Contrast-free detection of myocardial fibrosis in hypertrophic cardiomyopathy patients with diffusion-weighted cardiovascular magnetic resonance View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-12-02

AUTHORS

Christopher Nguyen, Minjie Lu, Zhaoyang Fan, Xiaoming Bi, Peter Kellman, Shihua Zhao, Debiao Li

ABSTRACT

BackgroundsPrevious studies have shown that diffusion-weighted cardiovascular magnetic resonance (DW-CMR) is highly sensitive to replacement fibrosis of chronic myocardial infarction. Despite this sensitivity to myocardial infarction, DW-CMR has not been established as a method to detect diffuse myocardial fibrosis. We propose the application of a recently developed DW-CMR technique to detect diffuse myocardial fibrosis in hypertrophic cardiomyopathy (HCM) patients and compare its performance with established CMR techniques.MethodsHCM patients (N = 23) were recruited and scanned with the following protocol: standard morphological localizers, DW-CMR, extracellular volume (ECV) CMR, and late gadolinium enhanced (LGE) imaging for reference. Apparent diffusion coefficient (ADC) and ECV maps were segmented into 6 American Heart Association (AHA) segments. Positive regions for myocardial fibrosis were defined as: ADC > 2.0 μm2/ms and ECV > 30 %. Fibrotic and non-fibrotic mean ADC and ECV values were compared as well as ADC-derived and ECV-derived fibrosis burden. In addition, fibrosis regional detection was compared between ADC and ECV calculating sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) using ECV as the gold-standard reference.ResultsADC (2.4 ± 0.2 μm2/ms) of fibrotic regions (ADC > 2.0 μm2/ms) was significantly (p < 0.01) higher than ADC (1.5 ± 0.2 μm2/ms) of non-fibrotic regions. Similarly, ECV (35 ± 4 %) of fibrotic regions (ECV > 30 %) was significantly (p < 0.01) higher than ECV (26 ± 2 %) of non-fibrotic regions. In fibrotic regions defined by ECV, ADC (2.2 ± 0.3 μm2/ms) was again significantly (p < 0.05) higher than ADC (1.6 ± 0.3 μm2/ms) of non-fibrotic regions. In fibrotic regions defined by ADC criterion, ECV (34 ± 5 %) was significantly (p < 0.01) higher than ECV (28 ± 3 %) in non-fibrotic regions. ADC-derived and ECV-derived fibrosis burdens were in substantial agreement (intra-class correlation = 0.83). Regional detection between ADC and ECV of diffuse fibrosis yielded substantial agreement (κ = 0.66) with high sensitivity, specificity, PPV, NPV, and accuracy (0.80, 0.85, 0.81, 0.85, and 0.83, respectively).ConclusionDW-CMR is sensitive to diffuse myocardial fibrosis and is capable of characterizing the extent of fibrosis in HCM patients. More... »

PAGES

107

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12968-015-0214-1

DOI

http://dx.doi.org/10.1186/s12968-015-0214-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1033955208

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/26631061


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cardiorespiratory Medicine and Haematology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cardiomyopathy, Hypertrophic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Contrast Media", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Diffusion Magnetic Resonance Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fibrosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Interpretation, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Myocardium", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Predictive Value of Tests", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prognosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Severity of Illness Index", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Young Adult", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.19006.3e", 
          "name": [
            "Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA", 
            "Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nguyen", 
        "givenName": "Christopher", 
        "id": "sg:person.01331047206.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331047206.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Fuwai Hospital, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.506261.6", 
          "name": [
            "State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Beijing, China", 
            "National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Fuwai Hospital, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lu", 
        "givenName": "Minjie", 
        "id": "sg:person.0655012311.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0655012311.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.50956.3f", 
          "name": [
            "Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fan", 
        "givenName": "Zhaoyang", 
        "id": "sg:person.01136172260.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136172260.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "MR R&D, Siemens Healthcare, Los Angeles, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.415886.6", 
          "name": [
            "MR R&D, Siemens Healthcare, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bi", 
        "givenName": "Xiaoming", 
        "id": "sg:person.01066244563.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066244563.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA", 
          "id": "http://www.grid.ac/institutes/grid.279885.9", 
          "name": [
            "National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kellman", 
        "givenName": "Peter", 
        "id": "sg:person.01342204374.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01342204374.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Fuwai Hospital, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.506261.6", 
          "name": [
            "State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Beijing, China", 
            "National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Fuwai Hospital, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhao", 
        "givenName": "Shihua", 
        "id": "sg:person.01216040004.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01216040004.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.19006.3e", 
          "name": [
            "Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA", 
            "Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Debiao", 
        "id": "sg:person.01152021525.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152021525.33"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/1532-429x-14-37", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050894202", 
          "https://doi.org/10.1186/1532-429x-14-37"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1532-429x-14-63", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008637223", 
          "https://doi.org/10.1186/1532-429x-14-63"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12968-014-0087-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010680836", 
          "https://doi.org/10.1186/s12968-014-0087-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1532-429x-15-92", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009837447", 
          "https://doi.org/10.1186/1532-429x-15-92"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12968-014-0068-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009456208", 
          "https://doi.org/10.1186/s12968-014-0068-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nm.3436", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023045358", 
          "https://doi.org/10.1038/nm.3436"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1532-429x-14-17", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001332726", 
          "https://doi.org/10.1186/1532-429x-14-17"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1532-429x-14-64", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002584485", 
          "https://doi.org/10.1186/1532-429x-14-64"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-12-02", 
    "datePublishedReg": "2015-12-02", 
    "description": "BackgroundsPrevious studies have shown that diffusion-weighted cardiovascular magnetic resonance (DW-CMR) is highly sensitive to replacement fibrosis of chronic myocardial infarction. Despite this sensitivity to myocardial infarction, DW-CMR has not been established as a method to detect diffuse myocardial fibrosis. We propose the application of a recently developed DW-CMR technique to detect diffuse myocardial fibrosis in hypertrophic cardiomyopathy (HCM) patients and compare its performance with established CMR techniques.MethodsHCM patients (N\u2009=\u200923) were recruited and scanned with the following protocol: standard morphological localizers, DW-CMR, extracellular volume (ECV) CMR, and late gadolinium enhanced (LGE) imaging for reference. Apparent diffusion coefficient (ADC) and ECV maps were segmented into 6 American Heart Association (AHA) segments. Positive regions for myocardial fibrosis were defined as: ADC\u2009>\u20092.0\u00a0\u03bcm2/ms and ECV\u2009>\u200930\u00a0%. Fibrotic and non-fibrotic mean ADC and ECV values were compared as well as ADC-derived and ECV-derived fibrosis burden. In addition, fibrosis\u00a0regional detection was compared between ADC and ECV calculating sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) using ECV as the gold-standard reference.ResultsADC (2.4\u2009\u00b1\u20090.2\u00a0\u03bcm2/ms) of fibrotic regions (ADC\u2009>\u20092.0\u00a0\u03bcm2/ms) was significantly (p\u2009<\u20090.01) higher than ADC (1.5\u2009\u00b1\u20090.2\u00a0\u03bcm2/ms) of non-fibrotic regions. Similarly, ECV (35\u2009\u00b1\u20094\u00a0%) of fibrotic regions (ECV\u2009>\u200930\u00a0%) was significantly (p\u2009<\u20090.01) higher than ECV (26\u2009\u00b1\u20092\u00a0%) of non-fibrotic regions. In fibrotic regions defined by ECV, ADC (2.2\u2009\u00b1\u20090.3\u00a0\u03bcm2/ms) was again significantly (p\u2009<\u20090.05) higher than ADC (1.6\u2009\u00b1\u20090.3\u00a0\u03bcm2/ms) of non-fibrotic regions. In fibrotic regions defined by ADC criterion, ECV (34\u2009\u00b1\u20095\u00a0%) was significantly (p\u2009<\u20090.01) higher than ECV (28\u2009\u00b1\u20093\u00a0%) in non-fibrotic regions. ADC-derived and ECV-derived fibrosis burdens were in substantial agreement (intra-class correlation\u2009=\u20090.83). Regional detection between ADC and ECV of diffuse fibrosis yielded substantial agreement (\u03ba\u2009=\u20090.66) with high sensitivity, specificity, PPV, NPV, and accuracy (0.80, 0.85, 0.81, 0.85, and 0.83, respectively).ConclusionDW-CMR is sensitive to diffuse myocardial fibrosis and is capable of characterizing the extent of fibrosis in HCM patients.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s12968-015-0214-1", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3801990", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8331604", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1030439", 
        "issn": [
          "1548-7679", 
          "1879-2855"
        ], 
        "name": "Journal of Cardiovascular Magnetic Resonance", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "17"
      }
    ], 
    "keywords": [
      "high sensitivity", 
      "ADC criteria", 
      "American Heart Association segments", 
      "detection", 
      "sensitivity", 
      "regional detection", 
      "resonance", 
      "protocol", 
      "technique", 
      "applications", 
      "specificity", 
      "performance", 
      "negative predictive value", 
      "positive predictive value", 
      "gadolinium", 
      "ECV maps", 
      "magnetic resonance", 
      "gold standard reference", 
      "fibrosis burden", 
      "diffusion coefficient", 
      "method", 
      "addition", 
      "values", 
      "region", 
      "coefficient", 
      "agreement", 
      "accuracy", 
      "predictive value", 
      "CMR techniques", 
      "apparent diffusion coefficient", 
      "fibrotic regions", 
      "reference", 
      "MS", 
      "positive region", 
      "segments", 
      "study", 
      "localizer", 
      "ECV", 
      "myocardial infarction", 
      "burden", 
      "substantial agreement", 
      "maps", 
      "mean apparent diffusion coefficient", 
      "CMR", 
      "extent", 
      "ECV values", 
      "criteria", 
      "infarction", 
      "fibrosis", 
      "chronic myocardial infarction", 
      "hypertrophic cardiomyopathy patients", 
      "diffuse fibrosis", 
      "late gadolinium", 
      "cardiovascular magnetic resonance", 
      "diffuse myocardial fibrosis", 
      "extent of fibrosis", 
      "cardiomyopathy patients", 
      "myocardial fibrosis", 
      "patients", 
      "HCM patients", 
      "\u03bcm2/ms", 
      "ResultsADC"
    ], 
    "name": "Contrast-free detection of myocardial fibrosis in hypertrophic cardiomyopathy patients with diffusion-weighted cardiovascular magnetic resonance", 
    "pagination": "107", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1033955208"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12968-015-0214-1"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "26631061"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12968-015-0214-1", 
      "https://app.dimensions.ai/details/publication/pub.1033955208"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:32", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_651.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s12968-015-0214-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12968-015-0214-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12968-015-0214-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12968-015-0214-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12968-015-0214-1'


 

This table displays all metadata directly associated to this object as RDF triples.

275 TRIPLES      21 PREDICATES      110 URIs      94 LITERALS      22 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12968-015-0214-1 schema:about N223e831ef67c426786687b68be49ad7a
2 N2670ebb9b4ff4fcd8ada3f195c52326f
3 N32a01d495b894ceba57722cc695baf33
4 N45cbab0df9954bff9f0182f1540b4343
5 N4640930f314e4a238baa023fbede2132
6 N475cda047797453c9dd723290b2f8a93
7 N4d633e2354564996a643cc4c7f7a4d15
8 N61c5fb29319043a7b84cae1020f0c313
9 N69cbab1cc5694b0abd6ac320a0e2514b
10 N9b694342fe584a4a83c1d4b082650e0b
11 Nabaac6b3e6794f9998d63cdb20767914
12 Naffdfa54c1504033a5eb5a3fd742433b
13 Nc3b851bdf065411f82001397e5c8e54a
14 Ncb5fd2b8a9b145628f1d477605d7c3f3
15 Ne8952700ce5049daa0fa451958a60492
16 anzsrc-for:11
17 anzsrc-for:1102
18 schema:author N785fc3f2ab1741168942b93cbb46e0a3
19 schema:citation sg:pub.10.1038/nm.3436
20 sg:pub.10.1186/1532-429x-14-17
21 sg:pub.10.1186/1532-429x-14-37
22 sg:pub.10.1186/1532-429x-14-63
23 sg:pub.10.1186/1532-429x-14-64
24 sg:pub.10.1186/1532-429x-15-92
25 sg:pub.10.1186/s12968-014-0068-y
26 sg:pub.10.1186/s12968-014-0087-8
27 schema:datePublished 2015-12-02
28 schema:datePublishedReg 2015-12-02
29 schema:description BackgroundsPrevious studies have shown that diffusion-weighted cardiovascular magnetic resonance (DW-CMR) is highly sensitive to replacement fibrosis of chronic myocardial infarction. Despite this sensitivity to myocardial infarction, DW-CMR has not been established as a method to detect diffuse myocardial fibrosis. We propose the application of a recently developed DW-CMR technique to detect diffuse myocardial fibrosis in hypertrophic cardiomyopathy (HCM) patients and compare its performance with established CMR techniques.MethodsHCM patients (N = 23) were recruited and scanned with the following protocol: standard morphological localizers, DW-CMR, extracellular volume (ECV) CMR, and late gadolinium enhanced (LGE) imaging for reference. Apparent diffusion coefficient (ADC) and ECV maps were segmented into 6 American Heart Association (AHA) segments. Positive regions for myocardial fibrosis were defined as: ADC > 2.0 μm2/ms and ECV > 30 %. Fibrotic and non-fibrotic mean ADC and ECV values were compared as well as ADC-derived and ECV-derived fibrosis burden. In addition, fibrosis regional detection was compared between ADC and ECV calculating sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) using ECV as the gold-standard reference.ResultsADC (2.4 ± 0.2 μm2/ms) of fibrotic regions (ADC > 2.0 μm2/ms) was significantly (p < 0.01) higher than ADC (1.5 ± 0.2 μm2/ms) of non-fibrotic regions. Similarly, ECV (35 ± 4 %) of fibrotic regions (ECV > 30 %) was significantly (p < 0.01) higher than ECV (26 ± 2 %) of non-fibrotic regions. In fibrotic regions defined by ECV, ADC (2.2 ± 0.3 μm2/ms) was again significantly (p < 0.05) higher than ADC (1.6 ± 0.3 μm2/ms) of non-fibrotic regions. In fibrotic regions defined by ADC criterion, ECV (34 ± 5 %) was significantly (p < 0.01) higher than ECV (28 ± 3 %) in non-fibrotic regions. ADC-derived and ECV-derived fibrosis burdens were in substantial agreement (intra-class correlation = 0.83). Regional detection between ADC and ECV of diffuse fibrosis yielded substantial agreement (κ = 0.66) with high sensitivity, specificity, PPV, NPV, and accuracy (0.80, 0.85, 0.81, 0.85, and 0.83, respectively).ConclusionDW-CMR is sensitive to diffuse myocardial fibrosis and is capable of characterizing the extent of fibrosis in HCM patients.
30 schema:genre article
31 schema:isAccessibleForFree true
32 schema:isPartOf N264e8962491847ba86216a6b4d8ed18e
33 N58e2701b22c346cea4241113e6c3a5df
34 sg:journal.1030439
35 schema:keywords ADC criteria
36 American Heart Association segments
37 CMR
38 CMR techniques
39 ECV
40 ECV maps
41 ECV values
42 HCM patients
43 MS
44 ResultsADC
45 accuracy
46 addition
47 agreement
48 apparent diffusion coefficient
49 applications
50 burden
51 cardiomyopathy patients
52 cardiovascular magnetic resonance
53 chronic myocardial infarction
54 coefficient
55 criteria
56 detection
57 diffuse fibrosis
58 diffuse myocardial fibrosis
59 diffusion coefficient
60 extent
61 extent of fibrosis
62 fibrosis
63 fibrosis burden
64 fibrotic regions
65 gadolinium
66 gold standard reference
67 high sensitivity
68 hypertrophic cardiomyopathy patients
69 infarction
70 late gadolinium
71 localizer
72 magnetic resonance
73 maps
74 mean apparent diffusion coefficient
75 method
76 myocardial fibrosis
77 myocardial infarction
78 negative predictive value
79 patients
80 performance
81 positive predictive value
82 positive region
83 predictive value
84 protocol
85 reference
86 region
87 regional detection
88 resonance
89 segments
90 sensitivity
91 specificity
92 study
93 substantial agreement
94 technique
95 values
96 μm2/ms
97 schema:name Contrast-free detection of myocardial fibrosis in hypertrophic cardiomyopathy patients with diffusion-weighted cardiovascular magnetic resonance
98 schema:pagination 107
99 schema:productId N742933cd35bf40f49dfa5213bb6531ce
100 N994f7e3868e8439794ebd8891b2fbf53
101 Nc00a107075e744e2b9a1a6381e6b863c
102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033955208
103 https://doi.org/10.1186/s12968-015-0214-1
104 schema:sdDatePublished 2022-12-01T06:32
105 schema:sdLicense https://scigraph.springernature.com/explorer/license/
106 schema:sdPublisher N017ff96c1e0a4e4c8e8e356dd76f8457
107 schema:url https://doi.org/10.1186/s12968-015-0214-1
108 sgo:license sg:explorer/license/
109 sgo:sdDataset articles
110 rdf:type schema:ScholarlyArticle
111 N017ff96c1e0a4e4c8e8e356dd76f8457 schema:name Springer Nature - SN SciGraph project
112 rdf:type schema:Organization
113 N063efb04b89144f58c21146430561c39 rdf:first sg:person.01342204374.43
114 rdf:rest Nf4c233ea26bd4ea385885e522842a8bb
115 N1806cd4ad6dc4e07a309df526a276a3f rdf:first sg:person.0655012311.91
116 rdf:rest Nba07a086532c442fa3979603330b6d40
117 N223e831ef67c426786687b68be49ad7a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Contrast Media
119 rdf:type schema:DefinedTerm
120 N264e8962491847ba86216a6b4d8ed18e schema:issueNumber 1
121 rdf:type schema:PublicationIssue
122 N2670ebb9b4ff4fcd8ada3f195c52326f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Fibrosis
124 rdf:type schema:DefinedTerm
125 N32a01d495b894ceba57722cc695baf33 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Female
127 rdf:type schema:DefinedTerm
128 N45cbab0df9954bff9f0182f1540b4343 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Predictive Value of Tests
130 rdf:type schema:DefinedTerm
131 N4640930f314e4a238baa023fbede2132 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Diffusion Magnetic Resonance Imaging
133 rdf:type schema:DefinedTerm
134 N475cda047797453c9dd723290b2f8a93 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Cardiomyopathy, Hypertrophic
136 rdf:type schema:DefinedTerm
137 N4d633e2354564996a643cc4c7f7a4d15 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Middle Aged
139 rdf:type schema:DefinedTerm
140 N58e2701b22c346cea4241113e6c3a5df schema:volumeNumber 17
141 rdf:type schema:PublicationVolume
142 N61c5fb29319043a7b84cae1020f0c313 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Image Interpretation, Computer-Assisted
144 rdf:type schema:DefinedTerm
145 N69cbab1cc5694b0abd6ac320a0e2514b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Prognosis
147 rdf:type schema:DefinedTerm
148 N742933cd35bf40f49dfa5213bb6531ce schema:name pubmed_id
149 schema:value 26631061
150 rdf:type schema:PropertyValue
151 N785fc3f2ab1741168942b93cbb46e0a3 rdf:first sg:person.01331047206.43
152 rdf:rest N1806cd4ad6dc4e07a309df526a276a3f
153 N847fe342d62448f8a70af703884c61da rdf:first sg:person.01152021525.33
154 rdf:rest rdf:nil
155 N994f7e3868e8439794ebd8891b2fbf53 schema:name doi
156 schema:value 10.1186/s12968-015-0214-1
157 rdf:type schema:PropertyValue
158 N9b694342fe584a4a83c1d4b082650e0b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
159 schema:name Male
160 rdf:type schema:DefinedTerm
161 Nabaac6b3e6794f9998d63cdb20767914 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
162 schema:name Humans
163 rdf:type schema:DefinedTerm
164 Naffdfa54c1504033a5eb5a3fd742433b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
165 schema:name Severity of Illness Index
166 rdf:type schema:DefinedTerm
167 Nba07a086532c442fa3979603330b6d40 rdf:first sg:person.01136172260.58
168 rdf:rest Nbcd5042369ea4d759874f42eecf4c84c
169 Nbcd5042369ea4d759874f42eecf4c84c rdf:first sg:person.01066244563.44
170 rdf:rest N063efb04b89144f58c21146430561c39
171 Nc00a107075e744e2b9a1a6381e6b863c schema:name dimensions_id
172 schema:value pub.1033955208
173 rdf:type schema:PropertyValue
174 Nc3b851bdf065411f82001397e5c8e54a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
175 schema:name Myocardium
176 rdf:type schema:DefinedTerm
177 Ncb5fd2b8a9b145628f1d477605d7c3f3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
178 schema:name Young Adult
179 rdf:type schema:DefinedTerm
180 Ne8952700ce5049daa0fa451958a60492 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
181 schema:name Adult
182 rdf:type schema:DefinedTerm
183 Nf4c233ea26bd4ea385885e522842a8bb rdf:first sg:person.01216040004.73
184 rdf:rest N847fe342d62448f8a70af703884c61da
185 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
186 schema:name Medical and Health Sciences
187 rdf:type schema:DefinedTerm
188 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
189 schema:name Cardiorespiratory Medicine and Haematology
190 rdf:type schema:DefinedTerm
191 sg:grant.3801990 http://pending.schema.org/fundedItem sg:pub.10.1186/s12968-015-0214-1
192 rdf:type schema:MonetaryGrant
193 sg:grant.8331604 http://pending.schema.org/fundedItem sg:pub.10.1186/s12968-015-0214-1
194 rdf:type schema:MonetaryGrant
195 sg:journal.1030439 schema:issn 1548-7679
196 1879-2855
197 schema:name Journal of Cardiovascular Magnetic Resonance
198 schema:publisher Springer Nature
199 rdf:type schema:Periodical
200 sg:person.01066244563.44 schema:affiliation grid-institutes:grid.415886.6
201 schema:familyName Bi
202 schema:givenName Xiaoming
203 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066244563.44
204 rdf:type schema:Person
205 sg:person.01136172260.58 schema:affiliation grid-institutes:grid.50956.3f
206 schema:familyName Fan
207 schema:givenName Zhaoyang
208 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136172260.58
209 rdf:type schema:Person
210 sg:person.01152021525.33 schema:affiliation grid-institutes:grid.19006.3e
211 schema:familyName Li
212 schema:givenName Debiao
213 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152021525.33
214 rdf:type schema:Person
215 sg:person.01216040004.73 schema:affiliation grid-institutes:grid.506261.6
216 schema:familyName Zhao
217 schema:givenName Shihua
218 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01216040004.73
219 rdf:type schema:Person
220 sg:person.01331047206.43 schema:affiliation grid-institutes:grid.19006.3e
221 schema:familyName Nguyen
222 schema:givenName Christopher
223 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331047206.43
224 rdf:type schema:Person
225 sg:person.01342204374.43 schema:affiliation grid-institutes:grid.279885.9
226 schema:familyName Kellman
227 schema:givenName Peter
228 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01342204374.43
229 rdf:type schema:Person
230 sg:person.0655012311.91 schema:affiliation grid-institutes:grid.506261.6
231 schema:familyName Lu
232 schema:givenName Minjie
233 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0655012311.91
234 rdf:type schema:Person
235 sg:pub.10.1038/nm.3436 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023045358
236 https://doi.org/10.1038/nm.3436
237 rdf:type schema:CreativeWork
238 sg:pub.10.1186/1532-429x-14-17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001332726
239 https://doi.org/10.1186/1532-429x-14-17
240 rdf:type schema:CreativeWork
241 sg:pub.10.1186/1532-429x-14-37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050894202
242 https://doi.org/10.1186/1532-429x-14-37
243 rdf:type schema:CreativeWork
244 sg:pub.10.1186/1532-429x-14-63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008637223
245 https://doi.org/10.1186/1532-429x-14-63
246 rdf:type schema:CreativeWork
247 sg:pub.10.1186/1532-429x-14-64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002584485
248 https://doi.org/10.1186/1532-429x-14-64
249 rdf:type schema:CreativeWork
250 sg:pub.10.1186/1532-429x-15-92 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009837447
251 https://doi.org/10.1186/1532-429x-15-92
252 rdf:type schema:CreativeWork
253 sg:pub.10.1186/s12968-014-0068-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1009456208
254 https://doi.org/10.1186/s12968-014-0068-y
255 rdf:type schema:CreativeWork
256 sg:pub.10.1186/s12968-014-0087-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010680836
257 https://doi.org/10.1186/s12968-014-0087-8
258 rdf:type schema:CreativeWork
259 grid-institutes:grid.19006.3e schema:alternateName Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
260 schema:name Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
261 Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
262 rdf:type schema:Organization
263 grid-institutes:grid.279885.9 schema:alternateName National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
264 schema:name National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
265 rdf:type schema:Organization
266 grid-institutes:grid.415886.6 schema:alternateName MR R&D, Siemens Healthcare, Los Angeles, CA, USA
267 schema:name MR R&D, Siemens Healthcare, Los Angeles, CA, USA
268 rdf:type schema:Organization
269 grid-institutes:grid.506261.6 schema:alternateName National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Fuwai Hospital, Beijing, China
270 schema:name National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Fuwai Hospital, Beijing, China
271 State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Beijing, China
272 rdf:type schema:Organization
273 grid-institutes:grid.50956.3f schema:alternateName Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
274 schema:name Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
275 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...