Simple motion correction strategy reduces respiratory-induced motion artifacts for k-t accelerated and compressed-sensing cardiovascular magnetic resonance perfusion imaging View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-02-01

AUTHORS

Ruixi Zhou, Wei Huang, Yang Yang, Xiao Chen, Daniel S Weller, Christopher M Kramer, Sebastian Kozerke, Michael Salerno

ABSTRACT

BACKGROUND: Cardiovascular magnetic resonance (CMR) stress perfusion imaging provides important diagnostic and prognostic information in coronary artery disease (CAD). Current clinical sequences have limited temporal and/or spatial resolution, and incomplete heart coverage. Techniques such as k-t principal component analysis (PCA) or k-t sparcity and low rank structure (SLR), which rely on the high degree of spatiotemporal correlation in first-pass perfusion data, can significantly accelerate image acquisition mitigating these problems. However, in the presence of respiratory motion, these techniques can suffer from significant degradation of image quality. A number of techniques based on non-rigid registration have been developed. However, to first approximation, breathing motion predominantly results in rigid motion of the heart. To this end, a simple robust motion correction strategy is proposed for k-t accelerated and compressed sensing (CS) perfusion imaging. METHODS: A simple respiratory motion compensation (MC) strategy for k-t accelerated and compressed-sensing CMR perfusion imaging to selectively correct respiratory motion of the heart was implemented based on linear k-space phase shifts derived from rigid motion registration of a region-of-interest (ROI) encompassing the heart. A variable density Poisson disk acquisition strategy was used to minimize coherent aliasing in the presence of respiratory motion, and images were reconstructed using k-t PCA and k-t SLR with or without motion correction. The strategy was evaluated in a CMR-extended cardiac torso digital (XCAT) phantom and in prospectively acquired first-pass perfusion studies in 12 subjects undergoing clinically ordered CMR studies. Phantom studies were assessed using the Structural Similarity Index (SSIM) and Root Mean Square Error (RMSE). In patient studies, image quality was scored in a blinded fashion by two experienced cardiologists. RESULTS: In the phantom experiments, images reconstructed with the MC strategy had higher SSIM (p < 0.01) and lower RMSE (p < 0.01) in the presence of respiratory motion. For patient studies, the MC strategy improved k-t PCA and k-t SLR reconstruction image quality (p < 0.01). The performance of k-t SLR without motion correction demonstrated improved image quality as compared to k-t PCA in the setting of respiratory motion (p < 0.01), while with motion correction there is a trend of better performance in k-t SLR as compared with motion corrected k-t PCA. CONCLUSIONS: Our simple and robust rigid motion compensation strategy greatly reduces motion artifacts and improves image quality for standard k-t PCA and k-t SLR techniques in setting of respiratory motion due to imperfect breath-holding. More... »

PAGES

6

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12968-018-0427-1

DOI

http://dx.doi.org/10.1186/s12968-018-0427-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1100730158

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29386056


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cardiorespiratory Medicine and Haematology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Artifacts", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Blood Flow Velocity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Breath Holding", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Coronary Artery Disease", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Coronary Circulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Interpretation, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Myocardial Perfusion Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phantoms, Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Predictive Value of Tests", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Respiration", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Biomedical Engineering, University of Virginia Health System, Charlottesville, VA, USA.", 
          "id": "http://www.grid.ac/institutes/grid.412587.d", 
          "name": [
            "Department of Medicine, University of Virginia Health System, Charlottesville, VA, USA.", 
            "Department of Biomedical Engineering, University of Virginia Health System, Charlottesville, VA, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhou", 
        "givenName": "Ruixi", 
        "id": "sg:person.011030056324.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011030056324.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Medicine, University of Virginia Health System, Charlottesville, VA, USA.", 
          "id": "http://www.grid.ac/institutes/grid.412587.d", 
          "name": [
            "Department of Medicine, University of Virginia Health System, Charlottesville, VA, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Huang", 
        "givenName": "Wei", 
        "id": "sg:person.012423017324.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012423017324.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Biomedical Engineering, University of Virginia Health System, Charlottesville, VA, USA.", 
          "id": "http://www.grid.ac/institutes/grid.412587.d", 
          "name": [
            "Department of Medicine, University of Virginia Health System, Charlottesville, VA, USA.", 
            "Department of Biomedical Engineering, University of Virginia Health System, Charlottesville, VA, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Yang", 
        "id": "sg:person.012135136157.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012135136157.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Medical Imaging Technologies, Siemens Healthineers, Princeton, NJ, USA.", 
          "id": "http://www.grid.ac/institutes/grid.415886.6", 
          "name": [
            "Medical Imaging Technologies, Siemens Healthineers, Princeton, NJ, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Xiao", 
        "id": "sg:person.01203320171.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01203320171.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA, USA.", 
          "id": "http://www.grid.ac/institutes/grid.27755.32", 
          "name": [
            "Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Weller", 
        "givenName": "Daniel S", 
        "id": "sg:person.01142342663.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01142342663.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology and Medical Imaging, University of Virginia Health System, Charlottesville, VA, USA.", 
          "id": "http://www.grid.ac/institutes/grid.412587.d", 
          "name": [
            "Department of Medicine, University of Virginia Health System, Charlottesville, VA, USA.", 
            "Department of Radiology and Medical Imaging, University of Virginia Health System, Charlottesville, VA, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kramer", 
        "givenName": "Christopher M", 
        "id": "sg:person.01316244413.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01316244413.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Information Technology and Electrical Engineering, Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland.", 
          "id": "http://www.grid.ac/institutes/grid.482286.2", 
          "name": [
            "Department of Information Technology and Electrical Engineering, Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kozerke", 
        "givenName": "Sebastian", 
        "id": "sg:person.01000767510.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01000767510.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology and Medical Imaging, University of Virginia Health System, Charlottesville, VA, USA. ms5pc@virginia.edu.", 
          "id": "http://www.grid.ac/institutes/grid.412587.d", 
          "name": [
            "Department of Medicine, University of Virginia Health System, Charlottesville, VA, USA. ms5pc@virginia.edu.", 
            "Department of Biomedical Engineering, University of Virginia Health System, Charlottesville, VA, USA. ms5pc@virginia.edu.", 
            "Department of Radiology and Medical Imaging, University of Virginia Health System, Charlottesville, VA, USA. ms5pc@virginia.edu."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Salerno", 
        "givenName": "Michael", 
        "id": "sg:person.01017617022.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01017617022.52"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/s12968-014-0090-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026937404", 
          "https://doi.org/10.1186/s12968-014-0090-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12968-014-0063-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003182106", 
          "https://doi.org/10.1186/s12968-014-0063-3"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-02-01", 
    "datePublishedReg": "2018-02-01", 
    "description": "BACKGROUND: Cardiovascular magnetic resonance (CMR) stress perfusion imaging provides important diagnostic and prognostic information in coronary artery disease (CAD). Current clinical sequences have limited temporal and/or spatial resolution, and incomplete heart coverage. Techniques such as k-t principal component analysis (PCA) or k-t sparcity and low rank structure (SLR), which rely on the high degree of spatiotemporal correlation in first-pass perfusion data, can significantly accelerate image acquisition mitigating these problems. However, in the presence of respiratory motion, these techniques can suffer from significant degradation of image quality. A number of techniques based on non-rigid registration have been developed. However, to first approximation, breathing motion predominantly results in rigid motion of the heart. To this end, a simple robust motion correction strategy is proposed for k-t accelerated and compressed sensing (CS) perfusion imaging.\nMETHODS: A simple respiratory motion compensation (MC) strategy for k-t accelerated and compressed-sensing CMR perfusion imaging to selectively correct respiratory motion of the heart was implemented based on linear k-space phase shifts derived from rigid motion registration of a region-of-interest (ROI) encompassing the heart. A variable density Poisson disk acquisition strategy was used to minimize coherent aliasing in the presence of respiratory motion, and images were reconstructed using k-t PCA and k-t SLR with or without motion correction. The strategy was evaluated in a CMR-extended cardiac torso digital (XCAT) phantom and in prospectively acquired first-pass perfusion studies in 12 subjects undergoing clinically ordered CMR studies. Phantom studies were assessed using the Structural Similarity Index (SSIM) and Root Mean Square Error (RMSE). In patient studies, image quality was scored in a blinded fashion by two experienced cardiologists.\nRESULTS: In the phantom experiments, images reconstructed with the MC strategy had higher SSIM (p\u00a0<\u20090.01) and lower RMSE (p\u00a0<\u20090.01) in the presence of respiratory motion. For patient studies, the MC strategy improved k-t PCA and k-t SLR reconstruction image quality (p\u00a0<\u20090.01). The performance of k-t SLR without motion correction demonstrated improved image quality as compared to k-t PCA in the setting of respiratory motion (p\u00a0<\u20090.01), while with motion correction there is a trend of better performance in k-t SLR as compared with motion corrected k-t PCA.\nCONCLUSIONS: Our simple and robust rigid motion compensation strategy greatly reduces motion artifacts and improves image quality for standard k-t PCA and k-t SLR techniques in setting of respiratory motion due to imperfect breath-holding.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s12968-018-0427-1", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6616869", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2419852", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1030439", 
        "issn": [
          "1548-7679", 
          "1879-2855"
        ], 
        "name": "Journal of Cardiovascular Magnetic Resonance", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "20"
      }
    ], 
    "keywords": [
      "structural similarity index", 
      "image quality", 
      "motion correction strategies", 
      "root mean square error", 
      "motion correction", 
      "motion compensation strategy", 
      "respiratory motion", 
      "higher structural similarity index", 
      "reconstruction image quality", 
      "low-rank structure", 
      "non-rigid registration", 
      "motion registration", 
      "MC strategy", 
      "correction strategy", 
      "digital phantom", 
      "image acquisition", 
      "principal component analysis", 
      "improved image quality", 
      "number of techniques", 
      "spatiotemporal correlation", 
      "mean square error", 
      "better performance", 
      "lowest root mean square error", 
      "similarity index", 
      "rigid motion", 
      "motion artifacts", 
      "images", 
      "square error", 
      "rank structure", 
      "registration", 
      "artifacts", 
      "technique", 
      "performance", 
      "component analysis", 
      "SLR", 
      "quality", 
      "acquisition strategies", 
      "perfusion data", 
      "experienced cardiologists", 
      "clinical sequences", 
      "information", 
      "phantom experiments", 
      "aliasing", 
      "compensation strategy", 
      "patient studies", 
      "motion", 
      "strategies", 
      "significant degradation", 
      "error", 
      "phantom study", 
      "linear k", 
      "spatial resolution", 
      "acquisition", 
      "first-pass perfusion studies", 
      "high degree", 
      "data", 
      "experiments", 
      "coverage", 
      "fashion", 
      "sparcity", 
      "setting", 
      "interest", 
      "phantom", 
      "number", 
      "end", 
      "sequence", 
      "correction", 
      "resolution", 
      "approximation", 
      "SLR technique", 
      "phase shift", 
      "trends", 
      "CMR perfusion", 
      "analysis", 
      "structure", 
      "coronary artery disease", 
      "imaging", 
      "first approximation", 
      "degree", 
      "study", 
      "cardiologists", 
      "cardiovascular magnetic resonance perfusion", 
      "stress perfusion imaging", 
      "CMR studies", 
      "magnetic resonance perfusion", 
      "degradation", 
      "artery disease", 
      "heart", 
      "prognostic information", 
      "blinded fashion", 
      "perfusion imaging", 
      "correlation", 
      "perfusion studies", 
      "index", 
      "region", 
      "perfusion", 
      "subjects", 
      "problem", 
      "presence", 
      "shift", 
      "disease", 
      "Cardiovascular magnetic resonance (CMR) stress perfusion imaging", 
      "magnetic resonance (CMR) stress perfusion imaging", 
      "resonance (CMR) stress perfusion imaging", 
      "Current clinical sequences", 
      "incomplete heart coverage", 
      "heart coverage", 
      "first-pass perfusion data", 
      "simple robust motion correction strategy", 
      "robust motion correction strategy", 
      "sensing (CS) perfusion", 
      "simple respiratory motion compensation (MC) strategy", 
      "respiratory motion compensation (MC) strategy", 
      "compressed-sensing CMR perfusion", 
      "space phase shifts", 
      "rigid motion registration", 
      "variable density Poisson disk acquisition strategy", 
      "density Poisson disk acquisition strategy", 
      "Poisson disk acquisition strategy", 
      "disk acquisition strategy", 
      "coherent aliasing", 
      "CMR-extended cardiac torso digital (XCAT) phantom", 
      "cardiac torso digital (XCAT) phantom", 
      "torso digital (XCAT) phantom", 
      "SLR reconstruction image quality", 
      "robust rigid motion compensation strategy", 
      "rigid motion compensation strategy", 
      "Simple motion correction strategy", 
      "respiratory-induced motion artifacts", 
      "compressed-sensing cardiovascular magnetic resonance perfusion", 
      "resonance perfusion"
    ], 
    "name": "Simple motion correction strategy reduces respiratory-induced motion artifacts for k-t accelerated and compressed-sensing cardiovascular magnetic resonance perfusion imaging", 
    "pagination": "6", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1100730158"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12968-018-0427-1"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29386056"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12968-018-0427-1", 
      "https://app.dimensions.ai/details/publication/pub.1100730158"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:48", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_762.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s12968-018-0427-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12968-018-0427-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12968-018-0427-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12968-018-0427-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12968-018-0427-1'


 

This table displays all metadata directly associated to this object as RDF triples.

323 TRIPLES      22 PREDICATES      172 URIs      162 LITERALS      20 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12968-018-0427-1 schema:about N014dda1eb6de42a5bcc4019c6ed12b53
2 N2d458f8577fc4a2295d2d6d449ab49e3
3 N6c8fa337f9dc4c4e90bb476a8978e56e
4 N6d9cb94b79a746a9bbd115ed6a4a8829
5 N789d88a1248d44dd9288c256e8618d16
6 Na57bd1712e2a49d7a3cb3430c83eca78
7 Na73275107ae34dbd84b5f7e499f594a4
8 Nc30a3ad201e84f9da8f2016f67a264d3
9 Ncf21d2d9bc184e88ab794e900f61827b
10 Ne1baae4c6c0849bcae1132532e8e79ba
11 Ne6e3287c09ba49f28fce6eff74931612
12 Ned6720de6e3a4634808804084a1c5eb4
13 Nf20918e91c934548adc81a80baa94ab4
14 anzsrc-for:11
15 anzsrc-for:1102
16 schema:author N9921ef3e31d0443f9f596f57b09860d7
17 schema:citation sg:pub.10.1186/s12968-014-0063-3
18 sg:pub.10.1186/s12968-014-0090-0
19 schema:datePublished 2018-02-01
20 schema:datePublishedReg 2018-02-01
21 schema:description BACKGROUND: Cardiovascular magnetic resonance (CMR) stress perfusion imaging provides important diagnostic and prognostic information in coronary artery disease (CAD). Current clinical sequences have limited temporal and/or spatial resolution, and incomplete heart coverage. Techniques such as k-t principal component analysis (PCA) or k-t sparcity and low rank structure (SLR), which rely on the high degree of spatiotemporal correlation in first-pass perfusion data, can significantly accelerate image acquisition mitigating these problems. However, in the presence of respiratory motion, these techniques can suffer from significant degradation of image quality. A number of techniques based on non-rigid registration have been developed. However, to first approximation, breathing motion predominantly results in rigid motion of the heart. To this end, a simple robust motion correction strategy is proposed for k-t accelerated and compressed sensing (CS) perfusion imaging. METHODS: A simple respiratory motion compensation (MC) strategy for k-t accelerated and compressed-sensing CMR perfusion imaging to selectively correct respiratory motion of the heart was implemented based on linear k-space phase shifts derived from rigid motion registration of a region-of-interest (ROI) encompassing the heart. A variable density Poisson disk acquisition strategy was used to minimize coherent aliasing in the presence of respiratory motion, and images were reconstructed using k-t PCA and k-t SLR with or without motion correction. The strategy was evaluated in a CMR-extended cardiac torso digital (XCAT) phantom and in prospectively acquired first-pass perfusion studies in 12 subjects undergoing clinically ordered CMR studies. Phantom studies were assessed using the Structural Similarity Index (SSIM) and Root Mean Square Error (RMSE). In patient studies, image quality was scored in a blinded fashion by two experienced cardiologists. RESULTS: In the phantom experiments, images reconstructed with the MC strategy had higher SSIM (p < 0.01) and lower RMSE (p < 0.01) in the presence of respiratory motion. For patient studies, the MC strategy improved k-t PCA and k-t SLR reconstruction image quality (p < 0.01). The performance of k-t SLR without motion correction demonstrated improved image quality as compared to k-t PCA in the setting of respiratory motion (p < 0.01), while with motion correction there is a trend of better performance in k-t SLR as compared with motion corrected k-t PCA. CONCLUSIONS: Our simple and robust rigid motion compensation strategy greatly reduces motion artifacts and improves image quality for standard k-t PCA and k-t SLR techniques in setting of respiratory motion due to imperfect breath-holding.
22 schema:genre article
23 schema:inLanguage en
24 schema:isAccessibleForFree true
25 schema:isPartOf Na4526026c4eb4c4fa4b0bb9aa1e42b17
26 Nad8bb4c57caa403ea4c662fb59d4a847
27 sg:journal.1030439
28 schema:keywords CMR perfusion
29 CMR studies
30 CMR-extended cardiac torso digital (XCAT) phantom
31 Cardiovascular magnetic resonance (CMR) stress perfusion imaging
32 Current clinical sequences
33 MC strategy
34 Poisson disk acquisition strategy
35 SLR
36 SLR reconstruction image quality
37 SLR technique
38 Simple motion correction strategy
39 acquisition
40 acquisition strategies
41 aliasing
42 analysis
43 approximation
44 artery disease
45 artifacts
46 better performance
47 blinded fashion
48 cardiac torso digital (XCAT) phantom
49 cardiologists
50 cardiovascular magnetic resonance perfusion
51 clinical sequences
52 coherent aliasing
53 compensation strategy
54 component analysis
55 compressed-sensing CMR perfusion
56 compressed-sensing cardiovascular magnetic resonance perfusion
57 coronary artery disease
58 correction
59 correction strategy
60 correlation
61 coverage
62 data
63 degradation
64 degree
65 density Poisson disk acquisition strategy
66 digital phantom
67 disease
68 disk acquisition strategy
69 end
70 error
71 experienced cardiologists
72 experiments
73 fashion
74 first approximation
75 first-pass perfusion data
76 first-pass perfusion studies
77 heart
78 heart coverage
79 high degree
80 higher structural similarity index
81 image acquisition
82 image quality
83 images
84 imaging
85 improved image quality
86 incomplete heart coverage
87 index
88 information
89 interest
90 linear k
91 low-rank structure
92 lowest root mean square error
93 magnetic resonance (CMR) stress perfusion imaging
94 magnetic resonance perfusion
95 mean square error
96 motion
97 motion artifacts
98 motion compensation strategy
99 motion correction
100 motion correction strategies
101 motion registration
102 non-rigid registration
103 number
104 number of techniques
105 patient studies
106 performance
107 perfusion
108 perfusion data
109 perfusion imaging
110 perfusion studies
111 phantom
112 phantom experiments
113 phantom study
114 phase shift
115 presence
116 principal component analysis
117 problem
118 prognostic information
119 quality
120 rank structure
121 reconstruction image quality
122 region
123 registration
124 resolution
125 resonance (CMR) stress perfusion imaging
126 resonance perfusion
127 respiratory motion
128 respiratory motion compensation (MC) strategy
129 respiratory-induced motion artifacts
130 rigid motion
131 rigid motion compensation strategy
132 rigid motion registration
133 robust motion correction strategy
134 robust rigid motion compensation strategy
135 root mean square error
136 sensing (CS) perfusion
137 sequence
138 setting
139 shift
140 significant degradation
141 similarity index
142 simple respiratory motion compensation (MC) strategy
143 simple robust motion correction strategy
144 space phase shifts
145 sparcity
146 spatial resolution
147 spatiotemporal correlation
148 square error
149 strategies
150 stress perfusion imaging
151 structural similarity index
152 structure
153 study
154 subjects
155 technique
156 torso digital (XCAT) phantom
157 trends
158 variable density Poisson disk acquisition strategy
159 schema:name Simple motion correction strategy reduces respiratory-induced motion artifacts for k-t accelerated and compressed-sensing cardiovascular magnetic resonance perfusion imaging
160 schema:pagination 6
161 schema:productId N24c548b10ac942b289f6801bf23a83ab
162 N9e09c28c431548798303e3973d3eaef6
163 Nbd698c44fab44d05b6c9935d6d652f4f
164 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100730158
165 https://doi.org/10.1186/s12968-018-0427-1
166 schema:sdDatePublished 2022-01-01T18:48
167 schema:sdLicense https://scigraph.springernature.com/explorer/license/
168 schema:sdPublisher N45b602eed3a34b4a9bfade768c13eebd
169 schema:url https://doi.org/10.1186/s12968-018-0427-1
170 sgo:license sg:explorer/license/
171 sgo:sdDataset articles
172 rdf:type schema:ScholarlyArticle
173 N014dda1eb6de42a5bcc4019c6ed12b53 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
174 schema:name Predictive Value of Tests
175 rdf:type schema:DefinedTerm
176 N09839288a8c74dd99ff165e43f3d1587 rdf:first sg:person.01000767510.20
177 rdf:rest N4e97f6aca73443d3bda021f92b2a29e1
178 N2006ecd8974c4a9ab879565ca25a6176 rdf:first sg:person.012423017324.14
179 rdf:rest N84e0ebd49aac46bba1ce17a72328f63a
180 N24c548b10ac942b289f6801bf23a83ab schema:name pubmed_id
181 schema:value 29386056
182 rdf:type schema:PropertyValue
183 N2d458f8577fc4a2295d2d6d449ab49e3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
184 schema:name Blood Flow Velocity
185 rdf:type schema:DefinedTerm
186 N45b602eed3a34b4a9bfade768c13eebd schema:name Springer Nature - SN SciGraph project
187 rdf:type schema:Organization
188 N4c66c982ba424974b46bd7af441d0ba5 rdf:first sg:person.01142342663.73
189 rdf:rest Nb2117f8ed6484ee48454307dd764fa22
190 N4e97f6aca73443d3bda021f92b2a29e1 rdf:first sg:person.01017617022.52
191 rdf:rest rdf:nil
192 N6c8fa337f9dc4c4e90bb476a8978e56e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
193 schema:name Reproducibility of Results
194 rdf:type schema:DefinedTerm
195 N6ca2ae9c2f72449f99e278ce9a67da16 rdf:first sg:person.01203320171.13
196 rdf:rest N4c66c982ba424974b46bd7af441d0ba5
197 N6d9cb94b79a746a9bbd115ed6a4a8829 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
198 schema:name Magnetic Resonance Imaging
199 rdf:type schema:DefinedTerm
200 N789d88a1248d44dd9288c256e8618d16 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
201 schema:name Image Interpretation, Computer-Assisted
202 rdf:type schema:DefinedTerm
203 N84e0ebd49aac46bba1ce17a72328f63a rdf:first sg:person.012135136157.52
204 rdf:rest N6ca2ae9c2f72449f99e278ce9a67da16
205 N9921ef3e31d0443f9f596f57b09860d7 rdf:first sg:person.011030056324.40
206 rdf:rest N2006ecd8974c4a9ab879565ca25a6176
207 N9e09c28c431548798303e3973d3eaef6 schema:name dimensions_id
208 schema:value pub.1100730158
209 rdf:type schema:PropertyValue
210 Na4526026c4eb4c4fa4b0bb9aa1e42b17 schema:issueNumber 1
211 rdf:type schema:PublicationIssue
212 Na57bd1712e2a49d7a3cb3430c83eca78 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
213 schema:name Coronary Artery Disease
214 rdf:type schema:DefinedTerm
215 Na73275107ae34dbd84b5f7e499f594a4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
216 schema:name Humans
217 rdf:type schema:DefinedTerm
218 Nad8bb4c57caa403ea4c662fb59d4a847 schema:volumeNumber 20
219 rdf:type schema:PublicationVolume
220 Nb2117f8ed6484ee48454307dd764fa22 rdf:first sg:person.01316244413.88
221 rdf:rest N09839288a8c74dd99ff165e43f3d1587
222 Nbd698c44fab44d05b6c9935d6d652f4f schema:name doi
223 schema:value 10.1186/s12968-018-0427-1
224 rdf:type schema:PropertyValue
225 Nc30a3ad201e84f9da8f2016f67a264d3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
226 schema:name Myocardial Perfusion Imaging
227 rdf:type schema:DefinedTerm
228 Ncf21d2d9bc184e88ab794e900f61827b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
229 schema:name Breath Holding
230 rdf:type schema:DefinedTerm
231 Ne1baae4c6c0849bcae1132532e8e79ba schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
232 schema:name Coronary Circulation
233 rdf:type schema:DefinedTerm
234 Ne6e3287c09ba49f28fce6eff74931612 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
235 schema:name Artifacts
236 rdf:type schema:DefinedTerm
237 Ned6720de6e3a4634808804084a1c5eb4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
238 schema:name Phantoms, Imaging
239 rdf:type schema:DefinedTerm
240 Nf20918e91c934548adc81a80baa94ab4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
241 schema:name Respiration
242 rdf:type schema:DefinedTerm
243 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
244 schema:name Medical and Health Sciences
245 rdf:type schema:DefinedTerm
246 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
247 schema:name Cardiorespiratory Medicine and Haematology
248 rdf:type schema:DefinedTerm
249 sg:grant.2419852 http://pending.schema.org/fundedItem sg:pub.10.1186/s12968-018-0427-1
250 rdf:type schema:MonetaryGrant
251 sg:grant.6616869 http://pending.schema.org/fundedItem sg:pub.10.1186/s12968-018-0427-1
252 rdf:type schema:MonetaryGrant
253 sg:journal.1030439 schema:issn 1548-7679
254 1879-2855
255 schema:name Journal of Cardiovascular Magnetic Resonance
256 schema:publisher Springer Nature
257 rdf:type schema:Periodical
258 sg:person.01000767510.20 schema:affiliation grid-institutes:grid.482286.2
259 schema:familyName Kozerke
260 schema:givenName Sebastian
261 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01000767510.20
262 rdf:type schema:Person
263 sg:person.01017617022.52 schema:affiliation grid-institutes:grid.412587.d
264 schema:familyName Salerno
265 schema:givenName Michael
266 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01017617022.52
267 rdf:type schema:Person
268 sg:person.011030056324.40 schema:affiliation grid-institutes:grid.412587.d
269 schema:familyName Zhou
270 schema:givenName Ruixi
271 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011030056324.40
272 rdf:type schema:Person
273 sg:person.01142342663.73 schema:affiliation grid-institutes:grid.27755.32
274 schema:familyName Weller
275 schema:givenName Daniel S
276 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01142342663.73
277 rdf:type schema:Person
278 sg:person.01203320171.13 schema:affiliation grid-institutes:grid.415886.6
279 schema:familyName Chen
280 schema:givenName Xiao
281 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01203320171.13
282 rdf:type schema:Person
283 sg:person.012135136157.52 schema:affiliation grid-institutes:grid.412587.d
284 schema:familyName Yang
285 schema:givenName Yang
286 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012135136157.52
287 rdf:type schema:Person
288 sg:person.012423017324.14 schema:affiliation grid-institutes:grid.412587.d
289 schema:familyName Huang
290 schema:givenName Wei
291 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012423017324.14
292 rdf:type schema:Person
293 sg:person.01316244413.88 schema:affiliation grid-institutes:grid.412587.d
294 schema:familyName Kramer
295 schema:givenName Christopher M
296 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01316244413.88
297 rdf:type schema:Person
298 sg:pub.10.1186/s12968-014-0063-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003182106
299 https://doi.org/10.1186/s12968-014-0063-3
300 rdf:type schema:CreativeWork
301 sg:pub.10.1186/s12968-014-0090-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026937404
302 https://doi.org/10.1186/s12968-014-0090-0
303 rdf:type schema:CreativeWork
304 grid-institutes:grid.27755.32 schema:alternateName Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA, USA.
305 schema:name Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA, USA.
306 rdf:type schema:Organization
307 grid-institutes:grid.412587.d schema:alternateName Department of Biomedical Engineering, University of Virginia Health System, Charlottesville, VA, USA.
308 Department of Medicine, University of Virginia Health System, Charlottesville, VA, USA.
309 Department of Radiology and Medical Imaging, University of Virginia Health System, Charlottesville, VA, USA.
310 Department of Radiology and Medical Imaging, University of Virginia Health System, Charlottesville, VA, USA. ms5pc@virginia.edu.
311 schema:name Department of Biomedical Engineering, University of Virginia Health System, Charlottesville, VA, USA.
312 Department of Biomedical Engineering, University of Virginia Health System, Charlottesville, VA, USA. ms5pc@virginia.edu.
313 Department of Medicine, University of Virginia Health System, Charlottesville, VA, USA.
314 Department of Medicine, University of Virginia Health System, Charlottesville, VA, USA. ms5pc@virginia.edu.
315 Department of Radiology and Medical Imaging, University of Virginia Health System, Charlottesville, VA, USA.
316 Department of Radiology and Medical Imaging, University of Virginia Health System, Charlottesville, VA, USA. ms5pc@virginia.edu.
317 rdf:type schema:Organization
318 grid-institutes:grid.415886.6 schema:alternateName Medical Imaging Technologies, Siemens Healthineers, Princeton, NJ, USA.
319 schema:name Medical Imaging Technologies, Siemens Healthineers, Princeton, NJ, USA.
320 rdf:type schema:Organization
321 grid-institutes:grid.482286.2 schema:alternateName Department of Information Technology and Electrical Engineering, Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland.
322 schema:name Department of Information Technology and Electrical Engineering, Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland.
323 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...