Improved high-resolution pediatric vascular cardiovascular magnetic resonance with gadofosveset-enhanced 3D respiratory navigated, inversion recovery prepared gradient echo readout imaging compared ... View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-01

AUTHORS

Animesh Tandon, Sassan Hashemi, W. James Parks, Michael S. Kelleman, Denver Sallee, Timothy C. Slesnick

ABSTRACT

BACKGROUND: Improved delineation of vascular structures is a common indication for cardiovascular magnetic resonance (CMR) in children and requires high spatial resolution. Currently, pre-contrast 3D, respiratory navigated, T2-prepared, fat saturated imaging with a bSSFP readout (3D bSSFP) is commonly used; however, these images can be limited by blood pool inhomogeneity and exaggeration of metal artifact. We compared image quality of pediatric vasculature obtained using standard 3D bSSFP to 3D, respiratory navigated, inversion recovery prepared imaging with a gradient echo readout (3D IR GRE) performed after administration of gadofosveset trisodium (GT), a blood pool contrast agent. METHODS: For both sequences, VCG triggering was used with acquisition during a quiescent period of the cardiac cycle. 3D bSSFP imaging was performed pre-contrast, and 3D IR GRE imaging was performed 5 min after GT administration. We devised a vascular imaging quality score (VIQS) with subscores for coronary arteries, pulmonary arteries and veins, blood pool homogeneity, and metal artifact. Scoring was performed on axial reconstructions of isotropic datasets by two independent readers and differences were adjudicated. Signal- and contrast-to-noise (SNR and CNR) calculations were performed on each dataset. RESULTS: Thirty-five patients had both 3D bSSFP and 3D IR GRE imaging performed. 3D IR GRE imaging showed improved overall vascular imaging compared to 3D bSSFP when comparing all-patient VIQS scores (n = 35, median 14 (IQR 11-15), vs 6 (4-10), p < 0.0001), and when analyzing the subset of patients with intrathoracic metal (n = 17, 16 (14-17) vs. 5 (2-9), p < 0.0001). 3D IR GRE showed significantly improved VIQS subscores for imaging the RCA, pulmonary arteries, pulmonary veins, and blood pool homogeneity. In addition, 3D IR GRE imaging showed reduced variability in both all-patient and metal VIQS scores compared to 3D bSSFP (p < 0.05). SNR and CNR were higher with 3D IR GRE in the left ventricle and left atrium, but not the pulmonary arteries. CONCLUSIONS: Respiratory navigated 3D IR GRE imaging after GT administration provides improved vascular CMR in pediatric patients compared to pre-contrast 3D bSSFP imaging, as well as improved imaging in patients with intrathoracic metal. It is an excellent alternative in this challenging patient population when high spatial resolution vascular imaging is needed. More... »

PAGES

74

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12968-016-0296-4

DOI

http://dx.doi.org/10.1186/s12968-016-0296-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1042021158

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/27802802


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cardiorespiratory Medicine and Haematology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adolescent", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Age Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Artifacts", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Child", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Child, Preschool", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Contrast Media", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Coronary Angiography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Coronary Vessels", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gadolinium", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Heart Defects, Congenital", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Interpretation, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Imaging, Three-Dimensional", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Infant", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Angiography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Organometallic Compounds", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Predictive Value of Tests", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pulmonary Artery", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pulmonary Veins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Respiratory Mechanics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Retrospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Young Adult", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Children's Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.414196.f", 
          "name": [
            "Departments of Pediatrics, Radiology, and Biomedical Engineering, University of Texas Southwestern Medical School, Dallas, TX, USA", 
            "Children\u2019s Medical Center Dallas, Dallas, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tandon", 
        "givenName": "Animesh", 
        "id": "sg:person.012627230617.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012627230617.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Children's Healthcare of Atlanta", 
          "id": "https://www.grid.ac/institutes/grid.428158.2", 
          "name": [
            "Children\u2019s Healthcare of Atlanta, Atlanta, GA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hashemi", 
        "givenName": "Sassan", 
        "id": "sg:person.016451262625.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016451262625.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Emory University", 
          "id": "https://www.grid.ac/institutes/grid.189967.8", 
          "name": [
            "Children\u2019s Healthcare of Atlanta, Atlanta, GA, USA", 
            "Emory University School of Medicine, Atlanta, GA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Parks", 
        "givenName": "W. James", 
        "id": "sg:person.01247267732.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01247267732.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Emory University", 
          "id": "https://www.grid.ac/institutes/grid.189967.8", 
          "name": [
            "Emory University School of Medicine, Atlanta, GA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kelleman", 
        "givenName": "Michael S.", 
        "id": "sg:person.01363116123.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01363116123.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Emory University", 
          "id": "https://www.grid.ac/institutes/grid.189967.8", 
          "name": [
            "Children\u2019s Healthcare of Atlanta, Atlanta, GA, USA", 
            "Emory University School of Medicine, Atlanta, GA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sallee", 
        "givenName": "Denver", 
        "id": "sg:person.01370057001.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01370057001.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Emory University", 
          "id": "https://www.grid.ac/institutes/grid.189967.8", 
          "name": [
            "Children\u2019s Healthcare of Atlanta, Atlanta, GA, USA", 
            "Emory University School of Medicine, Atlanta, GA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Slesnick", 
        "givenName": "Timothy C.", 
        "id": "sg:person.01206660120.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206660120.76"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1148/radiol.11102327", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004502904"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0b013e3181a40d1d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015286370"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0b013e3181a40d1d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015286370"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0b013e3181a40d1d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015286370"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejrad.2015.06.030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018666471"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejrad.2009.07.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024277003"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00247-011-2196-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026303047", 
          "https://doi.org/10.1007/s00247-011-2196-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1100/2012/236401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036512290"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10554-013-0192-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037673109", 
          "https://doi.org/10.1007/s10554-013-0192-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rct.0b013e318299dde9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038299198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rct.0b013e318299dde9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038299198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neurad.2014.03.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045494904"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1532-429x-15-51", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049568408", 
          "https://doi.org/10.1186/1532-429x-15-51"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcmg.2009.12.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050499099"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2014/625614", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051467966"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2147/vhrm.2008.04.01.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069103455"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.09.3868", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069300635"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.12.8991", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069302698"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-01", 
    "datePublishedReg": "2017-01-01", 
    "description": "BACKGROUND: Improved delineation of vascular structures is a common indication for cardiovascular magnetic resonance (CMR) in children and requires high spatial resolution. Currently, pre-contrast 3D, respiratory navigated, T2-prepared, fat saturated imaging with a bSSFP readout (3D bSSFP) is commonly used; however, these images can be limited by blood pool inhomogeneity and exaggeration of metal artifact. We compared image quality of pediatric vasculature obtained using standard 3D bSSFP to 3D, respiratory navigated, inversion recovery prepared imaging with a gradient echo readout (3D IR GRE) performed after administration of gadofosveset trisodium (GT), a blood pool contrast agent.\nMETHODS: For both sequences, VCG triggering was used with acquisition during a quiescent period of the cardiac cycle. 3D bSSFP imaging was performed pre-contrast, and 3D IR GRE imaging was performed 5\u00a0min after GT administration. We devised a vascular imaging quality score (VIQS) with subscores for coronary arteries, pulmonary arteries and veins, blood pool homogeneity, and metal artifact. Scoring was performed on axial reconstructions of isotropic datasets by two independent readers and differences were adjudicated. Signal- and contrast-to-noise (SNR and CNR) calculations were performed on each dataset.\nRESULTS: Thirty-five patients had both 3D bSSFP and 3D IR GRE imaging performed. 3D IR GRE imaging showed improved overall vascular imaging compared to 3D bSSFP when comparing all-patient VIQS scores (n\u2009=\u200935, median 14 (IQR 11-15), vs 6 (4-10), p\u2009<\u20090.0001), and when analyzing the subset of patients with intrathoracic metal (n\u2009=\u200917, 16 (14-17) vs. 5 (2-9), p\u2009<\u20090.0001). 3D IR GRE showed significantly improved VIQS subscores for imaging the RCA, pulmonary arteries, pulmonary veins, and blood pool homogeneity. In addition, 3D IR GRE imaging showed reduced variability in both all-patient and metal VIQS scores compared to 3D bSSFP (p\u2009<\u20090.05). SNR and CNR were higher with 3D IR GRE in the left ventricle and left atrium, but not the pulmonary arteries.\nCONCLUSIONS: Respiratory navigated 3D IR GRE imaging after GT administration provides improved vascular CMR in pediatric patients compared to pre-contrast 3D bSSFP imaging, as well as improved imaging in patients with intrathoracic metal. It is an excellent alternative in this challenging patient population when high spatial resolution vascular imaging is needed.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12968-016-0296-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4243709", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1030439", 
        "issn": [
          "1548-7679", 
          "1879-2855"
        ], 
        "name": "Journal of Cardiovascular Magnetic Resonance", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "18"
      }
    ], 
    "name": "Improved high-resolution pediatric vascular cardiovascular magnetic resonance with gadofosveset-enhanced 3D respiratory navigated, inversion recovery prepared gradient echo readout imaging compared to 3D balanced steady-state free precession readout imaging", 
    "pagination": "74", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c82b23302463ff8beab6413b5eb19699544d97b6f65dd8925059462f061e85df"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "27802802"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9815616"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12968-016-0296-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1042021158"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12968-016-0296-4", 
      "https://app.dimensions.ai/details/publication/pub.1042021158"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70043_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs12968-016-0296-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12968-016-0296-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12968-016-0296-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12968-016-0296-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12968-016-0296-4'


 

This table displays all metadata directly associated to this object as RDF triples.

262 TRIPLES      21 PREDICATES      69 URIs      46 LITERALS      34 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12968-016-0296-4 schema:about N072f4d9a765a4302b159c5b5c6b31f95
2 N1131a96e8cb5401dbcf7a16df72a1d80
3 N177147bec71c485d8975d315ac5947ff
4 N2af67105bf964d4282048ab1079ab154
5 N31174863d57c4abd9a3f768bc1bca801
6 N325b18e7435041ff9e277128bf9d38a2
7 N40cb1e01ba4e4d6fab2c28668093c2d3
8 N4cd1f6452c6144d29858ac72cea5d3ce
9 N5476a71a23084044a3cd67e178c71ea1
10 N7aea8223e34045d1bd114129f872c8b5
11 N7f1a589d84b64e409587ca1b18894774
12 N7f6fdff583644e5db08054b9ef77de52
13 N8405b17987764859ac5cb3043869d6f0
14 N8aaf10da67ed407096d76e8729c16d20
15 N919fbe8070e647feab0a03c147ae1f18
16 Naa7703e24eda415ea5ca9e4b759a13e8
17 Nae412db1c2984e2b8c47e4be0cf1ce65
18 Nb5e11cc2c19a443bb980e6f9faf4516a
19 Nbfc429cd775044b1ac450b5182e32cdb
20 Nc02d160e3035468ca85b2d064b5881c7
21 Ncc1f4de6fd2b42f0ae5392949fec363a
22 Ncd54a218ad614681b97e36a5be6cb3f7
23 Nda961a6156da45998e45b086ae25ea38
24 Ne8132edf2aa44183bf14e819ab17b5ac
25 Nf0f693bafd1747e5ada6c9fbe75d0b00
26 anzsrc-for:11
27 anzsrc-for:1102
28 schema:author N850bfe326f8c4ec7846ed360f41d0c64
29 schema:citation sg:pub.10.1007/s00247-011-2196-y
30 sg:pub.10.1007/s10554-013-0192-z
31 sg:pub.10.1186/1532-429x-15-51
32 https://doi.org/10.1016/j.ejrad.2009.07.020
33 https://doi.org/10.1016/j.ejrad.2015.06.030
34 https://doi.org/10.1016/j.jcmg.2009.12.015
35 https://doi.org/10.1016/j.neurad.2014.03.002
36 https://doi.org/10.1097/rct.0b013e318299dde9
37 https://doi.org/10.1097/rli.0b013e3181a40d1d
38 https://doi.org/10.1100/2012/236401
39 https://doi.org/10.1148/radiol.11102327
40 https://doi.org/10.1155/2014/625614
41 https://doi.org/10.2147/vhrm.2008.04.01.1
42 https://doi.org/10.2214/ajr.09.3868
43 https://doi.org/10.2214/ajr.12.8991
44 schema:datePublished 2017-01
45 schema:datePublishedReg 2017-01-01
46 schema:description BACKGROUND: Improved delineation of vascular structures is a common indication for cardiovascular magnetic resonance (CMR) in children and requires high spatial resolution. Currently, pre-contrast 3D, respiratory navigated, T2-prepared, fat saturated imaging with a bSSFP readout (3D bSSFP) is commonly used; however, these images can be limited by blood pool inhomogeneity and exaggeration of metal artifact. We compared image quality of pediatric vasculature obtained using standard 3D bSSFP to 3D, respiratory navigated, inversion recovery prepared imaging with a gradient echo readout (3D IR GRE) performed after administration of gadofosveset trisodium (GT), a blood pool contrast agent. METHODS: For both sequences, VCG triggering was used with acquisition during a quiescent period of the cardiac cycle. 3D bSSFP imaging was performed pre-contrast, and 3D IR GRE imaging was performed 5 min after GT administration. We devised a vascular imaging quality score (VIQS) with subscores for coronary arteries, pulmonary arteries and veins, blood pool homogeneity, and metal artifact. Scoring was performed on axial reconstructions of isotropic datasets by two independent readers and differences were adjudicated. Signal- and contrast-to-noise (SNR and CNR) calculations were performed on each dataset. RESULTS: Thirty-five patients had both 3D bSSFP and 3D IR GRE imaging performed. 3D IR GRE imaging showed improved overall vascular imaging compared to 3D bSSFP when comparing all-patient VIQS scores (n = 35, median 14 (IQR 11-15), vs 6 (4-10), p < 0.0001), and when analyzing the subset of patients with intrathoracic metal (n = 17, 16 (14-17) vs. 5 (2-9), p < 0.0001). 3D IR GRE showed significantly improved VIQS subscores for imaging the RCA, pulmonary arteries, pulmonary veins, and blood pool homogeneity. In addition, 3D IR GRE imaging showed reduced variability in both all-patient and metal VIQS scores compared to 3D bSSFP (p < 0.05). SNR and CNR were higher with 3D IR GRE in the left ventricle and left atrium, but not the pulmonary arteries. CONCLUSIONS: Respiratory navigated 3D IR GRE imaging after GT administration provides improved vascular CMR in pediatric patients compared to pre-contrast 3D bSSFP imaging, as well as improved imaging in patients with intrathoracic metal. It is an excellent alternative in this challenging patient population when high spatial resolution vascular imaging is needed.
47 schema:genre research_article
48 schema:inLanguage en
49 schema:isAccessibleForFree true
50 schema:isPartOf N4000ed089d9241d392fd3cfa7ba60dce
51 Nc2d2f35ecb2740cd8b78c5ed041389d9
52 sg:journal.1030439
53 schema:name Improved high-resolution pediatric vascular cardiovascular magnetic resonance with gadofosveset-enhanced 3D respiratory navigated, inversion recovery prepared gradient echo readout imaging compared to 3D balanced steady-state free precession readout imaging
54 schema:pagination 74
55 schema:productId N39f938218f944967a5d0f2d96d0fe99e
56 N43ec3676777e4843b52fe8a99114519a
57 N73fa5b19f8824d84b664bdbc434becc1
58 N9941083737ba45fba30ecbe2f8cd7e55
59 Ne97e811419c8456ba38bbb61329a321a
60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042021158
61 https://doi.org/10.1186/s12968-016-0296-4
62 schema:sdDatePublished 2019-04-11T12:39
63 schema:sdLicense https://scigraph.springernature.com/explorer/license/
64 schema:sdPublisher N1892b48902444942b039a42271215c15
65 schema:url https://link.springer.com/10.1186%2Fs12968-016-0296-4
66 sgo:license sg:explorer/license/
67 sgo:sdDataset articles
68 rdf:type schema:ScholarlyArticle
69 N04ff0cc6163e42b59417fb8175262cf8 rdf:first sg:person.01247267732.29
70 rdf:rest Nf21b101636a54b13a5e37bd4fda09da1
71 N072f4d9a765a4302b159c5b5c6b31f95 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
72 schema:name Age Factors
73 rdf:type schema:DefinedTerm
74 N1131a96e8cb5401dbcf7a16df72a1d80 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
75 schema:name Infant
76 rdf:type schema:DefinedTerm
77 N177147bec71c485d8975d315ac5947ff schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
78 schema:name Female
79 rdf:type schema:DefinedTerm
80 N1892b48902444942b039a42271215c15 schema:name Springer Nature - SN SciGraph project
81 rdf:type schema:Organization
82 N2af67105bf964d4282048ab1079ab154 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Coronary Angiography
84 rdf:type schema:DefinedTerm
85 N31174863d57c4abd9a3f768bc1bca801 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Respiratory Mechanics
87 rdf:type schema:DefinedTerm
88 N325b18e7435041ff9e277128bf9d38a2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Child
90 rdf:type schema:DefinedTerm
91 N39f938218f944967a5d0f2d96d0fe99e schema:name pubmed_id
92 schema:value 27802802
93 rdf:type schema:PropertyValue
94 N4000ed089d9241d392fd3cfa7ba60dce schema:issueNumber 1
95 rdf:type schema:PublicationIssue
96 N40cb1e01ba4e4d6fab2c28668093c2d3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Young Adult
98 rdf:type schema:DefinedTerm
99 N43ec3676777e4843b52fe8a99114519a schema:name dimensions_id
100 schema:value pub.1042021158
101 rdf:type schema:PropertyValue
102 N4cd1f6452c6144d29858ac72cea5d3ce schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Organometallic Compounds
104 rdf:type schema:DefinedTerm
105 N5476a71a23084044a3cd67e178c71ea1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Adolescent
107 rdf:type schema:DefinedTerm
108 N734d89dd8f5a47a28f4c8949d72085fc rdf:first sg:person.016451262625.33
109 rdf:rest N04ff0cc6163e42b59417fb8175262cf8
110 N73fa5b19f8824d84b664bdbc434becc1 schema:name nlm_unique_id
111 schema:value 9815616
112 rdf:type schema:PropertyValue
113 N7aea8223e34045d1bd114129f872c8b5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Heart Defects, Congenital
115 rdf:type schema:DefinedTerm
116 N7f1a589d84b64e409587ca1b18894774 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Gadolinium
118 rdf:type schema:DefinedTerm
119 N7f6fdff583644e5db08054b9ef77de52 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Pulmonary Veins
121 rdf:type schema:DefinedTerm
122 N8405b17987764859ac5cb3043869d6f0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Pulmonary Artery
124 rdf:type schema:DefinedTerm
125 N850bfe326f8c4ec7846ed360f41d0c64 rdf:first sg:person.012627230617.73
126 rdf:rest N734d89dd8f5a47a28f4c8949d72085fc
127 N8aaf10da67ed407096d76e8729c16d20 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Imaging, Three-Dimensional
129 rdf:type schema:DefinedTerm
130 N919fbe8070e647feab0a03c147ae1f18 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Humans
132 rdf:type schema:DefinedTerm
133 N9941083737ba45fba30ecbe2f8cd7e55 schema:name readcube_id
134 schema:value c82b23302463ff8beab6413b5eb19699544d97b6f65dd8925059462f061e85df
135 rdf:type schema:PropertyValue
136 Na6caf850514d42f9a169b04c80f51ebf rdf:first sg:person.01206660120.76
137 rdf:rest rdf:nil
138 Naa7703e24eda415ea5ca9e4b759a13e8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Artifacts
140 rdf:type schema:DefinedTerm
141 Nae412db1c2984e2b8c47e4be0cf1ce65 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Coronary Vessels
143 rdf:type schema:DefinedTerm
144 Nb5e11cc2c19a443bb980e6f9faf4516a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Reproducibility of Results
146 rdf:type schema:DefinedTerm
147 Nbfc429cd775044b1ac450b5182e32cdb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Contrast Media
149 rdf:type schema:DefinedTerm
150 Nc02d160e3035468ca85b2d064b5881c7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Predictive Value of Tests
152 rdf:type schema:DefinedTerm
153 Nc2d2f35ecb2740cd8b78c5ed041389d9 schema:volumeNumber 18
154 rdf:type schema:PublicationVolume
155 Ncc1f4de6fd2b42f0ae5392949fec363a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
156 schema:name Image Interpretation, Computer-Assisted
157 rdf:type schema:DefinedTerm
158 Ncd54a218ad614681b97e36a5be6cb3f7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
159 schema:name Child, Preschool
160 rdf:type schema:DefinedTerm
161 Nda961a6156da45998e45b086ae25ea38 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
162 schema:name Retrospective Studies
163 rdf:type schema:DefinedTerm
164 Ne8132edf2aa44183bf14e819ab17b5ac schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
165 schema:name Male
166 rdf:type schema:DefinedTerm
167 Ne97e811419c8456ba38bbb61329a321a schema:name doi
168 schema:value 10.1186/s12968-016-0296-4
169 rdf:type schema:PropertyValue
170 Nf0f693bafd1747e5ada6c9fbe75d0b00 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
171 schema:name Magnetic Resonance Angiography
172 rdf:type schema:DefinedTerm
173 Nf21b101636a54b13a5e37bd4fda09da1 rdf:first sg:person.01363116123.40
174 rdf:rest Nf3dec8addef2458f9bbd5d052cb5a5f0
175 Nf3dec8addef2458f9bbd5d052cb5a5f0 rdf:first sg:person.01370057001.63
176 rdf:rest Na6caf850514d42f9a169b04c80f51ebf
177 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
178 schema:name Medical and Health Sciences
179 rdf:type schema:DefinedTerm
180 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
181 schema:name Cardiorespiratory Medicine and Haematology
182 rdf:type schema:DefinedTerm
183 sg:grant.4243709 http://pending.schema.org/fundedItem sg:pub.10.1186/s12968-016-0296-4
184 rdf:type schema:MonetaryGrant
185 sg:journal.1030439 schema:issn 1548-7679
186 1879-2855
187 schema:name Journal of Cardiovascular Magnetic Resonance
188 rdf:type schema:Periodical
189 sg:person.01206660120.76 schema:affiliation https://www.grid.ac/institutes/grid.189967.8
190 schema:familyName Slesnick
191 schema:givenName Timothy C.
192 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206660120.76
193 rdf:type schema:Person
194 sg:person.01247267732.29 schema:affiliation https://www.grid.ac/institutes/grid.189967.8
195 schema:familyName Parks
196 schema:givenName W. James
197 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01247267732.29
198 rdf:type schema:Person
199 sg:person.012627230617.73 schema:affiliation https://www.grid.ac/institutes/grid.414196.f
200 schema:familyName Tandon
201 schema:givenName Animesh
202 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012627230617.73
203 rdf:type schema:Person
204 sg:person.01363116123.40 schema:affiliation https://www.grid.ac/institutes/grid.189967.8
205 schema:familyName Kelleman
206 schema:givenName Michael S.
207 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01363116123.40
208 rdf:type schema:Person
209 sg:person.01370057001.63 schema:affiliation https://www.grid.ac/institutes/grid.189967.8
210 schema:familyName Sallee
211 schema:givenName Denver
212 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01370057001.63
213 rdf:type schema:Person
214 sg:person.016451262625.33 schema:affiliation https://www.grid.ac/institutes/grid.428158.2
215 schema:familyName Hashemi
216 schema:givenName Sassan
217 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016451262625.33
218 rdf:type schema:Person
219 sg:pub.10.1007/s00247-011-2196-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1026303047
220 https://doi.org/10.1007/s00247-011-2196-y
221 rdf:type schema:CreativeWork
222 sg:pub.10.1007/s10554-013-0192-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1037673109
223 https://doi.org/10.1007/s10554-013-0192-z
224 rdf:type schema:CreativeWork
225 sg:pub.10.1186/1532-429x-15-51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049568408
226 https://doi.org/10.1186/1532-429x-15-51
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1016/j.ejrad.2009.07.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024277003
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1016/j.ejrad.2015.06.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018666471
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1016/j.jcmg.2009.12.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050499099
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1016/j.neurad.2014.03.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045494904
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1097/rct.0b013e318299dde9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038299198
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1097/rli.0b013e3181a40d1d schema:sameAs https://app.dimensions.ai/details/publication/pub.1015286370
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1100/2012/236401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036512290
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1148/radiol.11102327 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004502904
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1155/2014/625614 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051467966
245 rdf:type schema:CreativeWork
246 https://doi.org/10.2147/vhrm.2008.04.01.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069103455
247 rdf:type schema:CreativeWork
248 https://doi.org/10.2214/ajr.09.3868 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069300635
249 rdf:type schema:CreativeWork
250 https://doi.org/10.2214/ajr.12.8991 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069302698
251 rdf:type schema:CreativeWork
252 https://www.grid.ac/institutes/grid.189967.8 schema:alternateName Emory University
253 schema:name Children’s Healthcare of Atlanta, Atlanta, GA, USA
254 Emory University School of Medicine, Atlanta, GA, USA
255 rdf:type schema:Organization
256 https://www.grid.ac/institutes/grid.414196.f schema:alternateName Children's Medical Center
257 schema:name Children’s Medical Center Dallas, Dallas, TX, USA
258 Departments of Pediatrics, Radiology, and Biomedical Engineering, University of Texas Southwestern Medical School, Dallas, TX, USA
259 rdf:type schema:Organization
260 https://www.grid.ac/institutes/grid.428158.2 schema:alternateName Children's Healthcare of Atlanta
261 schema:name Children’s Healthcare of Atlanta, Atlanta, GA, USA
262 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...