Dark blood late enhancement imaging View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-01

AUTHORS

Peter Kellman, Hui Xue, Laura J. Olivieri, Russell R. Cross, Elena K. Grant, Marianna Fontana, Martin Ugander, James C. Moon, Michael S. Hansen

ABSTRACT

BACKGROUND: Bright blood late gadolinium enhancement (LGE) imaging typically achieves excellent contrast between infarcted and normal myocardium. However, the contrast between the myocardial infarction (MI) and the blood pool is frequently suboptimal. A large fraction of infarctions caused by coronary artery disease are sub-endocardial and thus adjacent to the blood pool. It is not infrequent that sub-endocardial MIs are difficult to detect or clearly delineate. METHODS: In this present work, an inversion recovery (IR) T2 preparation was combined with single shot steady state free precession imaging and respiratory motion corrected averaging to achieve dark blood LGE images with good signal to noise ratio while maintaining the desired spatial and temporal resolution. In this manner, imaging was conducted free-breathing, which has benefits for image quality, patient comfort, and clinical workflow in both adults and children. Furthermore, by using a phase sensitive inversion recovery reconstruction the blood signal may be made darker than the myocardium (i.e., negative signal values) thereby providing contrast between the blood and both the MI and remote myocardium. In the proposed approach, a single T1-map scout was used to measure the myocardial and blood T1 using a MOdified Look-Locker Inversion recovery (MOLLI) protocol and all protocol parameters were automatically calculated from these values within the sequence thereby simplifying the user interface. RESULTS: The contrast to noise ratio (CNR) between MI and remote myocardium was measured in n = 30 subjects with subendocardial MI using both bright blood and dark blood protocols. The CNR for the dark blood protocol had a 13 % loss compared to the bright blood protocol. The CNR between the MI and blood pool was positive for all dark blood cases, and was negative in 63 % of the bright blood cases. The conspicuity of subendocardial fibrosis and MI was greatly improved by dark blood (DB) PSIR as well as the delineation of the subendocardial border. CONCLUSIONS: Free-breathing, dark blood PSIR LGE imaging was demonstrated to improve the visualization of subendocardial MI and fibrosis in cases with low contrast with adjacent blood pool. The proposed method also improves visualization of thin walled fibrous structures such as atrial walls and valves, as well as papillary muscles. More... »

PAGES

77

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12968-016-0297-3

DOI

http://dx.doi.org/10.1186/s12968-016-0297-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1052676025

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/27817748


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cardiorespiratory Medicine and Haematology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Automation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Contrast Media", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "District of Columbia", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fibrosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Interpretation, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "London", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Myocardial Infarction", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Myocardium", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pilot Projects", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Predictive Value of Tests", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Respiration", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Signal-To-Noise Ratio", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sweden", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "User-Computer Interface", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Workflow", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Heart Lung and Blood Institute", 
          "id": "https://www.grid.ac/institutes/grid.279885.9", 
          "name": [
            "National Heart, Lung, and Blood Institute, National Institutes of Health, DHHS, 10 Center Drive MSC-1061, 20892, Bethesda, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kellman", 
        "givenName": "Peter", 
        "id": "sg:person.01342204374.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01342204374.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Heart Lung and Blood Institute", 
          "id": "https://www.grid.ac/institutes/grid.279885.9", 
          "name": [
            "National Heart, Lung, and Blood Institute, National Institutes of Health, DHHS, 10 Center Drive MSC-1061, 20892, Bethesda, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xue", 
        "givenName": "Hui", 
        "id": "sg:person.01357604413.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01357604413.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Children\u2019s National Health System", 
          "id": "https://www.grid.ac/institutes/grid.239560.b", 
          "name": [
            "Children\u2019s National Medical Center, 111 Michigan Ave., N.W, 20010, Washington, DC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Olivieri", 
        "givenName": "Laura J.", 
        "id": "sg:person.01224064701.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01224064701.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Children\u2019s National Health System", 
          "id": "https://www.grid.ac/institutes/grid.239560.b", 
          "name": [
            "Children\u2019s National Medical Center, 111 Michigan Ave., N.W, 20010, Washington, DC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cross", 
        "givenName": "Russell R.", 
        "id": "sg:person.01215223672.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01215223672.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Children\u2019s National Health System", 
          "id": "https://www.grid.ac/institutes/grid.239560.b", 
          "name": [
            "Children\u2019s National Medical Center, 111 Michigan Ave., N.W, 20010, Washington, DC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Grant", 
        "givenName": "Elena K.", 
        "id": "sg:person.01167214005.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01167214005.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Royal Free Hospital", 
          "id": "https://www.grid.ac/institutes/grid.426108.9", 
          "name": [
            "National Amyloidosis Centre, University College London (UCL) Medical School, Royal Free Hospital, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fontana", 
        "givenName": "Marianna", 
        "id": "sg:person.01101075770.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01101075770.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Karolinska University Hospital", 
          "id": "https://www.grid.ac/institutes/grid.24381.3c", 
          "name": [
            "Department of Clinical Physiology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ugander", 
        "givenName": "Martin", 
        "id": "sg:person.01360774036.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360774036.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "St Bartholomew's Hospital", 
          "id": "https://www.grid.ac/institutes/grid.416353.6", 
          "name": [
            "Barts Heart Centre, St. Bartholomew\u2019s Hospital, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Moon", 
        "givenName": "James C.", 
        "id": "sg:person.0634503670.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0634503670.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Heart Lung and Blood Institute", 
          "id": "https://www.grid.ac/institutes/grid.279885.9", 
          "name": [
            "National Heart, Lung, and Blood Institute, National Institutes of Health, DHHS, 10 Center Drive MSC-1061, 20892, Bethesda, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hansen", 
        "givenName": "Michael S.", 
        "id": "sg:person.01024517100.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01024517100.59"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/mrm.20713", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001413450"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.20713", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001413450"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circimaging.112.000022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002693986"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circimaging.112.000022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002693986"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1532-429x-18-s1-p211", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003911715", 
          "https://doi.org/10.1186/1532-429x-18-s1-p211"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0735-1097(00)00958-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005309622"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1532-429x-17-s1-o14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005375571", 
          "https://doi.org/10.1186/1532-429x-17-s1-o14"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.10051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008477288"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.24389", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010581831"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.23605", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010596451"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2333032004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010825476"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.20426", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011508594"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.20426", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011508594"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.25498", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012951099"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.20333", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014078773"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1532-429x-14-83", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016053609", 
          "https://doi.org/10.1186/1532-429x-14-83"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1540-8167.2010.01941.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022177142"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.21560", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028128240"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1532-429x-16-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033256742", 
          "https://doi.org/10.1186/1532-429x-16-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12968-015-0221-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033517745", 
          "https://doi.org/10.1186/s12968-015-0221-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1532-429x-18-s1-o55", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033910901", 
          "https://doi.org/10.1186/1532-429x-18-s1-o55"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00247-016-3553-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034578724", 
          "https://doi.org/10.1007/s00247-016-3553-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.100.19.1992", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038926687"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.20957", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043200648"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.21291", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045050191"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.20110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050456372"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10554-008-9300-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052236088", 
          "https://doi.org/10.1007/s10554-008-9300-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10554-008-9300-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052236088", 
          "https://doi.org/10.1007/s10554-008-9300-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1081/jcmr-120022267", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058431701"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.10.4418", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069300878"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.184.5.01841420", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069326863"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/isbi.2002.1029367", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093711634"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-01", 
    "datePublishedReg": "2017-01-01", 
    "description": "BACKGROUND: Bright blood late gadolinium enhancement (LGE) imaging typically achieves excellent contrast between infarcted and normal myocardium. However, the contrast between the myocardial infarction (MI) and the blood pool is frequently suboptimal. A large fraction of infarctions caused by coronary artery disease are sub-endocardial and thus adjacent to the blood pool. It is not infrequent that sub-endocardial MIs are difficult to detect or clearly delineate.\nMETHODS: In this present work, an inversion recovery (IR) T2 preparation was combined with single shot steady state free precession imaging and respiratory motion corrected averaging to achieve dark blood LGE images with good signal to noise ratio while maintaining the desired spatial and temporal resolution. In this manner, imaging was conducted free-breathing, which has benefits for image quality, patient comfort, and clinical workflow in both adults and children. Furthermore, by using a phase sensitive inversion recovery reconstruction the blood signal may be made darker than the myocardium (i.e., negative signal values) thereby providing contrast between the blood and both the MI and remote myocardium. In the proposed approach, a single T1-map scout was used to measure the myocardial and blood T1 using a MOdified Look-Locker Inversion recovery (MOLLI) protocol and all protocol parameters were automatically calculated from these values within the sequence thereby simplifying the user interface.\nRESULTS: The contrast to noise ratio (CNR) between MI and remote myocardium was measured in n\u2009=\u200930 subjects with subendocardial MI using both bright blood and dark blood protocols. The CNR for the dark blood protocol had a 13\u00a0% loss compared to the bright blood protocol. The CNR between the MI and blood pool was positive for all dark blood cases, and was negative in 63\u00a0% of the bright blood cases. The conspicuity of subendocardial fibrosis and MI was greatly improved by dark blood (DB) PSIR as well as the delineation of the subendocardial border.\nCONCLUSIONS: Free-breathing, dark blood PSIR LGE imaging was demonstrated to improve the visualization of subendocardial MI and fibrosis in cases with low contrast with adjacent blood pool. The proposed method also improves visualization of thin walled fibrous structures such as atrial walls and valves, as well as papillary muscles.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12968-016-0297-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.5134194", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5134233", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1030439", 
        "issn": [
          "1548-7679", 
          "1879-2855"
        ], 
        "name": "Journal of Cardiovascular Magnetic Resonance", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "18"
      }
    ], 
    "name": "Dark blood late enhancement imaging", 
    "pagination": "77", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "fae998863ac80a373dbc0c1fa5b12ba3785ce70f14098d6a509dfc74cc81f141"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "27817748"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9815616"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12968-016-0297-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1052676025"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12968-016-0297-3", 
      "https://app.dimensions.ai/details/publication/pub.1052676025"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:43", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70061_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs12968-016-0297-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12968-016-0297-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12968-016-0297-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12968-016-0297-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12968-016-0297-3'


 

This table displays all metadata directly associated to this object as RDF triples.

305 TRIPLES      21 PREDICATES      75 URIs      39 LITERALS      27 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12968-016-0297-3 schema:about N0f5fcec0a5754444a3316a23edffa1f2
2 N103e0286d8e141f2a96a8adee8e890d6
3 N1c31af1005f94ca6b3e2366ba3ef3e7d
4 N1f078f62d1c44d57b0fe39bda31aa2d6
5 N23944e7c06fe4004af819b969963f67e
6 N33dd426035ff447ebb3a58b120499e90
7 N525f631b29b5471a9720de9cd37a613a
8 N89f4227466e649e88c6ce9dfa42f138d
9 N8b02a4e732f54fbaa44a0b30abadcabb
10 N9cbe9764c3f34a3c933f894e63833366
11 Na334c107dfa94a2b8aa414754d96af7f
12 Na3fcba6739dc4f0a9df351d21e89d3cb
13 Nb9ffb03d47f1454189f3732672a5a025
14 Nbe53ab68424c4e63b3ab35e98763f905
15 Nd044fb81e46042c8ba14d975a18c54e5
16 Nd565beba294c4a059d73de6a47158d03
17 Ne0226637073046f1b9111695f601a05f
18 Nfcde32736c9b41219bddd3acc7fe0a0e
19 anzsrc-for:11
20 anzsrc-for:1102
21 schema:author N1ca7f9ce6cde4935a93548959a3ca71f
22 schema:citation sg:pub.10.1007/s00247-016-3553-7
23 sg:pub.10.1007/s10554-008-9300-x
24 sg:pub.10.1186/1532-429x-14-83
25 sg:pub.10.1186/1532-429x-16-2
26 sg:pub.10.1186/1532-429x-17-s1-o14
27 sg:pub.10.1186/1532-429x-18-s1-o55
28 sg:pub.10.1186/1532-429x-18-s1-p211
29 sg:pub.10.1186/s12968-015-0221-2
30 https://doi.org/10.1002/jmri.20426
31 https://doi.org/10.1002/jmri.20957
32 https://doi.org/10.1002/jmri.21560
33 https://doi.org/10.1002/jmri.23605
34 https://doi.org/10.1002/jmri.25498
35 https://doi.org/10.1002/mrm.10051
36 https://doi.org/10.1002/mrm.20110
37 https://doi.org/10.1002/mrm.20333
38 https://doi.org/10.1002/mrm.20713
39 https://doi.org/10.1002/mrm.21291
40 https://doi.org/10.1002/mrm.24389
41 https://doi.org/10.1016/s0735-1097(00)00958-x
42 https://doi.org/10.1081/jcmr-120022267
43 https://doi.org/10.1109/isbi.2002.1029367
44 https://doi.org/10.1111/j.1540-8167.2010.01941.x
45 https://doi.org/10.1148/radiol.2333032004
46 https://doi.org/10.1161/01.cir.100.19.1992
47 https://doi.org/10.1161/circimaging.112.000022
48 https://doi.org/10.2214/ajr.10.4418
49 https://doi.org/10.2214/ajr.184.5.01841420
50 schema:datePublished 2017-01
51 schema:datePublishedReg 2017-01-01
52 schema:description BACKGROUND: Bright blood late gadolinium enhancement (LGE) imaging typically achieves excellent contrast between infarcted and normal myocardium. However, the contrast between the myocardial infarction (MI) and the blood pool is frequently suboptimal. A large fraction of infarctions caused by coronary artery disease are sub-endocardial and thus adjacent to the blood pool. It is not infrequent that sub-endocardial MIs are difficult to detect or clearly delineate. METHODS: In this present work, an inversion recovery (IR) T2 preparation was combined with single shot steady state free precession imaging and respiratory motion corrected averaging to achieve dark blood LGE images with good signal to noise ratio while maintaining the desired spatial and temporal resolution. In this manner, imaging was conducted free-breathing, which has benefits for image quality, patient comfort, and clinical workflow in both adults and children. Furthermore, by using a phase sensitive inversion recovery reconstruction the blood signal may be made darker than the myocardium (i.e., negative signal values) thereby providing contrast between the blood and both the MI and remote myocardium. In the proposed approach, a single T1-map scout was used to measure the myocardial and blood T1 using a MOdified Look-Locker Inversion recovery (MOLLI) protocol and all protocol parameters were automatically calculated from these values within the sequence thereby simplifying the user interface. RESULTS: The contrast to noise ratio (CNR) between MI and remote myocardium was measured in n = 30 subjects with subendocardial MI using both bright blood and dark blood protocols. The CNR for the dark blood protocol had a 13 % loss compared to the bright blood protocol. The CNR between the MI and blood pool was positive for all dark blood cases, and was negative in 63 % of the bright blood cases. The conspicuity of subendocardial fibrosis and MI was greatly improved by dark blood (DB) PSIR as well as the delineation of the subendocardial border. CONCLUSIONS: Free-breathing, dark blood PSIR LGE imaging was demonstrated to improve the visualization of subendocardial MI and fibrosis in cases with low contrast with adjacent blood pool. The proposed method also improves visualization of thin walled fibrous structures such as atrial walls and valves, as well as papillary muscles.
53 schema:genre research_article
54 schema:inLanguage en
55 schema:isAccessibleForFree true
56 schema:isPartOf Nd0cde67abc3d40ffb9650b34eec53cf9
57 Ned084693b9a4439cbb72ac8c8753a45a
58 sg:journal.1030439
59 schema:name Dark blood late enhancement imaging
60 schema:pagination 77
61 schema:productId N127e5dce12f242b38bb2e56d292f4a5a
62 N8931434ba6734b7eb8d0d212f34ad64e
63 Nb7a4416ce3444d9eb3a54579da16815c
64 Ncb7b723610a44d658f8e35b61bfa03ae
65 Ne181e5d8428f4eb58c44ed0436eecf32
66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052676025
67 https://doi.org/10.1186/s12968-016-0297-3
68 schema:sdDatePublished 2019-04-11T12:43
69 schema:sdLicense https://scigraph.springernature.com/explorer/license/
70 schema:sdPublisher Ne0762e1fc96442028e4c0a9e0b350261
71 schema:url https://link.springer.com/10.1186%2Fs12968-016-0297-3
72 sgo:license sg:explorer/license/
73 sgo:sdDataset articles
74 rdf:type schema:ScholarlyArticle
75 N0f5fcec0a5754444a3316a23edffa1f2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
76 schema:name Workflow
77 rdf:type schema:DefinedTerm
78 N103e0286d8e141f2a96a8adee8e890d6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
79 schema:name London
80 rdf:type schema:DefinedTerm
81 N127e5dce12f242b38bb2e56d292f4a5a schema:name readcube_id
82 schema:value fae998863ac80a373dbc0c1fa5b12ba3785ce70f14098d6a509dfc74cc81f141
83 rdf:type schema:PropertyValue
84 N1b20fed9274943f79b78ec9467745e4f rdf:first sg:person.01167214005.26
85 rdf:rest Ne43c71e8b0c74f178ec0493cc5839bcf
86 N1c31af1005f94ca6b3e2366ba3ef3e7d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Automation
88 rdf:type schema:DefinedTerm
89 N1ca7f9ce6cde4935a93548959a3ca71f rdf:first sg:person.01342204374.43
90 rdf:rest N2c7b2de5048e4123a80d099c0efe6dea
91 N1f078f62d1c44d57b0fe39bda31aa2d6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Sweden
93 rdf:type schema:DefinedTerm
94 N23944e7c06fe4004af819b969963f67e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Magnetic Resonance Imaging
96 rdf:type schema:DefinedTerm
97 N2c7b2de5048e4123a80d099c0efe6dea rdf:first sg:person.01357604413.62
98 rdf:rest N8b6f0fdcbd644e27a842d40ca4a4178e
99 N33dd426035ff447ebb3a58b120499e90 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Myocardium
101 rdf:type schema:DefinedTerm
102 N3fd7fdafdece4c63924912b5434997fa rdf:first sg:person.01024517100.59
103 rdf:rest rdf:nil
104 N525f631b29b5471a9720de9cd37a613a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Myocardial Infarction
106 rdf:type schema:DefinedTerm
107 N5cdaf0847c0843ab8119a923d080324c rdf:first sg:person.01215223672.99
108 rdf:rest N1b20fed9274943f79b78ec9467745e4f
109 N8931434ba6734b7eb8d0d212f34ad64e schema:name dimensions_id
110 schema:value pub.1052676025
111 rdf:type schema:PropertyValue
112 N89f4227466e649e88c6ce9dfa42f138d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name District of Columbia
114 rdf:type schema:DefinedTerm
115 N8b02a4e732f54fbaa44a0b30abadcabb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Contrast Media
117 rdf:type schema:DefinedTerm
118 N8b6f0fdcbd644e27a842d40ca4a4178e rdf:first sg:person.01224064701.57
119 rdf:rest N5cdaf0847c0843ab8119a923d080324c
120 N9cbe9764c3f34a3c933f894e63833366 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Image Interpretation, Computer-Assisted
122 rdf:type schema:DefinedTerm
123 Na334c107dfa94a2b8aa414754d96af7f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Humans
125 rdf:type schema:DefinedTerm
126 Na3fcba6739dc4f0a9df351d21e89d3cb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Fibrosis
128 rdf:type schema:DefinedTerm
129 Nb7a4416ce3444d9eb3a54579da16815c schema:name nlm_unique_id
130 schema:value 9815616
131 rdf:type schema:PropertyValue
132 Nb9ffb03d47f1454189f3732672a5a025 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Reproducibility of Results
134 rdf:type schema:DefinedTerm
135 Nbe53ab68424c4e63b3ab35e98763f905 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Pilot Projects
137 rdf:type schema:DefinedTerm
138 Nc442674c49eb4ce79cb7ceb1b6a872c7 rdf:first sg:person.0634503670.28
139 rdf:rest N3fd7fdafdece4c63924912b5434997fa
140 Ncb7b723610a44d658f8e35b61bfa03ae schema:name pubmed_id
141 schema:value 27817748
142 rdf:type schema:PropertyValue
143 Nd044fb81e46042c8ba14d975a18c54e5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
144 schema:name Respiration
145 rdf:type schema:DefinedTerm
146 Nd0cde67abc3d40ffb9650b34eec53cf9 schema:issueNumber 1
147 rdf:type schema:PublicationIssue
148 Nd1efc30f679342339f1f2c9b6875be52 rdf:first sg:person.01360774036.02
149 rdf:rest Nc442674c49eb4ce79cb7ceb1b6a872c7
150 Nd565beba294c4a059d73de6a47158d03 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Signal-To-Noise Ratio
152 rdf:type schema:DefinedTerm
153 Ne0226637073046f1b9111695f601a05f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name User-Computer Interface
155 rdf:type schema:DefinedTerm
156 Ne0762e1fc96442028e4c0a9e0b350261 schema:name Springer Nature - SN SciGraph project
157 rdf:type schema:Organization
158 Ne181e5d8428f4eb58c44ed0436eecf32 schema:name doi
159 schema:value 10.1186/s12968-016-0297-3
160 rdf:type schema:PropertyValue
161 Ne43c71e8b0c74f178ec0493cc5839bcf rdf:first sg:person.01101075770.52
162 rdf:rest Nd1efc30f679342339f1f2c9b6875be52
163 Ned084693b9a4439cbb72ac8c8753a45a schema:volumeNumber 18
164 rdf:type schema:PublicationVolume
165 Nfcde32736c9b41219bddd3acc7fe0a0e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
166 schema:name Predictive Value of Tests
167 rdf:type schema:DefinedTerm
168 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
169 schema:name Medical and Health Sciences
170 rdf:type schema:DefinedTerm
171 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
172 schema:name Cardiorespiratory Medicine and Haematology
173 rdf:type schema:DefinedTerm
174 sg:grant.5134194 http://pending.schema.org/fundedItem sg:pub.10.1186/s12968-016-0297-3
175 rdf:type schema:MonetaryGrant
176 sg:grant.5134233 http://pending.schema.org/fundedItem sg:pub.10.1186/s12968-016-0297-3
177 rdf:type schema:MonetaryGrant
178 sg:journal.1030439 schema:issn 1548-7679
179 1879-2855
180 schema:name Journal of Cardiovascular Magnetic Resonance
181 rdf:type schema:Periodical
182 sg:person.01024517100.59 schema:affiliation https://www.grid.ac/institutes/grid.279885.9
183 schema:familyName Hansen
184 schema:givenName Michael S.
185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01024517100.59
186 rdf:type schema:Person
187 sg:person.01101075770.52 schema:affiliation https://www.grid.ac/institutes/grid.426108.9
188 schema:familyName Fontana
189 schema:givenName Marianna
190 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01101075770.52
191 rdf:type schema:Person
192 sg:person.01167214005.26 schema:affiliation https://www.grid.ac/institutes/grid.239560.b
193 schema:familyName Grant
194 schema:givenName Elena K.
195 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01167214005.26
196 rdf:type schema:Person
197 sg:person.01215223672.99 schema:affiliation https://www.grid.ac/institutes/grid.239560.b
198 schema:familyName Cross
199 schema:givenName Russell R.
200 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01215223672.99
201 rdf:type schema:Person
202 sg:person.01224064701.57 schema:affiliation https://www.grid.ac/institutes/grid.239560.b
203 schema:familyName Olivieri
204 schema:givenName Laura J.
205 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01224064701.57
206 rdf:type schema:Person
207 sg:person.01342204374.43 schema:affiliation https://www.grid.ac/institutes/grid.279885.9
208 schema:familyName Kellman
209 schema:givenName Peter
210 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01342204374.43
211 rdf:type schema:Person
212 sg:person.01357604413.62 schema:affiliation https://www.grid.ac/institutes/grid.279885.9
213 schema:familyName Xue
214 schema:givenName Hui
215 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01357604413.62
216 rdf:type schema:Person
217 sg:person.01360774036.02 schema:affiliation https://www.grid.ac/institutes/grid.24381.3c
218 schema:familyName Ugander
219 schema:givenName Martin
220 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360774036.02
221 rdf:type schema:Person
222 sg:person.0634503670.28 schema:affiliation https://www.grid.ac/institutes/grid.416353.6
223 schema:familyName Moon
224 schema:givenName James C.
225 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0634503670.28
226 rdf:type schema:Person
227 sg:pub.10.1007/s00247-016-3553-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034578724
228 https://doi.org/10.1007/s00247-016-3553-7
229 rdf:type schema:CreativeWork
230 sg:pub.10.1007/s10554-008-9300-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1052236088
231 https://doi.org/10.1007/s10554-008-9300-x
232 rdf:type schema:CreativeWork
233 sg:pub.10.1186/1532-429x-14-83 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016053609
234 https://doi.org/10.1186/1532-429x-14-83
235 rdf:type schema:CreativeWork
236 sg:pub.10.1186/1532-429x-16-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033256742
237 https://doi.org/10.1186/1532-429x-16-2
238 rdf:type schema:CreativeWork
239 sg:pub.10.1186/1532-429x-17-s1-o14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005375571
240 https://doi.org/10.1186/1532-429x-17-s1-o14
241 rdf:type schema:CreativeWork
242 sg:pub.10.1186/1532-429x-18-s1-o55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033910901
243 https://doi.org/10.1186/1532-429x-18-s1-o55
244 rdf:type schema:CreativeWork
245 sg:pub.10.1186/1532-429x-18-s1-p211 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003911715
246 https://doi.org/10.1186/1532-429x-18-s1-p211
247 rdf:type schema:CreativeWork
248 sg:pub.10.1186/s12968-015-0221-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033517745
249 https://doi.org/10.1186/s12968-015-0221-2
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1002/jmri.20426 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011508594
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1002/jmri.20957 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043200648
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1002/jmri.21560 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028128240
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1002/jmri.23605 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010596451
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1002/jmri.25498 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012951099
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1002/mrm.10051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008477288
262 rdf:type schema:CreativeWork
263 https://doi.org/10.1002/mrm.20110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050456372
264 rdf:type schema:CreativeWork
265 https://doi.org/10.1002/mrm.20333 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014078773
266 rdf:type schema:CreativeWork
267 https://doi.org/10.1002/mrm.20713 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001413450
268 rdf:type schema:CreativeWork
269 https://doi.org/10.1002/mrm.21291 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045050191
270 rdf:type schema:CreativeWork
271 https://doi.org/10.1002/mrm.24389 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010581831
272 rdf:type schema:CreativeWork
273 https://doi.org/10.1016/s0735-1097(00)00958-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1005309622
274 rdf:type schema:CreativeWork
275 https://doi.org/10.1081/jcmr-120022267 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058431701
276 rdf:type schema:CreativeWork
277 https://doi.org/10.1109/isbi.2002.1029367 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093711634
278 rdf:type schema:CreativeWork
279 https://doi.org/10.1111/j.1540-8167.2010.01941.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1022177142
280 rdf:type schema:CreativeWork
281 https://doi.org/10.1148/radiol.2333032004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010825476
282 rdf:type schema:CreativeWork
283 https://doi.org/10.1161/01.cir.100.19.1992 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038926687
284 rdf:type schema:CreativeWork
285 https://doi.org/10.1161/circimaging.112.000022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002693986
286 rdf:type schema:CreativeWork
287 https://doi.org/10.2214/ajr.10.4418 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069300878
288 rdf:type schema:CreativeWork
289 https://doi.org/10.2214/ajr.184.5.01841420 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069326863
290 rdf:type schema:CreativeWork
291 https://www.grid.ac/institutes/grid.239560.b schema:alternateName Children’s National Health System
292 schema:name Children’s National Medical Center, 111 Michigan Ave., N.W, 20010, Washington, DC, USA
293 rdf:type schema:Organization
294 https://www.grid.ac/institutes/grid.24381.3c schema:alternateName Karolinska University Hospital
295 schema:name Department of Clinical Physiology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
296 rdf:type schema:Organization
297 https://www.grid.ac/institutes/grid.279885.9 schema:alternateName National Heart Lung and Blood Institute
298 schema:name National Heart, Lung, and Blood Institute, National Institutes of Health, DHHS, 10 Center Drive MSC-1061, 20892, Bethesda, MD, USA
299 rdf:type schema:Organization
300 https://www.grid.ac/institutes/grid.416353.6 schema:alternateName St Bartholomew's Hospital
301 schema:name Barts Heart Centre, St. Bartholomew’s Hospital, London, UK
302 rdf:type schema:Organization
303 https://www.grid.ac/institutes/grid.426108.9 schema:alternateName Royal Free Hospital
304 schema:name National Amyloidosis Centre, University College London (UCL) Medical School, Royal Free Hospital, London, UK
305 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...