Semi-automatic carotid intraplaque hemorrhage detection and quantification on Magnetization-Prepared Rapid Acquisition Gradient-Echo (MP-RAGE) with optimized threshold selection View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-12

AUTHORS

Jin Liu, Niranjan Balu, Daniel S. Hippe, Marina S. Ferguson, Vanesa Martinez-Malo, J. Kevin DeMarco, David C. Zhu, Hideki Ota, Jie Sun, Dongxiang Xu, William S. Kerwin, Thomas S. Hatsukami, Chun Yuan

ABSTRACT

BACKGROUND: Intraplaque hemorrhage (IPH) is associated with atherosclerosis progression and subsequent cardiovascular events. We sought to develop a semi-automatic method with an optimized threshold for carotid IPH detection and quantification on MP-RAGE images using matched histology as the gold standard. METHODS: Fourteen patients scheduled for carotid endarterectomy underwent 3D MP-RAGE cardiovascular magnetic resonance (CMR) preoperatively. Presence and area of IPH were recorded using histology. Presence and area of IPH were also recorded on CMR based on intensity thresholding using three references for intensity normalization: the sternocleidomastoid muscle (SCM), the adjacent muscle and the automatically generated local median value. The optimized intensity thresholds were obtained by maximizing the Youden's index for IPH detection. Using leave-one-out cross validation, the sensitivity and specificity for IPH detection based on our proposed semi-automatic method and the agreement with histology on IPH area quantification were evaluated. RESULTS: The optimized intensity thresholds for IPH detection were 1.0 times the SCM intensity, 1.6 times the adjacent muscle intensity and 2.2 times the median intensity. Using the semi-automatic method with the optimized intensity threshold, the following IPH detection and quantification performance was obtained: sensitivities up to 59, 68 and 80 %; specificities up to 85, 74 and 79 %; Pearson's correlation coefficients (IPH area measurement) up to 0.76, 0.93 and 0.90, respectively, using SCM, the adjacent muscle and the local median value for intensity normalization, after heavily calcified and small IPH were excluded. CONCLUSIONS: A semi-automatic method with good performance on IPH detection and quantification can be obtained in MP-RAGE CMR, using an optimized intensity threshold comparing to the adjacent muscle. The automatically generated reference of local median value provides comparable performance and may be particularly useful for developing automatic classifiers. Use of the SCM intensity as reference is not recommended without coil sensitivity correction when surface coils are used. More... »

PAGES

41

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12968-016-0260-3

DOI

http://dx.doi.org/10.1186/s12968-016-0260-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1009565537

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/27430263


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged, 80 and over", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Area Under Curve", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Automation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biopsy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Carotid Arteries", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Carotid Artery Diseases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hemorrhage", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Interpretation, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Observer Variation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Plaque, Atherosclerotic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Predictive Value of Tests", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prognosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "ROC Curve", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reference Standards", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Washington", 
          "id": "https://www.grid.ac/institutes/grid.34477.33", 
          "name": [
            "University of Washington, Seattle, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Jin", 
        "id": "sg:person.01055522151.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01055522151.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Washington", 
          "id": "https://www.grid.ac/institutes/grid.34477.33", 
          "name": [
            "University of Washington, Seattle, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Balu", 
        "givenName": "Niranjan", 
        "id": "sg:person.0665143653.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0665143653.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Washington", 
          "id": "https://www.grid.ac/institutes/grid.34477.33", 
          "name": [
            "University of Washington, Seattle, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hippe", 
        "givenName": "Daniel S.", 
        "id": "sg:person.0764104440.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0764104440.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Washington", 
          "id": "https://www.grid.ac/institutes/grid.34477.33", 
          "name": [
            "University of Washington, Seattle, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ferguson", 
        "givenName": "Marina S.", 
        "id": "sg:person.01064030670.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01064030670.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Washington", 
          "id": "https://www.grid.ac/institutes/grid.34477.33", 
          "name": [
            "University of Washington, Seattle, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Martinez-Malo", 
        "givenName": "Vanesa", 
        "id": "sg:person.0630706251.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0630706251.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Walter Reed National Military Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.414467.4", 
          "name": [
            "Walter Reed National Military Medical Center, Bethesda, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "DeMarco", 
        "givenName": "J. Kevin", 
        "id": "sg:person.01366636435.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01366636435.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Michigan State University", 
          "id": "https://www.grid.ac/institutes/grid.17088.36", 
          "name": [
            "Michigan State University, East Lansing, MI, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhu", 
        "givenName": "David C.", 
        "id": "sg:person.0575655025.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0575655025.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tohoku University", 
          "id": "https://www.grid.ac/institutes/grid.69566.3a", 
          "name": [
            "Tohoku University, Miyagi, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ota", 
        "givenName": "Hideki", 
        "id": "sg:person.01357756615.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01357756615.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Washington", 
          "id": "https://www.grid.ac/institutes/grid.34477.33", 
          "name": [
            "University of Washington, Seattle, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sun", 
        "givenName": "Jie", 
        "id": "sg:person.0744610650.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0744610650.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Washington", 
          "id": "https://www.grid.ac/institutes/grid.34477.33", 
          "name": [
            "University of Washington, Seattle, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xu", 
        "givenName": "Dongxiang", 
        "id": "sg:person.01061037250.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01061037250.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Washington", 
          "id": "https://www.grid.ac/institutes/grid.34477.33", 
          "name": [
            "University of Washington, Seattle, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kerwin", 
        "givenName": "William S.", 
        "id": "sg:person.0640513500.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640513500.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Washington", 
          "id": "https://www.grid.ac/institutes/grid.34477.33", 
          "name": [
            "University of Washington, Seattle, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hatsukami", 
        "givenName": "Thomas S.", 
        "id": "sg:person.013351427457.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013351427457.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Washington", 
          "id": "https://www.grid.ac/institutes/grid.34477.33", 
          "name": [
            "University of Washington, Seattle, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yuan", 
        "givenName": "Chun", 
        "id": "sg:person.011712252247.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011712252247.13"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10334-015-0495-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001363147", 
          "https://doi.org/10.1007/s10334-015-0495-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10334-015-0495-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001363147", 
          "https://doi.org/10.1007/s10334-015-0495-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10554-010-9686-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003852135", 
          "https://doi.org/10.1007/s10554-010-9686-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10554-010-9686-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003852135", 
          "https://doi.org/10.1007/s10554-010-9686-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.1062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004845612"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.0000028591.44554.f9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009264013"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/strokeaha.106.479139", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009360046"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/strokeaha.106.479139", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009360046"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jacc.2015.05.056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010795474"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.0000074222.61572.44", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011595395"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa035655", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011609047"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circulationaha.104.504167", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018658938"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2402050390", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020412382"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.str.0000204638.91099.91", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021071288"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.str.0000204638.91099.91", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021071288"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.atv.0000155965.54679.79", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023396216"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.atv.0000155965.54679.79", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023396216"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mri.2008.05.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029059848"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcmg.2012.03.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030151261"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jvs.2007.09.064", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031638057"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.24354", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031964869"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.09090535", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032991700"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.atv.0000149867.61851.31", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036106235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.atv.0000149867.61851.31", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036106235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.20814", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037908344"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.20814", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037908344"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3174/ajnr.a4267", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045815145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmi.2006.891486", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061694980"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/atvbaha.115.307043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063342631"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/atvbaha.115.307043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063342631"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3171/2010.3.jns091057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071075570"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3171/2010.3.jns091057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071075570"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3171/2010.3.jns091057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071075570"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077371954", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.189.1.8372185", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082779153"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-12", 
    "datePublishedReg": "2016-12-01", 
    "description": "BACKGROUND: Intraplaque hemorrhage (IPH) is associated with atherosclerosis progression and subsequent cardiovascular events. We sought to develop a semi-automatic method with an optimized threshold for carotid IPH detection and quantification on MP-RAGE images using matched histology as the gold standard.\nMETHODS: Fourteen patients scheduled for carotid endarterectomy underwent 3D MP-RAGE cardiovascular magnetic resonance (CMR) preoperatively. Presence and area of IPH were recorded using histology. Presence and area of IPH were also recorded on CMR based on intensity thresholding using three references for intensity normalization: the sternocleidomastoid muscle (SCM), the adjacent muscle and the automatically generated local median value. The optimized intensity thresholds were obtained by maximizing the Youden's index for IPH detection. Using leave-one-out cross validation, the sensitivity and specificity for IPH detection based on our proposed semi-automatic method and the agreement with histology on IPH area quantification were evaluated.\nRESULTS: The optimized intensity thresholds for IPH detection were 1.0 times the SCM intensity, 1.6 times the adjacent muscle intensity and 2.2 times the median intensity. Using the semi-automatic method with the optimized intensity threshold, the following IPH detection and quantification performance was obtained: sensitivities up to 59, 68 and 80 %; specificities up to 85, 74 and 79\u00a0%; Pearson's correlation coefficients (IPH area measurement) up to 0.76, 0.93 and 0.90, respectively, using SCM, the adjacent muscle and the local median value for intensity normalization, after heavily calcified and small IPH were excluded.\nCONCLUSIONS: A semi-automatic method with good performance on IPH detection and quantification can be obtained in MP-RAGE CMR, using an optimized intensity threshold comparing to the adjacent muscle. The automatically generated reference of local median value provides comparable performance and may be particularly useful for developing automatic classifiers. Use of the SCM intensity as reference is not recommended without coil sensitivity correction when surface coils are used.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12968-016-0260-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2542913", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1030439", 
        "issn": [
          "1548-7679", 
          "1879-2855"
        ], 
        "name": "Journal of Cardiovascular Magnetic Resonance", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "18"
      }
    ], 
    "name": "Semi-automatic carotid intraplaque hemorrhage detection and quantification on Magnetization-Prepared Rapid Acquisition Gradient-Echo (MP-RAGE) with optimized threshold selection", 
    "pagination": "41", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2d91284a166d6c6a0725aed860b1a5d7e5f819c62311772d27fd1d6539aafd82"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "27430263"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9815616"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12968-016-0260-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1009565537"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12968-016-0260-3", 
      "https://app.dimensions.ai/details/publication/pub.1009565537"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70031_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs12968-016-0260-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12968-016-0260-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12968-016-0260-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12968-016-0260-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12968-016-0260-3'


 

This table displays all metadata directly associated to this object as RDF triples.

324 TRIPLES      21 PREDICATES      75 URIs      42 LITERALS      30 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12968-016-0260-3 schema:about N2630a9cdaf564836a44aeb760885b917
2 N2788e5f141094329b483003d51496955
3 N2853ed3b2bd04a3b82f3de966abc64bd
4 N419cc5089e6048738108f9c10266af4d
5 N4385ddad88584277a7fd3304dbd56ffe
6 N5466f4dd6c9e43bb9cd2c1f981c94bf7
7 N559d588f5d964afaa978c80cf414d316
8 N5b4e6623c1e24d2ba3248fe294b8caad
9 N656a794673274a51bf0c3502172476b9
10 N65be430e063d458e85f6eac7909c7dcd
11 N68e500f001c7451198d5da3559ef3d05
12 Nabdb06b6652e4cefa00568be22e53981
13 Nb44c8bb9abce4a28be54ee4dc10004b4
14 Nb487511197894693a36e767520f9470f
15 Nbcbec1d49c45475db942f20b037c5884
16 Nbd3f6278022749538ab3811b812a0cab
17 Nce04a1d8bbbf4ee1933ec45afb3b48f9
18 Ndcfca3e85faa4523b671f85d2508f4cb
19 Ne14fcca83071454ba1d7b94ae453cb42
20 Ne5135d5896d3425b81f90ffca2bf6029
21 Nf1451f09d389415badf463b6eb80cee5
22 anzsrc-for:08
23 anzsrc-for:0801
24 schema:author N9568dba88a0d4704929655ca0e67f3b2
25 schema:citation sg:pub.10.1007/s10334-015-0495-2
26 sg:pub.10.1007/s10554-010-9686-0
27 https://app.dimensions.ai/details/publication/pub.1077371954
28 https://doi.org/10.1002/jmri.1062
29 https://doi.org/10.1002/mrm.20814
30 https://doi.org/10.1002/mrm.24354
31 https://doi.org/10.1016/j.jacc.2015.05.056
32 https://doi.org/10.1016/j.jcmg.2012.03.014
33 https://doi.org/10.1016/j.jvs.2007.09.064
34 https://doi.org/10.1016/j.mri.2008.05.002
35 https://doi.org/10.1056/nejmoa035655
36 https://doi.org/10.1109/tmi.2006.891486
37 https://doi.org/10.1148/radiol.09090535
38 https://doi.org/10.1148/radiol.2402050390
39 https://doi.org/10.1148/radiology.189.1.8372185
40 https://doi.org/10.1161/01.atv.0000149867.61851.31
41 https://doi.org/10.1161/01.atv.0000155965.54679.79
42 https://doi.org/10.1161/01.cir.0000028591.44554.f9
43 https://doi.org/10.1161/01.cir.0000074222.61572.44
44 https://doi.org/10.1161/01.str.0000204638.91099.91
45 https://doi.org/10.1161/atvbaha.115.307043
46 https://doi.org/10.1161/circulationaha.104.504167
47 https://doi.org/10.1161/strokeaha.106.479139
48 https://doi.org/10.3171/2010.3.jns091057
49 https://doi.org/10.3174/ajnr.a4267
50 schema:datePublished 2016-12
51 schema:datePublishedReg 2016-12-01
52 schema:description BACKGROUND: Intraplaque hemorrhage (IPH) is associated with atherosclerosis progression and subsequent cardiovascular events. We sought to develop a semi-automatic method with an optimized threshold for carotid IPH detection and quantification on MP-RAGE images using matched histology as the gold standard. METHODS: Fourteen patients scheduled for carotid endarterectomy underwent 3D MP-RAGE cardiovascular magnetic resonance (CMR) preoperatively. Presence and area of IPH were recorded using histology. Presence and area of IPH were also recorded on CMR based on intensity thresholding using three references for intensity normalization: the sternocleidomastoid muscle (SCM), the adjacent muscle and the automatically generated local median value. The optimized intensity thresholds were obtained by maximizing the Youden's index for IPH detection. Using leave-one-out cross validation, the sensitivity and specificity for IPH detection based on our proposed semi-automatic method and the agreement with histology on IPH area quantification were evaluated. RESULTS: The optimized intensity thresholds for IPH detection were 1.0 times the SCM intensity, 1.6 times the adjacent muscle intensity and 2.2 times the median intensity. Using the semi-automatic method with the optimized intensity threshold, the following IPH detection and quantification performance was obtained: sensitivities up to 59, 68 and 80 %; specificities up to 85, 74 and 79 %; Pearson's correlation coefficients (IPH area measurement) up to 0.76, 0.93 and 0.90, respectively, using SCM, the adjacent muscle and the local median value for intensity normalization, after heavily calcified and small IPH were excluded. CONCLUSIONS: A semi-automatic method with good performance on IPH detection and quantification can be obtained in MP-RAGE CMR, using an optimized intensity threshold comparing to the adjacent muscle. The automatically generated reference of local median value provides comparable performance and may be particularly useful for developing automatic classifiers. Use of the SCM intensity as reference is not recommended without coil sensitivity correction when surface coils are used.
53 schema:genre research_article
54 schema:inLanguage en
55 schema:isAccessibleForFree true
56 schema:isPartOf N2379a2556d1a47048e0144f20f7453eb
57 N4d028d788bd44a79845c6032ef789bf5
58 sg:journal.1030439
59 schema:name Semi-automatic carotid intraplaque hemorrhage detection and quantification on Magnetization-Prepared Rapid Acquisition Gradient-Echo (MP-RAGE) with optimized threshold selection
60 schema:pagination 41
61 schema:productId N6c6687607ebe494abc601d6ed1c96f77
62 N7c43fcec7f9342129417d9d8410e94f9
63 Na4cad78f8916425e9e19532d4d41ebb5
64 Nabc23384f2a949a1a13389b5f52b990e
65 Nbc90e9b9a9bc4b0a883ab73675538c8b
66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009565537
67 https://doi.org/10.1186/s12968-016-0260-3
68 schema:sdDatePublished 2019-04-11T12:36
69 schema:sdLicense https://scigraph.springernature.com/explorer/license/
70 schema:sdPublisher N32d5f640e2e44507b6d72f48b0943692
71 schema:url https://link.springer.com/10.1186%2Fs12968-016-0260-3
72 sgo:license sg:explorer/license/
73 sgo:sdDataset articles
74 rdf:type schema:ScholarlyArticle
75 N0a29b069431a4468a4368d6780ecd467 rdf:first sg:person.01366636435.36
76 rdf:rest N7c6d7444507b4705947cc9924c910dd7
77 N110a506fcb0742acbdd6aedac5536500 rdf:first sg:person.01064030670.72
78 rdf:rest N517c7c67cdb24404a779a7da1b49054e
79 N14b00f0030134042844ee9c4a99d5441 rdf:first sg:person.01357756615.20
80 rdf:rest Nab1ee0206c6f4f27bd619238d40da6ab
81 N2379a2556d1a47048e0144f20f7453eb schema:volumeNumber 18
82 rdf:type schema:PublicationVolume
83 N2630a9cdaf564836a44aeb760885b917 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Carotid Arteries
85 rdf:type schema:DefinedTerm
86 N2788e5f141094329b483003d51496955 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Biopsy
88 rdf:type schema:DefinedTerm
89 N2853ed3b2bd04a3b82f3de966abc64bd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name Plaque, Atherosclerotic
91 rdf:type schema:DefinedTerm
92 N32d5f640e2e44507b6d72f48b0943692 schema:name Springer Nature - SN SciGraph project
93 rdf:type schema:Organization
94 N419cc5089e6048738108f9c10266af4d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Prognosis
96 rdf:type schema:DefinedTerm
97 N4385ddad88584277a7fd3304dbd56ffe schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Hemorrhage
99 rdf:type schema:DefinedTerm
100 N4d028d788bd44a79845c6032ef789bf5 schema:issueNumber 1
101 rdf:type schema:PublicationIssue
102 N517c7c67cdb24404a779a7da1b49054e rdf:first sg:person.0630706251.91
103 rdf:rest N0a29b069431a4468a4368d6780ecd467
104 N52ccfb2e66fb4d4390c9fb1ee651ff39 rdf:first sg:person.013351427457.97
105 rdf:rest Nf48a521e24e043b1a0cbd785a363d313
106 N5466f4dd6c9e43bb9cd2c1f981c94bf7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Predictive Value of Tests
108 rdf:type schema:DefinedTerm
109 N559d588f5d964afaa978c80cf414d316 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name ROC Curve
111 rdf:type schema:DefinedTerm
112 N5b4e6623c1e24d2ba3248fe294b8caad schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Humans
114 rdf:type schema:DefinedTerm
115 N656a794673274a51bf0c3502172476b9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Female
117 rdf:type schema:DefinedTerm
118 N65be430e063d458e85f6eac7909c7dcd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Male
120 rdf:type schema:DefinedTerm
121 N68e500f001c7451198d5da3559ef3d05 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Aged
123 rdf:type schema:DefinedTerm
124 N6c6687607ebe494abc601d6ed1c96f77 schema:name nlm_unique_id
125 schema:value 9815616
126 rdf:type schema:PropertyValue
127 N7c43fcec7f9342129417d9d8410e94f9 schema:name doi
128 schema:value 10.1186/s12968-016-0260-3
129 rdf:type schema:PropertyValue
130 N7c6d7444507b4705947cc9924c910dd7 rdf:first sg:person.0575655025.30
131 rdf:rest N14b00f0030134042844ee9c4a99d5441
132 N84de5181cabb49b1a5f14e11c458029a rdf:first sg:person.0764104440.34
133 rdf:rest N110a506fcb0742acbdd6aedac5536500
134 N9568dba88a0d4704929655ca0e67f3b2 rdf:first sg:person.01055522151.42
135 rdf:rest Ne1e93a94e67b446fa3b48a4437704105
136 Na4cad78f8916425e9e19532d4d41ebb5 schema:name readcube_id
137 schema:value 2d91284a166d6c6a0725aed860b1a5d7e5f819c62311772d27fd1d6539aafd82
138 rdf:type schema:PropertyValue
139 Naa59ac97b7a949b08dbb443cced3c9c6 rdf:first sg:person.0640513500.33
140 rdf:rest N52ccfb2e66fb4d4390c9fb1ee651ff39
141 Nab1ee0206c6f4f27bd619238d40da6ab rdf:first sg:person.0744610650.37
142 rdf:rest Nf4974f9c1c524dfd8b451815a105c150
143 Nabc23384f2a949a1a13389b5f52b990e schema:name pubmed_id
144 schema:value 27430263
145 rdf:type schema:PropertyValue
146 Nabdb06b6652e4cefa00568be22e53981 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name Observer Variation
148 rdf:type schema:DefinedTerm
149 Nb44c8bb9abce4a28be54ee4dc10004b4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
150 schema:name Magnetic Resonance Imaging
151 rdf:type schema:DefinedTerm
152 Nb487511197894693a36e767520f9470f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
153 schema:name Carotid Artery Diseases
154 rdf:type schema:DefinedTerm
155 Nbc90e9b9a9bc4b0a883ab73675538c8b schema:name dimensions_id
156 schema:value pub.1009565537
157 rdf:type schema:PropertyValue
158 Nbcbec1d49c45475db942f20b037c5884 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
159 schema:name Middle Aged
160 rdf:type schema:DefinedTerm
161 Nbd3f6278022749538ab3811b812a0cab schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
162 schema:name Reproducibility of Results
163 rdf:type schema:DefinedTerm
164 Nce04a1d8bbbf4ee1933ec45afb3b48f9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
165 schema:name Image Interpretation, Computer-Assisted
166 rdf:type schema:DefinedTerm
167 Ndcfca3e85faa4523b671f85d2508f4cb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
168 schema:name Automation
169 rdf:type schema:DefinedTerm
170 Ne14fcca83071454ba1d7b94ae453cb42 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
171 schema:name Reference Standards
172 rdf:type schema:DefinedTerm
173 Ne1e93a94e67b446fa3b48a4437704105 rdf:first sg:person.0665143653.55
174 rdf:rest N84de5181cabb49b1a5f14e11c458029a
175 Ne5135d5896d3425b81f90ffca2bf6029 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
176 schema:name Aged, 80 and over
177 rdf:type schema:DefinedTerm
178 Nf1451f09d389415badf463b6eb80cee5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
179 schema:name Area Under Curve
180 rdf:type schema:DefinedTerm
181 Nf48a521e24e043b1a0cbd785a363d313 rdf:first sg:person.011712252247.13
182 rdf:rest rdf:nil
183 Nf4974f9c1c524dfd8b451815a105c150 rdf:first sg:person.01061037250.78
184 rdf:rest Naa59ac97b7a949b08dbb443cced3c9c6
185 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
186 schema:name Information and Computing Sciences
187 rdf:type schema:DefinedTerm
188 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
189 schema:name Artificial Intelligence and Image Processing
190 rdf:type schema:DefinedTerm
191 sg:grant.2542913 http://pending.schema.org/fundedItem sg:pub.10.1186/s12968-016-0260-3
192 rdf:type schema:MonetaryGrant
193 sg:journal.1030439 schema:issn 1548-7679
194 1879-2855
195 schema:name Journal of Cardiovascular Magnetic Resonance
196 rdf:type schema:Periodical
197 sg:person.01055522151.42 schema:affiliation https://www.grid.ac/institutes/grid.34477.33
198 schema:familyName Liu
199 schema:givenName Jin
200 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01055522151.42
201 rdf:type schema:Person
202 sg:person.01061037250.78 schema:affiliation https://www.grid.ac/institutes/grid.34477.33
203 schema:familyName Xu
204 schema:givenName Dongxiang
205 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01061037250.78
206 rdf:type schema:Person
207 sg:person.01064030670.72 schema:affiliation https://www.grid.ac/institutes/grid.34477.33
208 schema:familyName Ferguson
209 schema:givenName Marina S.
210 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01064030670.72
211 rdf:type schema:Person
212 sg:person.011712252247.13 schema:affiliation https://www.grid.ac/institutes/grid.34477.33
213 schema:familyName Yuan
214 schema:givenName Chun
215 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011712252247.13
216 rdf:type schema:Person
217 sg:person.013351427457.97 schema:affiliation https://www.grid.ac/institutes/grid.34477.33
218 schema:familyName Hatsukami
219 schema:givenName Thomas S.
220 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013351427457.97
221 rdf:type schema:Person
222 sg:person.01357756615.20 schema:affiliation https://www.grid.ac/institutes/grid.69566.3a
223 schema:familyName Ota
224 schema:givenName Hideki
225 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01357756615.20
226 rdf:type schema:Person
227 sg:person.01366636435.36 schema:affiliation https://www.grid.ac/institutes/grid.414467.4
228 schema:familyName DeMarco
229 schema:givenName J. Kevin
230 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01366636435.36
231 rdf:type schema:Person
232 sg:person.0575655025.30 schema:affiliation https://www.grid.ac/institutes/grid.17088.36
233 schema:familyName Zhu
234 schema:givenName David C.
235 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0575655025.30
236 rdf:type schema:Person
237 sg:person.0630706251.91 schema:affiliation https://www.grid.ac/institutes/grid.34477.33
238 schema:familyName Martinez-Malo
239 schema:givenName Vanesa
240 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0630706251.91
241 rdf:type schema:Person
242 sg:person.0640513500.33 schema:affiliation https://www.grid.ac/institutes/grid.34477.33
243 schema:familyName Kerwin
244 schema:givenName William S.
245 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640513500.33
246 rdf:type schema:Person
247 sg:person.0665143653.55 schema:affiliation https://www.grid.ac/institutes/grid.34477.33
248 schema:familyName Balu
249 schema:givenName Niranjan
250 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0665143653.55
251 rdf:type schema:Person
252 sg:person.0744610650.37 schema:affiliation https://www.grid.ac/institutes/grid.34477.33
253 schema:familyName Sun
254 schema:givenName Jie
255 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0744610650.37
256 rdf:type schema:Person
257 sg:person.0764104440.34 schema:affiliation https://www.grid.ac/institutes/grid.34477.33
258 schema:familyName Hippe
259 schema:givenName Daniel S.
260 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0764104440.34
261 rdf:type schema:Person
262 sg:pub.10.1007/s10334-015-0495-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001363147
263 https://doi.org/10.1007/s10334-015-0495-2
264 rdf:type schema:CreativeWork
265 sg:pub.10.1007/s10554-010-9686-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003852135
266 https://doi.org/10.1007/s10554-010-9686-0
267 rdf:type schema:CreativeWork
268 https://app.dimensions.ai/details/publication/pub.1077371954 schema:CreativeWork
269 https://doi.org/10.1002/jmri.1062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004845612
270 rdf:type schema:CreativeWork
271 https://doi.org/10.1002/mrm.20814 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037908344
272 rdf:type schema:CreativeWork
273 https://doi.org/10.1002/mrm.24354 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031964869
274 rdf:type schema:CreativeWork
275 https://doi.org/10.1016/j.jacc.2015.05.056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010795474
276 rdf:type schema:CreativeWork
277 https://doi.org/10.1016/j.jcmg.2012.03.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030151261
278 rdf:type schema:CreativeWork
279 https://doi.org/10.1016/j.jvs.2007.09.064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031638057
280 rdf:type schema:CreativeWork
281 https://doi.org/10.1016/j.mri.2008.05.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029059848
282 rdf:type schema:CreativeWork
283 https://doi.org/10.1056/nejmoa035655 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011609047
284 rdf:type schema:CreativeWork
285 https://doi.org/10.1109/tmi.2006.891486 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061694980
286 rdf:type schema:CreativeWork
287 https://doi.org/10.1148/radiol.09090535 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032991700
288 rdf:type schema:CreativeWork
289 https://doi.org/10.1148/radiol.2402050390 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020412382
290 rdf:type schema:CreativeWork
291 https://doi.org/10.1148/radiology.189.1.8372185 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082779153
292 rdf:type schema:CreativeWork
293 https://doi.org/10.1161/01.atv.0000149867.61851.31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036106235
294 rdf:type schema:CreativeWork
295 https://doi.org/10.1161/01.atv.0000155965.54679.79 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023396216
296 rdf:type schema:CreativeWork
297 https://doi.org/10.1161/01.cir.0000028591.44554.f9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009264013
298 rdf:type schema:CreativeWork
299 https://doi.org/10.1161/01.cir.0000074222.61572.44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011595395
300 rdf:type schema:CreativeWork
301 https://doi.org/10.1161/01.str.0000204638.91099.91 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021071288
302 rdf:type schema:CreativeWork
303 https://doi.org/10.1161/atvbaha.115.307043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063342631
304 rdf:type schema:CreativeWork
305 https://doi.org/10.1161/circulationaha.104.504167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018658938
306 rdf:type schema:CreativeWork
307 https://doi.org/10.1161/strokeaha.106.479139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009360046
308 rdf:type schema:CreativeWork
309 https://doi.org/10.3171/2010.3.jns091057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071075570
310 rdf:type schema:CreativeWork
311 https://doi.org/10.3174/ajnr.a4267 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045815145
312 rdf:type schema:CreativeWork
313 https://www.grid.ac/institutes/grid.17088.36 schema:alternateName Michigan State University
314 schema:name Michigan State University, East Lansing, MI, USA
315 rdf:type schema:Organization
316 https://www.grid.ac/institutes/grid.34477.33 schema:alternateName University of Washington
317 schema:name University of Washington, Seattle, WA, USA
318 rdf:type schema:Organization
319 https://www.grid.ac/institutes/grid.414467.4 schema:alternateName Walter Reed National Military Medical Center
320 schema:name Walter Reed National Military Medical Center, Bethesda, MD, USA
321 rdf:type schema:Organization
322 https://www.grid.ac/institutes/grid.69566.3a schema:alternateName Tohoku University
323 schema:name Tohoku University, Miyagi, Japan
324 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...