Black-blood thrombus imaging (BTI): a contrast-free cardiovascular magnetic resonance approach for the diagnosis of non-acute deep vein thrombosis View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-12

AUTHORS

Guoxi Xie, Hanwei Chen, Xueping He, Jianke Liang, Wei Deng, Zhuonan He, Yufeng Ye, Qi Yang, Xiaoming Bi, Xin Liu, Debiao Li, Zhaoyang Fan

ABSTRACT

BACKGROUND: Deep vein thrombosis (DVT) is a common but elusive illness that can result in long-term disability or death. Accurate detection of thrombosis and assessment of its size and distribution are critical for treatment decision-making. In the present study, we sought to develop and evaluate a cardiovascular magnetic resonance (CMR) black-blood thrombus imaging (BTI) technique, based on delay alternating with nutation for tailored excitation black-blood preparation and variable flip angle turbo-spin-echo readout, for the diagnosis of non-acute DVT. METHODS: This prospective study was approved by institutional review board and informed consent obtained from all subjects. BTI was first conducted in 11 healthy subjects for parameter optimization and then conducted in 18 non-acute DVT patients to evaluate its diagnostic performance. Two clinically used CMR techniques, contrast-enhanced CMR venography (CE-MRV) and three dimensional magnetization prepared rapid acquisition gradient echo (MPRAGE), were also conducted in all patients for comparison. All images obtained from patients were analyzed on a per-segment basis. Using the consensus diagnosis of CE-MRV as the reference, the sensitivity (SE), specificity (SP), positive and negative predictive values (PPV and NPV), and accuracy (ACC) of BTI and MPRAGE as well as their diagnostic agreement with CE-MRV were calculated. Besides, diagnostic confidence and interreader diagnostic agreement were evaluated for all three techniques. RESULTS: BTI with optimized parameters effectively nulled the venous blood flow signal and allowed directly visualizing the thrombus within the black-blood lumen. Higher SE (90.4% vs 67.6%), SP (99.0% vs. 97.4%), PPV (95.4% vs. 85.6%), NPV (97.8% vs 92.9%) and ACC (97.4% vs. 91.8%) were obtained by BTI in comparison with MPRAGE. Good diagnostic confidence and excellent diagnostic and interreader agreements were achieved by BTI, which were superior to MPRAGE on detecting the chronic thrombus. CONCLUSION: BTI allows direct visualization of non-acute DVT within the dark venous lumen and has the potential to be a reliable diagnostic tool without the use of contrast medium. More... »

PAGES

4

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12968-016-0320-8

DOI

http://dx.doi.org/10.1186/s12968-016-0320-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1014715046

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28095878


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Case-Control Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chronic Disease", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Contrast Media", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gadolinium DTPA", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Interpretation, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Imaging, Three-Dimensional", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Angiography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Observer Variation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phlebography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Predictive Value of Tests", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Venous Thrombosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Young Adult", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Cedars-Sinai Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.50956.3f", 
          "name": [
            "Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, CAS, 518055, Guangdong, China", 
            "Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Pacific Theatres Building, Suite 800, 8700 Beverly Blvd, 90048, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xie", 
        "givenName": "Guoxi", 
        "id": "sg:person.01240364572.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01240364572.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Panyu District Central Hospital", 
          "id": "https://www.grid.ac/institutes/grid.459864.2", 
          "name": [
            "Department of Radiology, Guangzhou Panyu Central Hospital, 511400, Guangzhou, Guangdong, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Hanwei", 
        "id": "sg:person.0607062163.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0607062163.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Guangzhou University of Chinese Medicine", 
          "id": "https://www.grid.ac/institutes/grid.411866.c", 
          "name": [
            "Department of Radiology, Guangzhou Panyu Central Hospital, 511400, Guangzhou, Guangdong, China", 
            "Guangzhou University of Chinese Medicine, 510405, Guangzhou, Guangdong, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "He", 
        "givenName": "Xueping", 
        "id": "sg:person.016055225063.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016055225063.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Panyu District Central Hospital", 
          "id": "https://www.grid.ac/institutes/grid.459864.2", 
          "name": [
            "Department of Radiology, Guangzhou Panyu Central Hospital, 511400, Guangzhou, Guangdong, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liang", 
        "givenName": "Jianke", 
        "id": "sg:person.016652605463.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016652605463.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Panyu District Central Hospital", 
          "id": "https://www.grid.ac/institutes/grid.459864.2", 
          "name": [
            "Department of Radiology, Guangzhou Panyu Central Hospital, 511400, Guangzhou, Guangdong, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Deng", 
        "givenName": "Wei", 
        "id": "sg:person.07356014763.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07356014763.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Panyu District Central Hospital", 
          "id": "https://www.grid.ac/institutes/grid.459864.2", 
          "name": [
            "Department of Radiology, Guangzhou Panyu Central Hospital, 511400, Guangzhou, Guangdong, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "He", 
        "givenName": "Zhuonan", 
        "id": "sg:person.010153375363.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010153375363.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Panyu District Central Hospital", 
          "id": "https://www.grid.ac/institutes/grid.459864.2", 
          "name": [
            "Department of Radiology, Guangzhou Panyu Central Hospital, 511400, Guangzhou, Guangdong, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ye", 
        "givenName": "Yufeng", 
        "id": "sg:person.010750755763.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010750755763.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Xuan Wu Hospital of the Capital Medical University", 
          "id": "https://www.grid.ac/institutes/grid.413259.8", 
          "name": [
            "Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Pacific Theatres Building, Suite 800, 8700 Beverly Blvd, 90048, Los Angeles, CA, USA", 
            "Department of Radiology, Xuanwu Hospital, 100053, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Qi", 
        "id": "sg:person.01353064311.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353064311.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "MR R&D, Siemens Healthcare, 90048, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bi", 
        "givenName": "Xiaoming", 
        "id": "sg:person.01066244563.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066244563.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shenzhen Institutes of Advanced Technology", 
          "id": "https://www.grid.ac/institutes/grid.458489.c", 
          "name": [
            "Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, CAS, 518055, Guangdong, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Xin", 
        "id": "sg:person.015203005124.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015203005124.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cedars-Sinai Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.50956.3f", 
          "name": [
            "Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Pacific Theatres Building, Suite 800, 8700 Beverly Blvd, 90048, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Debiao", 
        "id": "sg:person.01152021525.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152021525.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cedars-Sinai Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.50956.3f", 
          "name": [
            "Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Pacific Theatres Building, Suite 800, 8700 Beverly Blvd, 90048, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fan", 
        "givenName": "Zhaoyang", 
        "id": "sg:person.01136172260.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136172260.58"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/jmri.24986", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000362253"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.25785", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002669954"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/strokeaha.115.011369", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002979634"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/strokeaha.115.011369", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002979634"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1538-7836.2003.00333.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005131876"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circulationaha.113.001371", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005253113"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circulationaha.113.001371", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005253113"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jcu.20236", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006397911"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0268355514528691", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007929115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0268355514528691", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007929115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.21385", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009186956"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/emj.2004.020610", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011315646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2431062144", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017017949"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1538-7836.2008.02986.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020018019"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1538-7836.2007.02450.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021040195"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1538-7836.2007.02450.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021040195"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(11)61753-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022670203"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/atvbaha.111.229088", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024560275"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/atvbaha.111.229088", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024560275"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.211.1.r99ap4739", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025204001"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.25667", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025561083"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00005082-200107000-00004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027413497"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00005082-200107000-00004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027413497"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0268355514529697", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032886410"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0268355514529697", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032886410"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.14131717", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034589508"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mri.2015.10.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034784668"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0096(199709)25:7<343::aid-jcu1>3.0.co;2-a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035926936"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jemermed.2012.11.044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038152915"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0000000000000142", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038288140"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0000000000000142", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038288140"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0b013e3181b4c218", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038853940"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0b013e3181b4c218", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038853940"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0b013e3181b4c218", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038853940"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1182/blood-2014-04-566380", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038946182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(05)71880-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041759358"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10334-009-0189-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042071819", 
          "https://doi.org/10.1007/s10334-009-0189-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10334-009-0189-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042071819", 
          "https://doi.org/10.1007/s10334-009-0189-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10334-009-0189-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042071819", 
          "https://doi.org/10.1007/s10334-009-0189-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.24142", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042401520"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2342-5-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048837898", 
          "https://doi.org/10.1186/1471-2342-5-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2342-5-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048837898", 
          "https://doi.org/10.1186/1471-2342-5-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1253/circj.cj-88-0010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050750906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2529310", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069974986"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1055/s-0037-1613461", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1075277394"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-12", 
    "datePublishedReg": "2017-12-01", 
    "description": "BACKGROUND: Deep vein thrombosis (DVT) is a common but elusive illness that can result in long-term disability or death. Accurate detection of thrombosis and assessment of its size and distribution are critical for treatment decision-making. In the present study, we sought to develop and evaluate a cardiovascular magnetic resonance (CMR) black-blood thrombus imaging (BTI) technique, based on delay alternating with nutation for tailored excitation black-blood preparation and variable flip angle turbo-spin-echo readout, for the diagnosis of non-acute DVT. METHODS: This prospective study was approved by institutional review board and informed consent obtained from all subjects. BTI was first conducted in 11 healthy subjects for parameter optimization and then conducted in 18 non-acute DVT patients to evaluate its diagnostic performance. Two clinically used CMR techniques, contrast-enhanced CMR venography (CE-MRV) and three dimensional magnetization prepared rapid acquisition gradient echo (MPRAGE), were also conducted in all patients for comparison. All images obtained from patients were analyzed on a per-segment basis. Using the consensus diagnosis of CE-MRV as the reference, the sensitivity (SE), specificity (SP), positive and negative predictive values (PPV and NPV), and accuracy (ACC) of BTI and MPRAGE as well as their diagnostic agreement with CE-MRV were calculated. Besides, diagnostic confidence and interreader diagnostic agreement were evaluated for all three techniques.\nRESULTS: BTI with optimized parameters effectively nulled the venous blood flow signal and allowed directly visualizing the thrombus within the black-blood lumen. Higher SE (90.4% vs 67.6%), SP (99.0% vs. 97.4%), PPV (95.4% vs. 85.6%), NPV (97.8% vs 92.9%) and ACC (97.4% vs. 91.8%) were obtained by BTI in comparison with MPRAGE. Good diagnostic confidence and excellent diagnostic and interreader agreements were achieved by BTI, which were superior to MPRAGE on detecting the chronic thrombus.\nCONCLUSION: BTI allows direct visualization of non-acute DVT within the dark venous lumen and has the potential to be a reliable diagnostic tool without the use of contrast medium.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12968-016-0320-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7195618", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1030439", 
        "issn": [
          "1548-7679", 
          "1879-2855"
        ], 
        "name": "Journal of Cardiovascular Magnetic Resonance", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "19"
      }
    ], 
    "name": "Black-blood thrombus imaging (BTI): a contrast-free cardiovascular magnetic resonance approach for the diagnosis of non-acute deep vein thrombosis", 
    "pagination": "4", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "461af7115872b0221f6041d57b4d05cf16c29834093e1e92446d7860cba24d44"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28095878"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9815616"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12968-016-0320-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1014715046"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12968-016-0320-8", 
      "https://app.dimensions.ai/details/publication/pub.1014715046"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:56", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89804_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs12968-016-0320-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12968-016-0320-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12968-016-0320-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12968-016-0320-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12968-016-0320-8'


 

This table displays all metadata directly associated to this object as RDF triples.

343 TRIPLES      21 PREDICATES      81 URIs      41 LITERALS      29 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12968-016-0320-8 schema:about N1520e94c93ed43c1bde44cda3a60464e
2 N179b70af8b844c299b307ac6eb23df98
3 N1c61a97e2aca40ec98bf85e10197b58e
4 N3342c79e54e344f3ac1b411fb0f5419d
5 N4bb27f04b80f479bbe40519eb751d789
6 N4c3e44d8ae64443ca785d7256da9ba34
7 N4f0a939bbbca437e841e5c7c003fe96c
8 N6598e645557f4f9484e3008353e191b9
9 N6d212494b44c4672842ead23a5364476
10 N79bd28171c18402680566ca189ff0a98
11 N91388388f08742d6a265df4e07bc4c27
12 N97dd941fc78248fe987f7f1252ea2e74
13 Na3106312b28a4b0fba18e468fc4066d1
14 Naefa0257de0040c4ada13336350c59ea
15 Nb2534b5b73da437e9a1468140a088f20
16 Nb36fc6f1098a4b3296add22e26907f99
17 Nb63f54523c014c54ae4a6455fbb5e2e9
18 Nc8223d02e58b4095bcd3a70349de3841
19 Nf650ee91e4834cd69e3c5e695393ef26
20 Nf7d81248f12b47a2a7909f64a231a77e
21 anzsrc-for:11
22 anzsrc-for:1103
23 schema:author Nc25084a782e74462acd5458d70e93b44
24 schema:citation sg:pub.10.1007/s10334-009-0189-8
25 sg:pub.10.1186/1471-2342-5-6
26 https://doi.org/10.1002/(sici)1097-0096(199709)25:7<343::aid-jcu1>3.0.co;2-a
27 https://doi.org/10.1002/jcu.20236
28 https://doi.org/10.1002/jmri.24986
29 https://doi.org/10.1002/mrm.21385
30 https://doi.org/10.1002/mrm.24142
31 https://doi.org/10.1002/mrm.25667
32 https://doi.org/10.1002/mrm.25785
33 https://doi.org/10.1016/j.jemermed.2012.11.044
34 https://doi.org/10.1016/j.mri.2015.10.002
35 https://doi.org/10.1016/s0140-6736(05)71880-8
36 https://doi.org/10.1016/s0140-6736(11)61753-4
37 https://doi.org/10.1046/j.1538-7836.2003.00333.x
38 https://doi.org/10.1055/s-0037-1613461
39 https://doi.org/10.1097/00005082-200107000-00004
40 https://doi.org/10.1097/rli.0000000000000142
41 https://doi.org/10.1097/rli.0b013e3181b4c218
42 https://doi.org/10.1111/j.1538-7836.2007.02450.x
43 https://doi.org/10.1111/j.1538-7836.2008.02986.x
44 https://doi.org/10.1136/emj.2004.020610
45 https://doi.org/10.1148/radiol.14131717
46 https://doi.org/10.1148/radiol.2431062144
47 https://doi.org/10.1148/radiology.211.1.r99ap4739
48 https://doi.org/10.1161/atvbaha.111.229088
49 https://doi.org/10.1161/circulationaha.113.001371
50 https://doi.org/10.1161/strokeaha.115.011369
51 https://doi.org/10.1177/0268355514528691
52 https://doi.org/10.1177/0268355514529697
53 https://doi.org/10.1182/blood-2014-04-566380
54 https://doi.org/10.1253/circj.cj-88-0010
55 https://doi.org/10.2307/2529310
56 schema:datePublished 2017-12
57 schema:datePublishedReg 2017-12-01
58 schema:description BACKGROUND: Deep vein thrombosis (DVT) is a common but elusive illness that can result in long-term disability or death. Accurate detection of thrombosis and assessment of its size and distribution are critical for treatment decision-making. In the present study, we sought to develop and evaluate a cardiovascular magnetic resonance (CMR) black-blood thrombus imaging (BTI) technique, based on delay alternating with nutation for tailored excitation black-blood preparation and variable flip angle turbo-spin-echo readout, for the diagnosis of non-acute DVT. METHODS: This prospective study was approved by institutional review board and informed consent obtained from all subjects. BTI was first conducted in 11 healthy subjects for parameter optimization and then conducted in 18 non-acute DVT patients to evaluate its diagnostic performance. Two clinically used CMR techniques, contrast-enhanced CMR venography (CE-MRV) and three dimensional magnetization prepared rapid acquisition gradient echo (MPRAGE), were also conducted in all patients for comparison. All images obtained from patients were analyzed on a per-segment basis. Using the consensus diagnosis of CE-MRV as the reference, the sensitivity (SE), specificity (SP), positive and negative predictive values (PPV and NPV), and accuracy (ACC) of BTI and MPRAGE as well as their diagnostic agreement with CE-MRV were calculated. Besides, diagnostic confidence and interreader diagnostic agreement were evaluated for all three techniques. RESULTS: BTI with optimized parameters effectively nulled the venous blood flow signal and allowed directly visualizing the thrombus within the black-blood lumen. Higher SE (90.4% vs 67.6%), SP (99.0% vs. 97.4%), PPV (95.4% vs. 85.6%), NPV (97.8% vs 92.9%) and ACC (97.4% vs. 91.8%) were obtained by BTI in comparison with MPRAGE. Good diagnostic confidence and excellent diagnostic and interreader agreements were achieved by BTI, which were superior to MPRAGE on detecting the chronic thrombus. CONCLUSION: BTI allows direct visualization of non-acute DVT within the dark venous lumen and has the potential to be a reliable diagnostic tool without the use of contrast medium.
59 schema:genre research_article
60 schema:inLanguage en
61 schema:isAccessibleForFree true
62 schema:isPartOf N6ee1ddb461b040b68160f9f73a93ee01
63 N8018dd4bd58a45cfac7943a3647f2ca5
64 sg:journal.1030439
65 schema:name Black-blood thrombus imaging (BTI): a contrast-free cardiovascular magnetic resonance approach for the diagnosis of non-acute deep vein thrombosis
66 schema:pagination 4
67 schema:productId N14d49406f2494d53ba898588621cd38f
68 N399c91930f9440c396d567364f5a9798
69 N5f2167159ee7405c99e5c71b5bfcb341
70 N720b1e027f844b1d8eae069aaa19c06f
71 Nd14ba022e31e421e85b4bf8871e6dde5
72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014715046
73 https://doi.org/10.1186/s12968-016-0320-8
74 schema:sdDatePublished 2019-04-11T09:56
75 schema:sdLicense https://scigraph.springernature.com/explorer/license/
76 schema:sdPublisher N53c620d8f6de49889d03ff1be70a6088
77 schema:url https://link.springer.com/10.1186%2Fs12968-016-0320-8
78 sgo:license sg:explorer/license/
79 sgo:sdDataset articles
80 rdf:type schema:ScholarlyArticle
81 N0517ae700e5f4d51b3546017d88453d7 rdf:first sg:person.01136172260.58
82 rdf:rest rdf:nil
83 N14d49406f2494d53ba898588621cd38f schema:name dimensions_id
84 schema:value pub.1014715046
85 rdf:type schema:PropertyValue
86 N1520e94c93ed43c1bde44cda3a60464e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Case-Control Studies
88 rdf:type schema:DefinedTerm
89 N179b70af8b844c299b307ac6eb23df98 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name Phlebography
91 rdf:type schema:DefinedTerm
92 N1c61a97e2aca40ec98bf85e10197b58e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Young Adult
94 rdf:type schema:DefinedTerm
95 N1d812102ee024b968fbd4cdcf097b029 rdf:first sg:person.016652605463.52
96 rdf:rest N87b9c8ff3032488da4e72cef18b12e18
97 N3342c79e54e344f3ac1b411fb0f5419d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Gadolinium DTPA
99 rdf:type schema:DefinedTerm
100 N399c91930f9440c396d567364f5a9798 schema:name doi
101 schema:value 10.1186/s12968-016-0320-8
102 rdf:type schema:PropertyValue
103 N3f3660b8c8144b5e9a3bfa23d030510a rdf:first sg:person.01066244563.44
104 rdf:rest N6a907a6ee88e4512bd7df25b7cd004d6
105 N4bb27f04b80f479bbe40519eb751d789 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Aged
107 rdf:type schema:DefinedTerm
108 N4c3e44d8ae64443ca785d7256da9ba34 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Magnetic Resonance Angiography
110 rdf:type schema:DefinedTerm
111 N4f0a939bbbca437e841e5c7c003fe96c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Adult
113 rdf:type schema:DefinedTerm
114 N52f607736593479eb393814de33237b7 rdf:first sg:person.01353064311.62
115 rdf:rest N3f3660b8c8144b5e9a3bfa23d030510a
116 N53c620d8f6de49889d03ff1be70a6088 schema:name Springer Nature - SN SciGraph project
117 rdf:type schema:Organization
118 N55279fa6feb944e0a9a927ca9dbe85e0 schema:name MR R&D, Siemens Healthcare, 90048, Los Angeles, CA, USA
119 rdf:type schema:Organization
120 N5f2167159ee7405c99e5c71b5bfcb341 schema:name nlm_unique_id
121 schema:value 9815616
122 rdf:type schema:PropertyValue
123 N6598e645557f4f9484e3008353e191b9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Image Interpretation, Computer-Assisted
125 rdf:type schema:DefinedTerm
126 N6a907a6ee88e4512bd7df25b7cd004d6 rdf:first sg:person.015203005124.97
127 rdf:rest Nbf9db706fc764b019f7b701c4db4345f
128 N6d212494b44c4672842ead23a5364476 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Predictive Value of Tests
130 rdf:type schema:DefinedTerm
131 N6ee1ddb461b040b68160f9f73a93ee01 schema:issueNumber 1
132 rdf:type schema:PublicationIssue
133 N720b1e027f844b1d8eae069aaa19c06f schema:name pubmed_id
134 schema:value 28095878
135 rdf:type schema:PropertyValue
136 N79bd28171c18402680566ca189ff0a98 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Contrast Media
138 rdf:type schema:DefinedTerm
139 N8018dd4bd58a45cfac7943a3647f2ca5 schema:volumeNumber 19
140 rdf:type schema:PublicationVolume
141 N828973902d544f4f8e9fa38ca5f1944a rdf:first sg:person.016055225063.44
142 rdf:rest N1d812102ee024b968fbd4cdcf097b029
143 N87b9c8ff3032488da4e72cef18b12e18 rdf:first sg:person.07356014763.21
144 rdf:rest N8aa72b438319489b95cd62324277a7a9
145 N8aa72b438319489b95cd62324277a7a9 rdf:first sg:person.010153375363.55
146 rdf:rest Nba4ba3f71c1f472fa4db89e03371dfab
147 N91388388f08742d6a265df4e07bc4c27 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Male
149 rdf:type schema:DefinedTerm
150 N97dd941fc78248fe987f7f1252ea2e74 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Imaging, Three-Dimensional
152 rdf:type schema:DefinedTerm
153 Na3106312b28a4b0fba18e468fc4066d1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name Observer Variation
155 rdf:type schema:DefinedTerm
156 Naefa0257de0040c4ada13336350c59ea schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
157 schema:name Humans
158 rdf:type schema:DefinedTerm
159 Nb2534b5b73da437e9a1468140a088f20 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
160 schema:name Middle Aged
161 rdf:type schema:DefinedTerm
162 Nb36fc6f1098a4b3296add22e26907f99 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
163 schema:name Venous Thrombosis
164 rdf:type schema:DefinedTerm
165 Nb63f54523c014c54ae4a6455fbb5e2e9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
166 schema:name Chronic Disease
167 rdf:type schema:DefinedTerm
168 Nba4ba3f71c1f472fa4db89e03371dfab rdf:first sg:person.010750755763.16
169 rdf:rest N52f607736593479eb393814de33237b7
170 Nbf9db706fc764b019f7b701c4db4345f rdf:first sg:person.01152021525.33
171 rdf:rest N0517ae700e5f4d51b3546017d88453d7
172 Nc25084a782e74462acd5458d70e93b44 rdf:first sg:person.01240364572.83
173 rdf:rest Nd02d1e179a5749a9a71f285dbd1de5fb
174 Nc8223d02e58b4095bcd3a70349de3841 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
175 schema:name Reproducibility of Results
176 rdf:type schema:DefinedTerm
177 Nd02d1e179a5749a9a71f285dbd1de5fb rdf:first sg:person.0607062163.73
178 rdf:rest N828973902d544f4f8e9fa38ca5f1944a
179 Nd14ba022e31e421e85b4bf8871e6dde5 schema:name readcube_id
180 schema:value 461af7115872b0221f6041d57b4d05cf16c29834093e1e92446d7860cba24d44
181 rdf:type schema:PropertyValue
182 Nf650ee91e4834cd69e3c5e695393ef26 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
183 schema:name Female
184 rdf:type schema:DefinedTerm
185 Nf7d81248f12b47a2a7909f64a231a77e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
186 schema:name Prospective Studies
187 rdf:type schema:DefinedTerm
188 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
189 schema:name Medical and Health Sciences
190 rdf:type schema:DefinedTerm
191 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
192 schema:name Clinical Sciences
193 rdf:type schema:DefinedTerm
194 sg:grant.7195618 http://pending.schema.org/fundedItem sg:pub.10.1186/s12968-016-0320-8
195 rdf:type schema:MonetaryGrant
196 sg:journal.1030439 schema:issn 1548-7679
197 1879-2855
198 schema:name Journal of Cardiovascular Magnetic Resonance
199 rdf:type schema:Periodical
200 sg:person.010153375363.55 schema:affiliation https://www.grid.ac/institutes/grid.459864.2
201 schema:familyName He
202 schema:givenName Zhuonan
203 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010153375363.55
204 rdf:type schema:Person
205 sg:person.01066244563.44 schema:affiliation N55279fa6feb944e0a9a927ca9dbe85e0
206 schema:familyName Bi
207 schema:givenName Xiaoming
208 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066244563.44
209 rdf:type schema:Person
210 sg:person.010750755763.16 schema:affiliation https://www.grid.ac/institutes/grid.459864.2
211 schema:familyName Ye
212 schema:givenName Yufeng
213 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010750755763.16
214 rdf:type schema:Person
215 sg:person.01136172260.58 schema:affiliation https://www.grid.ac/institutes/grid.50956.3f
216 schema:familyName Fan
217 schema:givenName Zhaoyang
218 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136172260.58
219 rdf:type schema:Person
220 sg:person.01152021525.33 schema:affiliation https://www.grid.ac/institutes/grid.50956.3f
221 schema:familyName Li
222 schema:givenName Debiao
223 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152021525.33
224 rdf:type schema:Person
225 sg:person.01240364572.83 schema:affiliation https://www.grid.ac/institutes/grid.50956.3f
226 schema:familyName Xie
227 schema:givenName Guoxi
228 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01240364572.83
229 rdf:type schema:Person
230 sg:person.01353064311.62 schema:affiliation https://www.grid.ac/institutes/grid.413259.8
231 schema:familyName Yang
232 schema:givenName Qi
233 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353064311.62
234 rdf:type schema:Person
235 sg:person.015203005124.97 schema:affiliation https://www.grid.ac/institutes/grid.458489.c
236 schema:familyName Liu
237 schema:givenName Xin
238 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015203005124.97
239 rdf:type schema:Person
240 sg:person.016055225063.44 schema:affiliation https://www.grid.ac/institutes/grid.411866.c
241 schema:familyName He
242 schema:givenName Xueping
243 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016055225063.44
244 rdf:type schema:Person
245 sg:person.016652605463.52 schema:affiliation https://www.grid.ac/institutes/grid.459864.2
246 schema:familyName Liang
247 schema:givenName Jianke
248 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016652605463.52
249 rdf:type schema:Person
250 sg:person.0607062163.73 schema:affiliation https://www.grid.ac/institutes/grid.459864.2
251 schema:familyName Chen
252 schema:givenName Hanwei
253 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0607062163.73
254 rdf:type schema:Person
255 sg:person.07356014763.21 schema:affiliation https://www.grid.ac/institutes/grid.459864.2
256 schema:familyName Deng
257 schema:givenName Wei
258 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07356014763.21
259 rdf:type schema:Person
260 sg:pub.10.1007/s10334-009-0189-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042071819
261 https://doi.org/10.1007/s10334-009-0189-8
262 rdf:type schema:CreativeWork
263 sg:pub.10.1186/1471-2342-5-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048837898
264 https://doi.org/10.1186/1471-2342-5-6
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1002/(sici)1097-0096(199709)25:7<343::aid-jcu1>3.0.co;2-a schema:sameAs https://app.dimensions.ai/details/publication/pub.1035926936
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1002/jcu.20236 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006397911
269 rdf:type schema:CreativeWork
270 https://doi.org/10.1002/jmri.24986 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000362253
271 rdf:type schema:CreativeWork
272 https://doi.org/10.1002/mrm.21385 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009186956
273 rdf:type schema:CreativeWork
274 https://doi.org/10.1002/mrm.24142 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042401520
275 rdf:type schema:CreativeWork
276 https://doi.org/10.1002/mrm.25667 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025561083
277 rdf:type schema:CreativeWork
278 https://doi.org/10.1002/mrm.25785 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002669954
279 rdf:type schema:CreativeWork
280 https://doi.org/10.1016/j.jemermed.2012.11.044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038152915
281 rdf:type schema:CreativeWork
282 https://doi.org/10.1016/j.mri.2015.10.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034784668
283 rdf:type schema:CreativeWork
284 https://doi.org/10.1016/s0140-6736(05)71880-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041759358
285 rdf:type schema:CreativeWork
286 https://doi.org/10.1016/s0140-6736(11)61753-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022670203
287 rdf:type schema:CreativeWork
288 https://doi.org/10.1046/j.1538-7836.2003.00333.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1005131876
289 rdf:type schema:CreativeWork
290 https://doi.org/10.1055/s-0037-1613461 schema:sameAs https://app.dimensions.ai/details/publication/pub.1075277394
291 rdf:type schema:CreativeWork
292 https://doi.org/10.1097/00005082-200107000-00004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027413497
293 rdf:type schema:CreativeWork
294 https://doi.org/10.1097/rli.0000000000000142 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038288140
295 rdf:type schema:CreativeWork
296 https://doi.org/10.1097/rli.0b013e3181b4c218 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038853940
297 rdf:type schema:CreativeWork
298 https://doi.org/10.1111/j.1538-7836.2007.02450.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1021040195
299 rdf:type schema:CreativeWork
300 https://doi.org/10.1111/j.1538-7836.2008.02986.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1020018019
301 rdf:type schema:CreativeWork
302 https://doi.org/10.1136/emj.2004.020610 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011315646
303 rdf:type schema:CreativeWork
304 https://doi.org/10.1148/radiol.14131717 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034589508
305 rdf:type schema:CreativeWork
306 https://doi.org/10.1148/radiol.2431062144 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017017949
307 rdf:type schema:CreativeWork
308 https://doi.org/10.1148/radiology.211.1.r99ap4739 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025204001
309 rdf:type schema:CreativeWork
310 https://doi.org/10.1161/atvbaha.111.229088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024560275
311 rdf:type schema:CreativeWork
312 https://doi.org/10.1161/circulationaha.113.001371 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005253113
313 rdf:type schema:CreativeWork
314 https://doi.org/10.1161/strokeaha.115.011369 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002979634
315 rdf:type schema:CreativeWork
316 https://doi.org/10.1177/0268355514528691 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007929115
317 rdf:type schema:CreativeWork
318 https://doi.org/10.1177/0268355514529697 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032886410
319 rdf:type schema:CreativeWork
320 https://doi.org/10.1182/blood-2014-04-566380 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038946182
321 rdf:type schema:CreativeWork
322 https://doi.org/10.1253/circj.cj-88-0010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050750906
323 rdf:type schema:CreativeWork
324 https://doi.org/10.2307/2529310 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069974986
325 rdf:type schema:CreativeWork
326 https://www.grid.ac/institutes/grid.411866.c schema:alternateName Guangzhou University of Chinese Medicine
327 schema:name Department of Radiology, Guangzhou Panyu Central Hospital, 511400, Guangzhou, Guangdong, China
328 Guangzhou University of Chinese Medicine, 510405, Guangzhou, Guangdong, China
329 rdf:type schema:Organization
330 https://www.grid.ac/institutes/grid.413259.8 schema:alternateName Xuan Wu Hospital of the Capital Medical University
331 schema:name Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Pacific Theatres Building, Suite 800, 8700 Beverly Blvd, 90048, Los Angeles, CA, USA
332 Department of Radiology, Xuanwu Hospital, 100053, Beijing, China
333 rdf:type schema:Organization
334 https://www.grid.ac/institutes/grid.458489.c schema:alternateName Shenzhen Institutes of Advanced Technology
335 schema:name Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, CAS, 518055, Guangdong, China
336 rdf:type schema:Organization
337 https://www.grid.ac/institutes/grid.459864.2 schema:alternateName Panyu District Central Hospital
338 schema:name Department of Radiology, Guangzhou Panyu Central Hospital, 511400, Guangzhou, Guangdong, China
339 rdf:type schema:Organization
340 https://www.grid.ac/institutes/grid.50956.3f schema:alternateName Cedars-Sinai Medical Center
341 schema:name Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Pacific Theatres Building, Suite 800, 8700 Beverly Blvd, 90048, Los Angeles, CA, USA
342 Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, CAS, 518055, Guangdong, China
343 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...