Free-breathing myocardial T2* mapping using GRE-EPI and automatic Non-rigid motion correction View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-12

AUTHORS

Ning Jin, Juliana Serafim da Silveira, Marie-Pierre Jolly, David N. Firmin, George Mathew, Nathan Lamba, Sharath Subramanian, Dudley J. Pennell, Subha V. Raman, Orlando P. Simonetti

ABSTRACT

BACKGROUND: Measurement of myocardial T2* is becoming widely used in the assessment of patients at risk for cardiac iron overload. The conventional breath-hold, ECG-triggered, segmented, multi-echo gradient echo (MGRE) sequence used for myocardial T2* quantification is very sensitive to respiratory motion and may not be feasible in patients who are unable to breath-hold. We propose a free-breathing myocardial T2* mapping approach that combines a single-shot gradient-echo echo-planar imaging (GRE-EPI) sequence for T2*-weighted image acquisition with automatic non-rigid motion correction (MOCO) of respiratory motion between single-shot images. METHODS: ECG-triggered T2*-weighted images at different echo times were acquired by a black-blood, single-shot GRE-EPI sequence during free-breathing. A single image at a single TE is acquired in each heartbeat. Automatic non-rigid MOCO was applied to correct for in-plane respiratory motion before pixel-wise T2* mapping. In a total of 117 patients referred for clinical cardiac magnetic resonance exams, the free-breathing MOCO GRE-EPI sequence was compared to the breath-hold segmented MGRE approach. Image quality was scored independently by 2 experienced observers blinded to the particular image acquisition strategy. T2* measurements in the interventricular septum and in the liver were compared for the two methods in all cases with adequate image quality. RESULTS: T2* maps were acquired in all 117 patients using the breath-hold MGRE and the free-breathing MOCO GRE-EPI approaches, including 8 patients with myocardial iron overload and 25 patients with hepatic iron overload. The mean image quality of the free-breathing MOCO GRE-EPI images was scored significantly higher than that of the breath-hold MGRE images by both reviewers. Out of the 117 studies, 21 breath-hold MGRE studies (17.9% of all the patients) were scored to be less than adequate or very poor by both reviewers, while only 2 free-breathing MOCO GRE-EPI studies were scored to be less than adequate image quality. In a comparative evaluation of the images with at least adequate quality, the intra-class correlation coefficients for myocardial and liver T2* were 0.868 and 0.986 respectively (p < 0.001), indicating that the T2* measured by breath-hold MGRE and free-breathing MOCO GRE-EPI were in close agreement. The coefficient of variation between the breath-hold and free-breathing approaches for myocardial and liver T2* were 9.88% and 9.38% respectively. Bland-Altman plots demonstrated good absolute agreement of T2* in the interventricular septum and the liver from the free-breathing and breath-hold approaches (mean differences -0.03 and 0.16 ms, respectively). CONCLUSION: The free-breathing approach described for T2* mapping using MOCO GRE-EPI enables accurate myocardial and liver T2* measurements and is insensitive to respiratory motion. More... »

PAGES

113

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12968-015-0216-z

DOI

http://dx.doi.org/10.1186/s12968-015-0216-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1042609769

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/26699850


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cardiorespiratory Medicine and Haematology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adolescent", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged, 80 and over", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Automation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biomarkers", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cardiac-Gated Imaging Techniques", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cardiomyopathies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Child", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Electrocardiography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Heart Rate", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Interpretation, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Iron", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Iron Overload", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "London", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Myocardium", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Observer Variation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ohio", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Predictive Value of Tests", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prognosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Respiratory Mechanics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Severity of Illness Index", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Young Adult", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Siemens Medical Solutions USA, Inc, 460 West 12th Ave, Room 311, OH 43210, Columbus, OH, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jin", 
        "givenName": "Ning", 
        "id": "sg:person.01135163651.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01135163651.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The Ohio State University", 
          "id": "https://www.grid.ac/institutes/grid.261331.4", 
          "name": [
            "Davis Heart & Lung Research Institute, The Ohio State University, Columbus, OH, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "da Silveira", 
        "givenName": "Juliana Serafim", 
        "id": "sg:person.01047367405.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01047367405.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Siemens (United States)", 
          "id": "https://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Imaging & Computer Vision, Siemens Corporation, Corporate Technology, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jolly", 
        "givenName": "Marie-Pierre", 
        "id": "sg:person.0614041027.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0614041027.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Imperial College London", 
          "id": "https://www.grid.ac/institutes/grid.7445.2", 
          "name": [
            "NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield NHS Trust, London, UK", 
            "National Heart and Lung Institute, Imperial College, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Firmin", 
        "givenName": "David N.", 
        "id": "sg:person.01363154522.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01363154522.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Royal Brompton & Harefield NHS Foundation Trust", 
          "id": "https://www.grid.ac/institutes/grid.421662.5", 
          "name": [
            "NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield NHS Trust, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mathew", 
        "givenName": "George", 
        "id": "sg:person.0714445767.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0714445767.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The Ohio State University", 
          "id": "https://www.grid.ac/institutes/grid.261331.4", 
          "name": [
            "Davis Heart & Lung Research Institute, The Ohio State University, Columbus, OH, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lamba", 
        "givenName": "Nathan", 
        "id": "sg:person.0664061451.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0664061451.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The Ohio State University", 
          "id": "https://www.grid.ac/institutes/grid.261331.4", 
          "name": [
            "Department of Internal Medicine \u2013 Division of Cardiovascular Medicine, The Ohio State University, Columbus, OH, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Subramanian", 
        "givenName": "Sharath", 
        "id": "sg:person.011611501411.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011611501411.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Imperial College London", 
          "id": "https://www.grid.ac/institutes/grid.7445.2", 
          "name": [
            "NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield NHS Trust, London, UK", 
            "National Heart and Lung Institute, Imperial College, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pennell", 
        "givenName": "Dudley J.", 
        "id": "sg:person.0637550422.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0637550422.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The Ohio State University", 
          "id": "https://www.grid.ac/institutes/grid.261331.4", 
          "name": [
            "Davis Heart & Lung Research Institute, The Ohio State University, Columbus, OH, USA", 
            "Department of Internal Medicine \u2013 Division of Cardiovascular Medicine, The Ohio State University, Columbus, OH, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Raman", 
        "givenName": "Subha V.", 
        "id": "sg:person.016256014477.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016256014477.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The Ohio State University", 
          "id": "https://www.grid.ac/institutes/grid.261331.4", 
          "name": [
            "Davis Heart & Lung Research Institute, The Ohio State University, Columbus, OH, USA", 
            "Department of Internal Medicine \u2013 Division of Cardiovascular Medicine, The Ohio State University, Columbus, OH, USA", 
            "Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA", 
            "Department of Radiology, The Ohio State University, Columbus, OH, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Simonetti", 
        "givenName": "Orlando P.", 
        "id": "sg:person.0600163642.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0600163642.58"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/mrm.23153", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000841443"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(89)90264-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007314850"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4236/jbise.2012.512a110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008032897"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4236/jbise.2012.512a110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008032897"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.10171", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012449961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.23780", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012943925"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.1910150211", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013097651"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.20333", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014078773"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02293867", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014160151", 
          "https://doi.org/10.1007/bf02293867"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02293867", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014160151", 
          "https://doi.org/10.1007/bf02293867"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1532-429x-11-56", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014254151", 
          "https://doi.org/10.1186/1532-429x-11-56"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.21744", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016482908"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1532-429x-13-21", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018437402", 
          "https://doi.org/10.1186/1532-429x-13-21"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1378/chest.103.4.1276", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020349473"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.10332", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020917368"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1532-429x-16-40", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021796480", 
          "https://doi.org/10.1186/1532-429x-16-40"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12968-014-0106-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026492648", 
          "https://doi.org/10.1186/s12968-014-0106-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12968-014-0106-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026492648", 
          "https://doi.org/10.1186/s12968-014-0106-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.20024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027982089"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1182/blood-2004-01-0177", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028517334"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejm199409013310903", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030603574"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circulationaha.110.007641", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032740435"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.24139", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034894189"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circulationaha.109.874487", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035115515"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12968-015-0115-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035734011", 
          "https://doi.org/10.1186/s12968-015-0115-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12968-015-0115-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035734011", 
          "https://doi.org/10.1186/s12968-015-0115-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.24914", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037285252"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1532-429x-10-22", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039519544", 
          "https://doi.org/10.1186/1532-429x-10-22"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1532-429x-13-s1-p308", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040326608", 
          "https://doi.org/10.1186/1532-429x-13-s1-p308"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1182/blood-2004-10-3982", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041302030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1532-429x-10-12", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041787063", 
          "https://doi.org/10.1186/1532-429x-10-12"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1182/blood-2008-12-191643", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041860599"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.24385", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042259558"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsmc.1979.4310076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042805607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.1084", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046023091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000205046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046994975"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0085379", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049377134"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rct.0b013e31820eaaf2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050931090"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rct.0b013e31820eaaf2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050931090"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.20929", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051395397"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ajh.23543", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051422904"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1053/euhj.2001.2822", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057075024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/03610927708827533", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058331936"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-9155/54/12/020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059027668"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/isbi.2011.5872476", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093769847"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-12", 
    "datePublishedReg": "2015-12-01", 
    "description": "BACKGROUND: Measurement of myocardial T2* is becoming widely used in the assessment of patients at risk for cardiac iron overload. The conventional breath-hold, ECG-triggered, segmented, multi-echo gradient echo (MGRE) sequence used for myocardial T2* quantification is very sensitive to respiratory motion and may not be feasible in patients who are unable to breath-hold. We propose a free-breathing myocardial T2* mapping approach that combines a single-shot gradient-echo echo-planar imaging (GRE-EPI) sequence for T2*-weighted image acquisition with automatic non-rigid motion correction (MOCO) of respiratory motion between single-shot images.\nMETHODS: ECG-triggered T2*-weighted images at different echo times were acquired by a black-blood, single-shot GRE-EPI sequence during free-breathing. A single image at a single TE is acquired in each heartbeat. Automatic non-rigid MOCO was applied to correct for in-plane respiratory motion before pixel-wise T2* mapping. In a total of 117 patients referred for clinical cardiac magnetic resonance exams, the free-breathing MOCO GRE-EPI sequence was compared to the breath-hold segmented MGRE approach. Image quality was scored independently by 2 experienced observers blinded to the particular image acquisition strategy. T2* measurements in the interventricular septum and in the liver were compared for the two methods in all cases with adequate image quality.\nRESULTS: T2* maps were acquired in all 117 patients using the breath-hold MGRE and the free-breathing MOCO GRE-EPI approaches, including 8 patients with myocardial iron overload and 25 patients with hepatic iron overload. The mean image quality of the free-breathing MOCO GRE-EPI images was scored significantly higher than that of the breath-hold MGRE images by both reviewers. Out of the 117 studies, 21 breath-hold MGRE studies (17.9% of all the patients) were scored to be less than adequate or very poor by both reviewers, while only 2 free-breathing MOCO GRE-EPI studies were scored to be less than adequate image quality. In a comparative evaluation of the images with at least adequate quality, the intra-class correlation coefficients for myocardial and liver T2* were 0.868 and 0.986 respectively (p\u2009<\u20090.001), indicating that the T2* measured by breath-hold MGRE and free-breathing MOCO GRE-EPI were in close agreement. The coefficient of variation between the breath-hold and free-breathing approaches for myocardial and liver T2* were 9.88% and 9.38% respectively. Bland-Altman plots demonstrated good absolute agreement of T2* in the interventricular septum and the liver from the free-breathing and breath-hold approaches (mean differences -0.03 and 0.16 ms, respectively).\nCONCLUSION: The free-breathing approach described for T2* mapping using MOCO GRE-EPI enables accurate myocardial and liver T2* measurements and is insensitive to respiratory motion.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12968-015-0216-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1030439", 
        "issn": [
          "1548-7679", 
          "1879-2855"
        ], 
        "name": "Journal of Cardiovascular Magnetic Resonance", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "17"
      }
    ], 
    "name": "Free-breathing myocardial T2* mapping using GRE-EPI and automatic Non-rigid motion correction", 
    "pagination": "113", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "caf7ced5d425ad6adff6e0755c0eea84750e9dd78c6fafae1ee894a1380164b7"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "26699850"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9815616"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12968-015-0216-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1042609769"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12968-015-0216-z", 
      "https://app.dimensions.ai/details/publication/pub.1042609769"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:58", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000551.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2Fs12968-015-0216-z"
  }
]
 

Download the RDF metadata as:Ā  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12968-015-0216-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12968-015-0216-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12968-015-0216-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12968-015-0216-z'


 

This table displays all metadata directly associated to this object as RDF triples.

392 TRIPLES      21 PREDICATES      98 URIs      50 LITERALS      38 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12968-015-0216-z schema:about N0d268302a9264d37956bcdace2fbb9b7
2 N0d33629460d9483cb4bfbc74c7befb0a
3 N1a8ac569a09d4776b1073a8059fe97b7
4 N1aca412467004d01bbe8116391d6ed4d
5 N1e722d961c55496e8edd8885f696fa8d
6 N23c9de10e27941908358680f8ecf2071
7 N3532f19f292a4142b02eec0b4e1c85f2
8 N3716346d8e874b62a9ff88a36b8445fa
9 N38f189ed34644a898030d2a827f73478
10 N3a0c12f909a044b4b0728a90659c166d
11 N458ec1bf847b41b78564a3e0303efa45
12 N4c94677711dd44a2a3424dd2d558d1a2
13 N56a3d17f285c4e149e06993c45a917a6
14 N5f9a1bfc1c4e421698c1c68028401045
15 N66ee5dbfbab748c0a37246d7667e6e0e
16 N73fe407003e44c5180e5b84b2256b2b7
17 N93fc6b9dd65a4c909d77d9935cd609c4
18 N94a72389e9e74efeabd558b2b4cc61bd
19 Nb7dc30fc478c4f63becda8dd60a40554
20 Nbf466b360e254b8fb157a600363da2be
21 Nc5ee5af3d5114a509bacc7937048cf22
22 Ncab944efe5d549bd86a2e37149f68b75
23 Nd7a0880e7b3546c0b2a49b56197c719f
24 Ndca7a723bd8d48c8bfa57644025b1a31
25 Ne16634f160f74f8683fb2b596bb94e59
26 Ned9f1281e35c48d68769e064a8c17b59
27 Nf6a3bbaec7c8407f848126fa5ba4f44b
28 Nf6ded4bf2ac84a0ab80059ca2567524f
29 Nfca176ea0c0c46eea72baedd00881fb8
30 anzsrc-for:11
31 anzsrc-for:1102
32 schema:author N4ead20b2245e4aa2ab848200340f3dd3
33 schema:citation sg:pub.10.1007/bf02293867
34 sg:pub.10.1186/1532-429x-10-12
35 sg:pub.10.1186/1532-429x-10-22
36 sg:pub.10.1186/1532-429x-11-56
37 sg:pub.10.1186/1532-429x-13-21
38 sg:pub.10.1186/1532-429x-13-s1-p308
39 sg:pub.10.1186/1532-429x-16-40
40 sg:pub.10.1186/s12968-014-0106-9
41 sg:pub.10.1186/s12968-015-0115-3
42 https://doi.org/10.1002/ajh.23543
43 https://doi.org/10.1002/jmri.10332
44 https://doi.org/10.1002/jmri.20929
45 https://doi.org/10.1002/jmri.23780
46 https://doi.org/10.1002/mrm.10171
47 https://doi.org/10.1002/mrm.1084
48 https://doi.org/10.1002/mrm.1910150211
49 https://doi.org/10.1002/mrm.20024
50 https://doi.org/10.1002/mrm.20333
51 https://doi.org/10.1002/mrm.21744
52 https://doi.org/10.1002/mrm.23153
53 https://doi.org/10.1002/mrm.24139
54 https://doi.org/10.1002/mrm.24385
55 https://doi.org/10.1002/mrm.24914
56 https://doi.org/10.1016/s0140-6736(89)90264-x
57 https://doi.org/10.1053/euhj.2001.2822
58 https://doi.org/10.1056/nejm199409013310903
59 https://doi.org/10.1080/03610927708827533
60 https://doi.org/10.1088/0031-9155/54/12/020
61 https://doi.org/10.1097/rct.0b013e31820eaaf2
62 https://doi.org/10.1109/isbi.2011.5872476
63 https://doi.org/10.1109/tsmc.1979.4310076
64 https://doi.org/10.1159/000205046
65 https://doi.org/10.1161/circulationaha.109.874487
66 https://doi.org/10.1161/circulationaha.110.007641
67 https://doi.org/10.1182/blood-2004-01-0177
68 https://doi.org/10.1182/blood-2004-10-3982
69 https://doi.org/10.1182/blood-2008-12-191643
70 https://doi.org/10.1371/journal.pone.0085379
71 https://doi.org/10.1378/chest.103.4.1276
72 https://doi.org/10.4236/jbise.2012.512a110
73 schema:datePublished 2015-12
74 schema:datePublishedReg 2015-12-01
75 schema:description BACKGROUND: Measurement of myocardial T2* is becoming widely used in the assessment of patients at risk for cardiac iron overload. The conventional breath-hold, ECG-triggered, segmented, multi-echo gradient echo (MGRE) sequence used for myocardial T2* quantification is very sensitive to respiratory motion and may not be feasible in patients who are unable to breath-hold. We propose a free-breathing myocardial T2* mapping approach that combines a single-shot gradient-echo echo-planar imaging (GRE-EPI) sequence for T2*-weighted image acquisition with automatic non-rigid motion correction (MOCO) of respiratory motion between single-shot images. METHODS: ECG-triggered T2*-weighted images at different echo times were acquired by a black-blood, single-shot GRE-EPI sequence during free-breathing. A single image at a single TE is acquired in each heartbeat. Automatic non-rigid MOCO was applied to correct for in-plane respiratory motion before pixel-wise T2* mapping. In a total of 117 patients referred for clinical cardiac magnetic resonance exams, the free-breathing MOCO GRE-EPI sequence was compared to the breath-hold segmented MGRE approach. Image quality was scored independently by 2 experienced observers blinded to the particular image acquisition strategy. T2* measurements in the interventricular septum and in the liver were compared for the two methods in all cases with adequate image quality. RESULTS: T2* maps were acquired in all 117 patients using the breath-hold MGRE and the free-breathing MOCO GRE-EPI approaches, including 8 patients with myocardial iron overload and 25 patients with hepatic iron overload. The mean image quality of the free-breathing MOCO GRE-EPI images was scored significantly higher than that of the breath-hold MGRE images by both reviewers. Out of the 117 studies, 21 breath-hold MGRE studies (17.9% of all the patients) were scored to be less than adequate or very poor by both reviewers, while only 2 free-breathing MOCO GRE-EPI studies were scored to be less than adequate image quality. In a comparative evaluation of the images with at least adequate quality, the intra-class correlation coefficients for myocardial and liver T2* were 0.868 and 0.986 respectively (pā€‰<ā€‰0.001), indicating that the T2* measured by breath-hold MGRE and free-breathing MOCO GRE-EPI were in close agreement. The coefficient of variation between the breath-hold and free-breathing approaches for myocardial and liver T2* were 9.88% and 9.38% respectively. Bland-Altman plots demonstrated good absolute agreement of T2* in the interventricular septum and the liver from the free-breathing and breath-hold approaches (mean differences -0.03 and 0.16 ms, respectively). CONCLUSION: The free-breathing approach described for T2* mapping using MOCO GRE-EPI enables accurate myocardial and liver T2* measurements and is insensitive to respiratory motion.
76 schema:genre research_article
77 schema:inLanguage en
78 schema:isAccessibleForFree true
79 schema:isPartOf N140e78a63f484cbcb8686b9ae3e28cb4
80 N74593156a8ad46338162ae43c38725b3
81 sg:journal.1030439
82 schema:name Free-breathing myocardial T2* mapping using GRE-EPI and automatic Non-rigid motion correction
83 schema:pagination 113
84 schema:productId N1e1f9c64ce944d4ea3cf1f32082c4724
85 N9351cd30c87a4ea8ad609fc75b3b051a
86 Nb01fea91403a467cb6cf69423053c491
87 Nc4458c518d3d4164a883cbcff38372c5
88 Ned00e0d076ef4b14abd2adb9292147e7
89 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042609769
90 https://doi.org/10.1186/s12968-015-0216-z
91 schema:sdDatePublished 2019-04-10T15:58
92 schema:sdLicense https://scigraph.springernature.com/explorer/license/
93 schema:sdPublisher Ne18439dff01f4d958f2005df7beb0988
94 schema:url http://link.springer.com/10.1186%2Fs12968-015-0216-z
95 sgo:license sg:explorer/license/
96 sgo:sdDataset articles
97 rdf:type schema:ScholarlyArticle
98 N0d268302a9264d37956bcdace2fbb9b7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Middle Aged
100 rdf:type schema:DefinedTerm
101 N0d33629460d9483cb4bfbc74c7befb0a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Prognosis
103 rdf:type schema:DefinedTerm
104 N140e78a63f484cbcb8686b9ae3e28cb4 schema:volumeNumber 17
105 rdf:type schema:PublicationVolume
106 N1a8ac569a09d4776b1073a8059fe97b7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Ohio
108 rdf:type schema:DefinedTerm
109 N1aca412467004d01bbe8116391d6ed4d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Iron
111 rdf:type schema:DefinedTerm
112 N1e1f9c64ce944d4ea3cf1f32082c4724 schema:name dimensions_id
113 schema:value pub.1042609769
114 rdf:type schema:PropertyValue
115 N1e722d961c55496e8edd8885f696fa8d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Myocardium
117 rdf:type schema:DefinedTerm
118 N1e9aacee248d4c29bf9372ea026f2178 rdf:first sg:person.0600163642.58
119 rdf:rest rdf:nil
120 N23c9de10e27941908358680f8ecf2071 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Observer Variation
122 rdf:type schema:DefinedTerm
123 N2edb272ef5764509bfe3d2878e1c8296 schema:name Siemens Medical Solutions USA, Inc, 460 West 12th Ave, Room 311, OH 43210, Columbus, OH, USA
124 rdf:type schema:Organization
125 N3532f19f292a4142b02eec0b4e1c85f2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Image Interpretation, Computer-Assisted
127 rdf:type schema:DefinedTerm
128 N3716346d8e874b62a9ff88a36b8445fa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Cardiomyopathies
130 rdf:type schema:DefinedTerm
131 N38f189ed34644a898030d2a827f73478 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Adolescent
133 rdf:type schema:DefinedTerm
134 N3a0c12f909a044b4b0728a90659c166d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Child
136 rdf:type schema:DefinedTerm
137 N458ec1bf847b41b78564a3e0303efa45 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Aged, 80 and over
139 rdf:type schema:DefinedTerm
140 N4c94677711dd44a2a3424dd2d558d1a2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Iron Overload
142 rdf:type schema:DefinedTerm
143 N4ead20b2245e4aa2ab848200340f3dd3 rdf:first sg:person.01135163651.74
144 rdf:rest N6c3825b6ef114ddbaf2ba605c50a7f6e
145 N56a3d17f285c4e149e06993c45a917a6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Cardiac-Gated Imaging Techniques
147 rdf:type schema:DefinedTerm
148 N5f9a1bfc1c4e421698c1c68028401045 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
149 schema:name Adult
150 rdf:type schema:DefinedTerm
151 N66ee5dbfbab748c0a37246d7667e6e0e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Biomarkers
153 rdf:type schema:DefinedTerm
154 N6c3825b6ef114ddbaf2ba605c50a7f6e rdf:first sg:person.01047367405.34
155 rdf:rest Nfbfebdb3f76e4e999ae3688f57252bd7
156 N73fe407003e44c5180e5b84b2256b2b7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
157 schema:name Magnetic Resonance Imaging
158 rdf:type schema:DefinedTerm
159 N74593156a8ad46338162ae43c38725b3 schema:issueNumber 1
160 rdf:type schema:PublicationIssue
161 N7cc822400d844da5b63ba0f2b374cdd6 rdf:first sg:person.01363154522.55
162 rdf:rest N8e639eb903ae497fbc12623204477ec7
163 N8e639eb903ae497fbc12623204477ec7 rdf:first sg:person.0714445767.36
164 rdf:rest N9ce4fc58b43148bfa691f515aa3aed03
165 N9351cd30c87a4ea8ad609fc75b3b051a schema:name nlm_unique_id
166 schema:value 9815616
167 rdf:type schema:PropertyValue
168 N93fc6b9dd65a4c909d77d9935cd609c4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
169 schema:name Severity of Illness Index
170 rdf:type schema:DefinedTerm
171 N94a72389e9e74efeabd558b2b4cc61bd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
172 schema:name Heart Rate
173 rdf:type schema:DefinedTerm
174 N9ce4fc58b43148bfa691f515aa3aed03 rdf:first sg:person.0664061451.14
175 rdf:rest N9e60a0e992c94dd0b191061f99dd9558
176 N9e60a0e992c94dd0b191061f99dd9558 rdf:first sg:person.011611501411.68
177 rdf:rest Nf9a1ad12065540b886e07bb86b15c72b
178 Nb01fea91403a467cb6cf69423053c491 schema:name readcube_id
179 schema:value caf7ced5d425ad6adff6e0755c0eea84750e9dd78c6fafae1ee894a1380164b7
180 rdf:type schema:PropertyValue
181 Nb6c82a60a1ca422eac931a7f5e8d3754 rdf:first sg:person.016256014477.54
182 rdf:rest N1e9aacee248d4c29bf9372ea026f2178
183 Nb7dc30fc478c4f63becda8dd60a40554 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
184 schema:name Young Adult
185 rdf:type schema:DefinedTerm
186 Nbf466b360e254b8fb157a600363da2be schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
187 schema:name Automation
188 rdf:type schema:DefinedTerm
189 Nc4458c518d3d4164a883cbcff38372c5 schema:name doi
190 schema:value 10.1186/s12968-015-0216-z
191 rdf:type schema:PropertyValue
192 Nc5ee5af3d5114a509bacc7937048cf22 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
193 schema:name Female
194 rdf:type schema:DefinedTerm
195 Ncab944efe5d549bd86a2e37149f68b75 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
196 schema:name Electrocardiography
197 rdf:type schema:DefinedTerm
198 Nd7a0880e7b3546c0b2a49b56197c719f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
199 schema:name Respiratory Mechanics
200 rdf:type schema:DefinedTerm
201 Ndca7a723bd8d48c8bfa57644025b1a31 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
202 schema:name Reproducibility of Results
203 rdf:type schema:DefinedTerm
204 Ne16634f160f74f8683fb2b596bb94e59 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
205 schema:name Male
206 rdf:type schema:DefinedTerm
207 Ne18439dff01f4d958f2005df7beb0988 schema:name Springer Nature - SN SciGraph project
208 rdf:type schema:Organization
209 Ned00e0d076ef4b14abd2adb9292147e7 schema:name pubmed_id
210 schema:value 26699850
211 rdf:type schema:PropertyValue
212 Ned9f1281e35c48d68769e064a8c17b59 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
213 schema:name London
214 rdf:type schema:DefinedTerm
215 Nf6a3bbaec7c8407f848126fa5ba4f44b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
216 schema:name Aged
217 rdf:type schema:DefinedTerm
218 Nf6ded4bf2ac84a0ab80059ca2567524f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
219 schema:name Humans
220 rdf:type schema:DefinedTerm
221 Nf9a1ad12065540b886e07bb86b15c72b rdf:first sg:person.0637550422.73
222 rdf:rest Nb6c82a60a1ca422eac931a7f5e8d3754
223 Nfbfebdb3f76e4e999ae3688f57252bd7 rdf:first sg:person.0614041027.22
224 rdf:rest N7cc822400d844da5b63ba0f2b374cdd6
225 Nfca176ea0c0c46eea72baedd00881fb8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
226 schema:name Predictive Value of Tests
227 rdf:type schema:DefinedTerm
228 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
229 schema:name Medical and Health Sciences
230 rdf:type schema:DefinedTerm
231 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
232 schema:name Cardiorespiratory Medicine and Haematology
233 rdf:type schema:DefinedTerm
234 sg:journal.1030439 schema:issn 1548-7679
235 1879-2855
236 schema:name Journal of Cardiovascular Magnetic Resonance
237 rdf:type schema:Periodical
238 sg:person.01047367405.34 schema:affiliation https://www.grid.ac/institutes/grid.261331.4
239 schema:familyName da Silveira
240 schema:givenName Juliana Serafim
241 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01047367405.34
242 rdf:type schema:Person
243 sg:person.01135163651.74 schema:affiliation N2edb272ef5764509bfe3d2878e1c8296
244 schema:familyName Jin
245 schema:givenName Ning
246 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01135163651.74
247 rdf:type schema:Person
248 sg:person.011611501411.68 schema:affiliation https://www.grid.ac/institutes/grid.261331.4
249 schema:familyName Subramanian
250 schema:givenName Sharath
251 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011611501411.68
252 rdf:type schema:Person
253 sg:person.01363154522.55 schema:affiliation https://www.grid.ac/institutes/grid.7445.2
254 schema:familyName Firmin
255 schema:givenName David N.
256 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01363154522.55
257 rdf:type schema:Person
258 sg:person.016256014477.54 schema:affiliation https://www.grid.ac/institutes/grid.261331.4
259 schema:familyName Raman
260 schema:givenName Subha V.
261 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016256014477.54
262 rdf:type schema:Person
263 sg:person.0600163642.58 schema:affiliation https://www.grid.ac/institutes/grid.261331.4
264 schema:familyName Simonetti
265 schema:givenName Orlando P.
266 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0600163642.58
267 rdf:type schema:Person
268 sg:person.0614041027.22 schema:affiliation https://www.grid.ac/institutes/grid.419233.e
269 schema:familyName Jolly
270 schema:givenName Marie-Pierre
271 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0614041027.22
272 rdf:type schema:Person
273 sg:person.0637550422.73 schema:affiliation https://www.grid.ac/institutes/grid.7445.2
274 schema:familyName Pennell
275 schema:givenName Dudley J.
276 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0637550422.73
277 rdf:type schema:Person
278 sg:person.0664061451.14 schema:affiliation https://www.grid.ac/institutes/grid.261331.4
279 schema:familyName Lamba
280 schema:givenName Nathan
281 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0664061451.14
282 rdf:type schema:Person
283 sg:person.0714445767.36 schema:affiliation https://www.grid.ac/institutes/grid.421662.5
284 schema:familyName Mathew
285 schema:givenName George
286 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0714445767.36
287 rdf:type schema:Person
288 sg:pub.10.1007/bf02293867 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014160151
289 https://doi.org/10.1007/bf02293867
290 rdf:type schema:CreativeWork
291 sg:pub.10.1186/1532-429x-10-12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041787063
292 https://doi.org/10.1186/1532-429x-10-12
293 rdf:type schema:CreativeWork
294 sg:pub.10.1186/1532-429x-10-22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039519544
295 https://doi.org/10.1186/1532-429x-10-22
296 rdf:type schema:CreativeWork
297 sg:pub.10.1186/1532-429x-11-56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014254151
298 https://doi.org/10.1186/1532-429x-11-56
299 rdf:type schema:CreativeWork
300 sg:pub.10.1186/1532-429x-13-21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018437402
301 https://doi.org/10.1186/1532-429x-13-21
302 rdf:type schema:CreativeWork
303 sg:pub.10.1186/1532-429x-13-s1-p308 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040326608
304 https://doi.org/10.1186/1532-429x-13-s1-p308
305 rdf:type schema:CreativeWork
306 sg:pub.10.1186/1532-429x-16-40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021796480
307 https://doi.org/10.1186/1532-429x-16-40
308 rdf:type schema:CreativeWork
309 sg:pub.10.1186/s12968-014-0106-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026492648
310 https://doi.org/10.1186/s12968-014-0106-9
311 rdf:type schema:CreativeWork
312 sg:pub.10.1186/s12968-015-0115-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035734011
313 https://doi.org/10.1186/s12968-015-0115-3
314 rdf:type schema:CreativeWork
315 https://doi.org/10.1002/ajh.23543 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051422904
316 rdf:type schema:CreativeWork
317 https://doi.org/10.1002/jmri.10332 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020917368
318 rdf:type schema:CreativeWork
319 https://doi.org/10.1002/jmri.20929 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051395397
320 rdf:type schema:CreativeWork
321 https://doi.org/10.1002/jmri.23780 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012943925
322 rdf:type schema:CreativeWork
323 https://doi.org/10.1002/mrm.10171 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012449961
324 rdf:type schema:CreativeWork
325 https://doi.org/10.1002/mrm.1084 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046023091
326 rdf:type schema:CreativeWork
327 https://doi.org/10.1002/mrm.1910150211 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013097651
328 rdf:type schema:CreativeWork
329 https://doi.org/10.1002/mrm.20024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027982089
330 rdf:type schema:CreativeWork
331 https://doi.org/10.1002/mrm.20333 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014078773
332 rdf:type schema:CreativeWork
333 https://doi.org/10.1002/mrm.21744 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016482908
334 rdf:type schema:CreativeWork
335 https://doi.org/10.1002/mrm.23153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000841443
336 rdf:type schema:CreativeWork
337 https://doi.org/10.1002/mrm.24139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034894189
338 rdf:type schema:CreativeWork
339 https://doi.org/10.1002/mrm.24385 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042259558
340 rdf:type schema:CreativeWork
341 https://doi.org/10.1002/mrm.24914 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037285252
342 rdf:type schema:CreativeWork
343 https://doi.org/10.1016/s0140-6736(89)90264-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1007314850
344 rdf:type schema:CreativeWork
345 https://doi.org/10.1053/euhj.2001.2822 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057075024
346 rdf:type schema:CreativeWork
347 https://doi.org/10.1056/nejm199409013310903 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030603574
348 rdf:type schema:CreativeWork
349 https://doi.org/10.1080/03610927708827533 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058331936
350 rdf:type schema:CreativeWork
351 https://doi.org/10.1088/0031-9155/54/12/020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059027668
352 rdf:type schema:CreativeWork
353 https://doi.org/10.1097/rct.0b013e31820eaaf2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050931090
354 rdf:type schema:CreativeWork
355 https://doi.org/10.1109/isbi.2011.5872476 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093769847
356 rdf:type schema:CreativeWork
357 https://doi.org/10.1109/tsmc.1979.4310076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042805607
358 rdf:type schema:CreativeWork
359 https://doi.org/10.1159/000205046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046994975
360 rdf:type schema:CreativeWork
361 https://doi.org/10.1161/circulationaha.109.874487 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035115515
362 rdf:type schema:CreativeWork
363 https://doi.org/10.1161/circulationaha.110.007641 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032740435
364 rdf:type schema:CreativeWork
365 https://doi.org/10.1182/blood-2004-01-0177 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028517334
366 rdf:type schema:CreativeWork
367 https://doi.org/10.1182/blood-2004-10-3982 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041302030
368 rdf:type schema:CreativeWork
369 https://doi.org/10.1182/blood-2008-12-191643 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041860599
370 rdf:type schema:CreativeWork
371 https://doi.org/10.1371/journal.pone.0085379 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049377134
372 rdf:type schema:CreativeWork
373 https://doi.org/10.1378/chest.103.4.1276 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020349473
374 rdf:type schema:CreativeWork
375 https://doi.org/10.4236/jbise.2012.512a110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008032897
376 rdf:type schema:CreativeWork
377 https://www.grid.ac/institutes/grid.261331.4 schema:alternateName The Ohio State University
378 schema:name Davis Heart & Lung Research Institute, The Ohio State University, Columbus, OH, USA
379 Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
380 Department of Internal Medicine ā€“ Division of Cardiovascular Medicine, The Ohio State University, Columbus, OH, USA
381 Department of Radiology, The Ohio State University, Columbus, OH, USA
382 rdf:type schema:Organization
383 https://www.grid.ac/institutes/grid.419233.e schema:alternateName Siemens (United States)
384 schema:name Imaging & Computer Vision, Siemens Corporation, Corporate Technology, Princeton, NJ, USA
385 rdf:type schema:Organization
386 https://www.grid.ac/institutes/grid.421662.5 schema:alternateName Royal Brompton & Harefield NHS Foundation Trust
387 schema:name NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield NHS Trust, London, UK
388 rdf:type schema:Organization
389 https://www.grid.ac/institutes/grid.7445.2 schema:alternateName Imperial College London
390 schema:name NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield NHS Trust, London, UK
391 National Heart and Lung Institute, Imperial College, London, UK
392 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...