diagnostic and prognostic information in coronary artery disease (CAD). Current clinical sequences have limited temporal and/or spatial resolution, and incomplete heart coverage. Techniques such as k-t principal component analysis (PCA) or k-t sparcity and low rank structure (SLR), which rely on the high degree of spatiotemporal correlation in first-pass perfusion data, can significantly accelerate image acquisition mitigating these problems. However, in the presence of respiratory motion, these techniques can suffer from significant degradation of image quality. A number of techniques based on non-rigid registration have been developed. However, to first approximation, breathing motion predominantly results in rigid motion of the heart. To this end, a simple robust motion correction strategy is proposed for k-t accelerated and compressed sensing (CS) perfusion imaging. METHODS: A simple respiratory motion compensation (MC) strategy for k-t accelerated and compressed-sensing CMR perfusion imaging to selectively correct respiratory motion of the heart was implemented based on linear k-space phase shifts derived from rigid motion registration of a region-of-interest (ROI) encompassing the heart. A variable density Poisson disk acquisition strategy was used to minimize coherent aliasing in the presence of respiratory motion, and images were reconstructed using k-t PCA and k-t SLR with or without motion correction. The strategy was evaluated in a CMR-extended cardiac torso digital (XCAT) phantom and in prospectively acquired first-pass perfusion studies in 12 subjects undergoing clinically ordered CMR studies. Phantom studies were assessed using the Structural Similarity Index (SSIM) and Root Mean Square Error (RMSE). In patient studies, image quality was scored in a blinded fashion by two experienced cardiologists. RESULTS: In the phantom experiments, images reconstructed with the MC strategy had higher SSIM (p < 0.01) and lower RMSE (p < 0.01) in the presence of respiratory motion. For patient studies, the MC strategy improved k-t PCA and k-t SLR reconstruction image quality (p < 0.01). The performance of k-t SLR without motion correction demonstrated improved image quality as compared to k-t PCA in the setting of respiratory motion (p < 0.01), while with motion correction there is a trend of better performance in k-t SLR as compared with motion corrected k-t PCA. CONCLUSIONS: Our simple and robust rigid motion compensation strategy greatly reduces motion artifacts and improves image quality for standard k-t PCA and k-t SLR techniques in setting of respiratory motion due to imperfect breath-holding.
22 schema:genre article
23 schema:inLanguage en
24 schema:isAccessibleForFree true
25 schema:isPartOf Nb18375f826a8477ea93cb1b7c76f07af
26 Ne19a05c6c3ad4243aba315bcc5ae6e3c
27 sg:journal.1030439
28 schema:keywords CMR perfusion
29 CMR studies
30 CMR-extended cardiac torso digital (XCAT) phantom
31 Cardiovascular magnetic resonance (CMR) stress perfusion imaging
32 Current clinical sequences
33 MC strategy
34 Poisson disk acquisition strategy
35 SLR
36 SLR reconstruction image quality
37 SLR technique
38 Simple motion correction strategy
39 acquisition
40 acquisition strategies
41 aliasing
42 analysis
43 approximation
44 artery disease
45 artifacts
46 better performance
47 blinded fashion
48 cardiac torso digital (XCAT) phantom
49 cardiologists
50 cardiovascular magnetic resonance perfusion
51 clinical sequences
52 coherent aliasing
53 compensation strategy
54 component analysis
55 compressed-sensing CMR perfusion
56 compressed-sensing cardiovascular magnetic resonance perfusion
57 coronary artery disease
58 correction
59 correction strategy
60 correlation
61 coverage
62 data
63 degradation
64 degree
65 density Poisson disk acquisition strategy
66 digital phantom
67 disease
68 disk acquisition strategy
69 end
70 error
71 experienced cardiologists
72 experiments
73 fashion
74 first approximation
75 first-pass perfusion data
76 first-pass perfusion studies
77 heart
78 heart coverage
79 high degree
80 higher structural similarity index
81 image acquisition
82 image quality
83 images
84 imaging
85 improved image quality
86 incomplete heart coverage
87 index
88 information
89 interest
90 linear k
91 low-rank structure
92 lowest root mean square error
93 magnetic resonance (CMR) stress perfusion imaging
94 magnetic resonance perfusion
95 mean square error
96 motion
97 motion artifacts
98 motion compensation strategy
99 motion correction
100 motion correction strategies
101 motion registration
102 non-rigid registration
103 number
104 number of techniques
105 patient studies
106 performance
107 perfusion
108 perfusion data
109 perfusion imaging
110 perfusion studies
111 phantom
112 phantom experiments
113 phantom study
114 phase shift
115 presence
116 principal component analysis
117 problem
118 prognostic information
119 quality
120 rank structure
121 reconstruction image quality
122 region
123 registration
124 resolution
125 resonance (CMR) stress perfusion imaging
126 resonance perfusion
127 respiratory motion
128 respiratory motion compensation (MC) strategy
129 respiratory-induced motion artifacts
130 rigid motion
131 rigid motion compensation strategy
132 rigid motion registration
133 robust motion correction strategy
134 robust rigid motion compensation strategy
135 root mean square error
136 sensing (CS) perfusion
137 sequence
138 setting
139 shift
140 significant degradation
141 similarity index
142 simple respiratory motion compensation (MC) strategy
143 simple robust motion correction strategy
144 space phase shifts
145 sparcity
146 spatial resolution
147 spatiotemporal correlation
148 square error
149 strategies
150 stress perfusion imaging
151 structural similarity index
152 structure
153 study
154 subjects
155 technique
156 torso digital (XCAT) phantom
157 trends
158 variable density Poisson disk acquisition strategy
159 schema:name Simple motion correction strategy reduces respiratory-induced motion artifacts for k-t accelerated and compressed-sensing cardiovascular magnetic resonance perfusion imaging
160 schema:pagination 6
161 schema:productId N3c3e8252d653427282de12b8a20117ed
162 N45f4da7a1233441cbdcedccc11a7745b
163 Nef0d0ca9e0074588a270373f0d9d6864
164 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100730158
165 https://doi.org/10.1186/s12968-018-0427-1
166 schema:sdDatePublished 2021-11-01T18:34
167 schema:sdLicense https://scigraph.springernature.com/explorer/license/
168 schema:sdPublisher N42664e2413b845efb89c23e060c6bd37
169 schema:url https://doi.org/10.1186/s12968-018-0427-1
170 sgo:license sg:explorer/license/
171 sgo:sdDataset articles
172 rdf:type schema:ScholarlyArticle
173 N09bda19ba13e462094163114e0bc95a8 rdf:first sg:person.01316244413.88
174 rdf:rest N9462dc58c17a4a83aaf046ca8a353441
175 N0a7a802989694d3e83a0eb94e14cc1ef schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
176 schema:name Humans
177 rdf:type schema:DefinedTerm
178 N10cbd4feb84843c6936816c300768405 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
179 schema:name Coronary Artery Disease
180 rdf:type schema:DefinedTerm
181 N13693f5592744752b6e705861c11844a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
182 schema:name Respiration
183 rdf:type schema:DefinedTerm
184 N3ba8c00dfd8f467cae3f6173e678de5e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
185 schema:name Image Interpretation, Computer-Assisted
186 rdf:type schema:DefinedTerm
187 N3c3e8252d653427282de12b8a20117ed schema:name dimensions_id
188 schema:value pub.1100730158
189 rdf:type schema:PropertyValue
190 N3c8156024f1848b49fe447fd3c3e6ec9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
191 schema:name Myocardial Perfusion Imaging
192 rdf:type schema:DefinedTerm
193 N42664e2413b845efb89c23e060c6bd37 schema:name Springer Nature - SN SciGraph project
194 rdf:type schema:Organization
195 N45f4da7a1233441cbdcedccc11a7745b schema:name pubmed_id
196 schema:value 29386056
197 rdf:type schema:PropertyValue
198 N52acbfb83ce94e45b8fd06cc8cc10720 rdf:first sg:person.01017617022.52
199 rdf:rest rdf:nil
200 N569feb484211432f8d84fe62f0e3c60f rdf:first sg:person.012135136157.52
201 rdf:rest Neea63bfa1b9e490c82bafd4f04452153
202 N6236084f9d5a44c890902b44ed715b10 rdf:first sg:person.012423017324.14
203 rdf:rest N569feb484211432f8d84fe62f0e3c60f
204 N6f7376fe810e434dbb2384579c4607d8 rdf:first sg:person.01142342663.73
205 rdf:rest N09bda19ba13e462094163114e0bc95a8
206 N7997f894102945b19d6d82c23564eb1c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
207 schema:name Breath Holding
208 rdf:type schema:DefinedTerm
209 N84ef6c48ef35478b9baeec84917f14f0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
210 schema:name Coronary Circulation
211 rdf:type schema:DefinedTerm
212 N86465f5c24b24a329d4a1bc59249ab38 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
213 schema:name Reproducibility of Results
214 rdf:type schema:DefinedTerm
215 N9462dc58c17a4a83aaf046ca8a353441 rdf:first sg:person.01000767510.20
216 rdf:rest N52acbfb83ce94e45b8fd06cc8cc10720
217 Nab77285cd17a4bde912ea332fc6513bd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
218 schema:name Artifacts
219 rdf:type schema:DefinedTerm
220 Nb18375f826a8477ea93cb1b7c76f07af schema:volumeNumber 20
221 rdf:type schema:PublicationVolume
222 Nb3c4e6a6c0254af5adf50590c0f1ee79 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
223 schema:name Magnetic Resonance Imaging
224 rdf:type schema:DefinedTerm
225 Nd566a3e3c33949bbb2f3a95f80796f53 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
226 schema:name Phantoms, Imaging
227 rdf:type schema:DefinedTerm
228 Ndab45d45738f4ea29625ca7a210eb735 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
229 schema:name Predictive Value of Tests
230 rdf:type schema:DefinedTerm
231 Ne19a05c6c3ad4243aba315bcc5ae6e3c schema:issueNumber 1
232 rdf:type schema:PublicationIssue
233 Ne520aa5fcbb24011973ca79201f2d3cf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
234 schema:name Blood Flow Velocity
235 rdf:type schema:DefinedTerm
236 Neea63bfa1b9e490c82bafd4f04452153 rdf:first sg:person.01203320171.13
237 rdf:rest N6f7376fe810e434dbb2384579c4607d8
238 Nef0d0ca9e0074588a270373f0d9d6864 schema:name doi
239 schema:value 10.1186/s12968-018-0427-1
240 rdf:type schema:PropertyValue
241 Nf35e3de11ec54540aa575d97ca6d29a6 rdf:first sg:person.011030056324.40
242 rdf:rest N6236084f9d5a44c890902b44ed715b10
243 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
244 schema:name Medical and Health Sciences
245 rdf:type schema:DefinedTerm
246 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
247 schema:name Cardiorespiratory Medicine and Haematology
248 rdf:type schema:DefinedTerm
249 sg:grant.2419852 http://pending.schema.org/fundedItem sg:pub.10.1186/s12968-018-0427-1
250 rdf:type schema:MonetaryGrant
251 sg:grant.6616869 http://pending.schema.org/fundedItem sg:pub.10.1186/s12968-018-0427-1
252 rdf:type schema:MonetaryGrant
253 sg:journal.1030439 schema:issn 1548-7679
254 1879-2855
255 schema:name Journal of Cardiovascular Magnetic Resonance
256 schema:publisher Springer Nature
257 rdf:type schema:Periodical
258 sg:person.01000767510.20 schema:affiliation grid-institutes:grid.482286.2
259 schema:familyName Kozerke
260 schema:givenName Sebastian
261 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01000767510.20
262 rdf:type schema:Person
263 sg:person.01017617022.52 schema:affiliation grid-institutes:grid.412587.d
264 schema:familyName Salerno
265 schema:givenName Michael
266 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01017617022.52
267 rdf:type schema:Person
268 sg:person.011030056324.40 schema:affiliation grid-institutes:grid.412587.d
269 schema:familyName Zhou
270 schema:givenName Ruixi
271 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011030056324.40
272 rdf:type schema:Person
273 sg:person.01142342663.73 schema:affiliation grid-institutes:grid.27755.32
274 schema:familyName Weller
275 schema:givenName Daniel S
276 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01142342663.73
277 rdf:type schema:Person
278 sg:person.01203320171.13 schema:affiliation grid-institutes:grid.415886.6
279 schema:familyName Chen
280 schema:givenName Xiao
281 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01203320171.13
282 rdf:type schema:Person
283 sg:person.012135136157.52 schema:affiliation grid-institutes:grid.412587.d
284 schema:familyName Yang
285 schema:givenName Yang
286 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012135136157.52
287 rdf:type schema:Person
288 sg:person.012423017324.14 schema:affiliation grid-institutes:grid.412587.d
289 schema:familyName Huang
290 schema:givenName Wei
291 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012423017324.14
292 rdf:type schema:Person
293 sg:person.01316244413.88 schema:affiliation grid-institutes:grid.412587.d
294 schema:familyName Kramer
295 schema:givenName Christopher M
296 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01316244413.88
297 rdf:type schema:Person
298 sg:pub.10.1186/s12968-014-0063-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003182106
299 https://doi.org/10.1186/s12968-014-0063-3
300 rdf:type schema:CreativeWork
301 sg:pub.10.1186/s12968-014-0090-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026937404
302 https://doi.org/10.1186/s12968-014-0090-0
303 rdf:type schema:CreativeWork
304 grid-institutes:grid.27755.32 schema:alternateName Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA, USA.
305 schema:name Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA, USA.
306 rdf:type schema:Organization
307 grid-institutes:grid.412587.d schema:alternateName Department of Biomedical Engineering, University of Virginia Health System, Charlottesville, VA, USA.
308 Department of Medicine, University of Virginia Health System, Charlottesville, VA, USA.
309 Department of Radiology and Medical Imaging, University of Virginia Health System, Charlottesville, VA, USA.
310 Department of Radiology and Medical Imaging, University of Virginia Health System, Charlottesville, VA, USA. ms5pc@virginia.edu.
311 schema:name Department of Biomedical Engineering, University of Virginia Health System, Charlottesville, VA, USA.
312 Department of Biomedical Engineering, University of Virginia Health System, Charlottesville, VA, USA. ms5pc@virginia.edu.
313 Department of Medicine, University of Virginia Health System, Charlottesville, VA, USA.
314 Department of Medicine, University of Virginia Health System, Charlottesville, VA, USA. ms5pc@virginia.edu.
315 Department of Radiology and Medical Imaging, University of Virginia Health System, Charlottesville, VA, USA.
316 Department of Radiology and Medical Imaging, University of Virginia Health System, Charlottesville, VA, USA. ms5pc@virginia.edu.
317 rdf:type schema:Organization
318 grid-institutes:grid.415886.6 schema:alternateName Medical Imaging Technologies, Siemens Healthineers, Princeton, NJ, USA.
319 schema:name Medical Imaging Technologies, Siemens Healthineers, Princeton, NJ, USA.
320 rdf:type schema:Organization
321 grid-institutes:grid.482286.2 schema:alternateName Department of Information Technology and Electrical Engineering, Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland.
322 schema:name Department of Information Technology and Electrical Engineering, Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland.
323 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...