Contrast-free detection of myocardial fibrosis in hypertrophic cardiomyopathy patients with diffusion-weighted cardiovascular magnetic resonance View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-12-02

AUTHORS

Christopher Nguyen, Minjie Lu, Zhaoyang Fan, Xiaoming Bi, Peter Kellman, Shihua Zhao, Debiao Li

ABSTRACT

BackgroundsPrevious studies have shown that diffusion-weighted cardiovascular magnetic resonance (DW-CMR) is highly sensitive to replacement fibrosis of chronic myocardial infarction. Despite this sensitivity to myocardial infarction, DW-CMR has not been established as a method to detect diffuse myocardial fibrosis. We propose the application of a recently developed DW-CMR technique to detect diffuse myocardial fibrosis in hypertrophic cardiomyopathy (HCM) patients and compare its performance with established CMR techniques.MethodsHCM patients (N = 23) were recruited and scanned with the following protocol: standard morphological localizers, DW-CMR, extracellular volume (ECV) CMR, and late gadolinium enhanced (LGE) imaging for reference. Apparent diffusion coefficient (ADC) and ECV maps were segmented into 6 American Heart Association (AHA) segments. Positive regions for myocardial fibrosis were defined as: ADC > 2.0 μm2/ms and ECV > 30 %. Fibrotic and non-fibrotic mean ADC and ECV values were compared as well as ADC-derived and ECV-derived fibrosis burden. In addition, fibrosis regional detection was compared between ADC and ECV calculating sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) using ECV as the gold-standard reference.ResultsADC (2.4 ± 0.2 μm2/ms) of fibrotic regions (ADC > 2.0 μm2/ms) was significantly (p < 0.01) higher than ADC (1.5 ± 0.2 μm2/ms) of non-fibrotic regions. Similarly, ECV (35 ± 4 %) of fibrotic regions (ECV > 30 %) was significantly (p < 0.01) higher than ECV (26 ± 2 %) of non-fibrotic regions. In fibrotic regions defined by ECV, ADC (2.2 ± 0.3 μm2/ms) was again significantly (p < 0.05) higher than ADC (1.6 ± 0.3 μm2/ms) of non-fibrotic regions. In fibrotic regions defined by ADC criterion, ECV (34 ± 5 %) was significantly (p < 0.01) higher than ECV (28 ± 3 %) in non-fibrotic regions. ADC-derived and ECV-derived fibrosis burdens were in substantial agreement (intra-class correlation = 0.83). Regional detection between ADC and ECV of diffuse fibrosis yielded substantial agreement (κ = 0.66) with high sensitivity, specificity, PPV, NPV, and accuracy (0.80, 0.85, 0.81, 0.85, and 0.83, respectively).ConclusionDW-CMR is sensitive to diffuse myocardial fibrosis and is capable of characterizing the extent of fibrosis in HCM patients. More... »

PAGES

107

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12968-015-0214-1

DOI

http://dx.doi.org/10.1186/s12968-015-0214-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1033955208

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/26631061


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cardiorespiratory Medicine and Haematology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cardiomyopathy, Hypertrophic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Contrast Media", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Diffusion Magnetic Resonance Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fibrosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Interpretation, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Myocardium", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Predictive Value of Tests", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prognosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Severity of Illness Index", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Young Adult", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.19006.3e", 
          "name": [
            "Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA", 
            "Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nguyen", 
        "givenName": "Christopher", 
        "id": "sg:person.01331047206.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331047206.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Fuwai Hospital, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.506261.6", 
          "name": [
            "State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Beijing, China", 
            "National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Fuwai Hospital, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lu", 
        "givenName": "Minjie", 
        "id": "sg:person.0655012311.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0655012311.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.50956.3f", 
          "name": [
            "Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fan", 
        "givenName": "Zhaoyang", 
        "id": "sg:person.01136172260.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136172260.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "MR R&D, Siemens Healthcare, Los Angeles, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.415886.6", 
          "name": [
            "MR R&D, Siemens Healthcare, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bi", 
        "givenName": "Xiaoming", 
        "id": "sg:person.01066244563.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066244563.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA", 
          "id": "http://www.grid.ac/institutes/grid.279885.9", 
          "name": [
            "National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kellman", 
        "givenName": "Peter", 
        "id": "sg:person.01342204374.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01342204374.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Fuwai Hospital, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.506261.6", 
          "name": [
            "State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Beijing, China", 
            "National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Fuwai Hospital, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhao", 
        "givenName": "Shihua", 
        "id": "sg:person.01216040004.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01216040004.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.19006.3e", 
          "name": [
            "Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA", 
            "Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Debiao", 
        "id": "sg:person.01152021525.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152021525.33"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/s12968-014-0087-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010680836", 
          "https://doi.org/10.1186/s12968-014-0087-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nm.3436", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023045358", 
          "https://doi.org/10.1038/nm.3436"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1532-429x-14-64", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002584485", 
          "https://doi.org/10.1186/1532-429x-14-64"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1532-429x-14-63", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008637223", 
          "https://doi.org/10.1186/1532-429x-14-63"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1532-429x-14-17", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001332726", 
          "https://doi.org/10.1186/1532-429x-14-17"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12968-014-0068-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009456208", 
          "https://doi.org/10.1186/s12968-014-0068-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1532-429x-15-92", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009837447", 
          "https://doi.org/10.1186/1532-429x-15-92"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1532-429x-14-37", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050894202", 
          "https://doi.org/10.1186/1532-429x-14-37"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-12-02", 
    "datePublishedReg": "2015-12-02", 
    "description": "BackgroundsPrevious studies have shown that diffusion-weighted cardiovascular magnetic resonance (DW-CMR) is highly sensitive to replacement fibrosis of chronic myocardial infarction. Despite this sensitivity to myocardial infarction, DW-CMR has not been established as a method to detect diffuse myocardial fibrosis. We propose the application of a recently developed DW-CMR technique to detect diffuse myocardial fibrosis in hypertrophic cardiomyopathy (HCM) patients and compare its performance with established CMR techniques.MethodsHCM patients (N\u2009=\u200923) were recruited and scanned with the following protocol: standard morphological localizers, DW-CMR, extracellular volume (ECV) CMR, and late gadolinium enhanced (LGE) imaging for reference. Apparent diffusion coefficient (ADC) and ECV maps were segmented into 6 American Heart Association (AHA) segments. Positive regions for myocardial fibrosis were defined as: ADC\u2009>\u20092.0\u00a0\u03bcm2/ms and ECV\u2009>\u200930\u00a0%. Fibrotic and non-fibrotic mean ADC and ECV values were compared as well as ADC-derived and ECV-derived fibrosis burden. In addition, fibrosis\u00a0regional detection was compared between ADC and ECV calculating sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) using ECV as the gold-standard reference.ResultsADC (2.4\u2009\u00b1\u20090.2\u00a0\u03bcm2/ms) of fibrotic regions (ADC\u2009>\u20092.0\u00a0\u03bcm2/ms) was significantly (p\u2009<\u20090.01) higher than ADC (1.5\u2009\u00b1\u20090.2\u00a0\u03bcm2/ms) of non-fibrotic regions. Similarly, ECV (35\u2009\u00b1\u20094\u00a0%) of fibrotic regions (ECV\u2009>\u200930\u00a0%) was significantly (p\u2009<\u20090.01) higher than ECV (26\u2009\u00b1\u20092\u00a0%) of non-fibrotic regions. In fibrotic regions defined by ECV, ADC (2.2\u2009\u00b1\u20090.3\u00a0\u03bcm2/ms) was again significantly (p\u2009<\u20090.05) higher than ADC (1.6\u2009\u00b1\u20090.3\u00a0\u03bcm2/ms) of non-fibrotic regions. In fibrotic regions defined by ADC criterion, ECV (34\u2009\u00b1\u20095\u00a0%) was significantly (p\u2009<\u20090.01) higher than ECV (28\u2009\u00b1\u20093\u00a0%) in non-fibrotic regions. ADC-derived and ECV-derived fibrosis burdens were in substantial agreement (intra-class correlation\u2009=\u20090.83). Regional detection between ADC and ECV of diffuse fibrosis yielded substantial agreement (\u03ba\u2009=\u20090.66) with high sensitivity, specificity, PPV, NPV, and accuracy (0.80, 0.85, 0.81, 0.85, and 0.83, respectively).ConclusionDW-CMR is sensitive to diffuse myocardial fibrosis and is capable of characterizing the extent of fibrosis in HCM patients.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s12968-015-0214-1", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3801990", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8331604", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1030439", 
        "issn": [
          "1548-7679", 
          "1879-2855"
        ], 
        "name": "Journal of Cardiovascular Magnetic Resonance", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "17"
      }
    ], 
    "keywords": [
      "high sensitivity", 
      "ADC criteria", 
      "American Heart Association segments", 
      "detection", 
      "sensitivity", 
      "regional detection", 
      "resonance", 
      "protocol", 
      "technique", 
      "applications", 
      "specificity", 
      "performance", 
      "negative predictive value", 
      "positive predictive value", 
      "gadolinium", 
      "ECV maps", 
      "magnetic resonance", 
      "gold standard reference", 
      "fibrosis burden", 
      "diffusion coefficient", 
      "method", 
      "addition", 
      "values", 
      "region", 
      "coefficient", 
      "agreement", 
      "accuracy", 
      "predictive value", 
      "CMR techniques", 
      "apparent diffusion coefficient", 
      "fibrotic regions", 
      "reference", 
      "MS", 
      "positive region", 
      "segments", 
      "study", 
      "localizer", 
      "ECV", 
      "myocardial infarction", 
      "burden", 
      "substantial agreement", 
      "maps", 
      "mean apparent diffusion coefficient", 
      "CMR", 
      "extent", 
      "ECV values", 
      "criteria", 
      "infarction", 
      "fibrosis", 
      "chronic myocardial infarction", 
      "hypertrophic cardiomyopathy patients", 
      "diffuse fibrosis", 
      "late gadolinium", 
      "cardiovascular magnetic resonance", 
      "diffuse myocardial fibrosis", 
      "extent of fibrosis", 
      "cardiomyopathy patients", 
      "myocardial fibrosis", 
      "patients", 
      "HCM patients", 
      "\u03bcm2/ms", 
      "ResultsADC"
    ], 
    "name": "Contrast-free detection of myocardial fibrosis in hypertrophic cardiomyopathy patients with diffusion-weighted cardiovascular magnetic resonance", 
    "pagination": "107", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1033955208"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12968-015-0214-1"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "26631061"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12968-015-0214-1", 
      "https://app.dimensions.ai/details/publication/pub.1033955208"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:41", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_670.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s12968-015-0214-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12968-015-0214-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12968-015-0214-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12968-015-0214-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12968-015-0214-1'


 

This table displays all metadata directly associated to this object as RDF triples.

275 TRIPLES      21 PREDICATES      110 URIs      94 LITERALS      22 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12968-015-0214-1 schema:about N1055c40866704985adc8ac8274be31d9
2 N1a5ab546a82f44b4ad283ccae68e17b7
3 N1d222315428c49a09034478635572e13
4 N2a94cb69832f4525964a8fb6e6657863
5 N2cf08c2311b040228d896879e397c20a
6 N40cc5f7e0d80457f916004821e073c4b
7 N5d75d70ce3934a828588deea651609c2
8 N757cf3efd6904fb3a14798fec647806a
9 N8436264e8c404e77a444b47aa4a33362
10 Na1a4432d80884714816940b7a1e464e8
11 Naae94a4437e2490a83c774f8c00d3875
12 Nab61db4b71c24d3c91313a1b3566b3fe
13 Nba7d52d5ea08480fb5bd06e9dd097c69
14 Ncc64279447f54bfc8bc7088b666fdc26
15 Nd7f3648d415d4782be7561867ad02028
16 anzsrc-for:11
17 anzsrc-for:1102
18 schema:author Ne083acc22b7343fa9b6cebf841266412
19 schema:citation sg:pub.10.1038/nm.3436
20 sg:pub.10.1186/1532-429x-14-17
21 sg:pub.10.1186/1532-429x-14-37
22 sg:pub.10.1186/1532-429x-14-63
23 sg:pub.10.1186/1532-429x-14-64
24 sg:pub.10.1186/1532-429x-15-92
25 sg:pub.10.1186/s12968-014-0068-y
26 sg:pub.10.1186/s12968-014-0087-8
27 schema:datePublished 2015-12-02
28 schema:datePublishedReg 2015-12-02
29 schema:description BackgroundsPrevious studies have shown that diffusion-weighted cardiovascular magnetic resonance (DW-CMR) is highly sensitive to replacement fibrosis of chronic myocardial infarction. Despite this sensitivity to myocardial infarction, DW-CMR has not been established as a method to detect diffuse myocardial fibrosis. We propose the application of a recently developed DW-CMR technique to detect diffuse myocardial fibrosis in hypertrophic cardiomyopathy (HCM) patients and compare its performance with established CMR techniques.MethodsHCM patients (N = 23) were recruited and scanned with the following protocol: standard morphological localizers, DW-CMR, extracellular volume (ECV) CMR, and late gadolinium enhanced (LGE) imaging for reference. Apparent diffusion coefficient (ADC) and ECV maps were segmented into 6 American Heart Association (AHA) segments. Positive regions for myocardial fibrosis were defined as: ADC > 2.0 μm2/ms and ECV > 30 %. Fibrotic and non-fibrotic mean ADC and ECV values were compared as well as ADC-derived and ECV-derived fibrosis burden. In addition, fibrosis regional detection was compared between ADC and ECV calculating sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) using ECV as the gold-standard reference.ResultsADC (2.4 ± 0.2 μm2/ms) of fibrotic regions (ADC > 2.0 μm2/ms) was significantly (p < 0.01) higher than ADC (1.5 ± 0.2 μm2/ms) of non-fibrotic regions. Similarly, ECV (35 ± 4 %) of fibrotic regions (ECV > 30 %) was significantly (p < 0.01) higher than ECV (26 ± 2 %) of non-fibrotic regions. In fibrotic regions defined by ECV, ADC (2.2 ± 0.3 μm2/ms) was again significantly (p < 0.05) higher than ADC (1.6 ± 0.3 μm2/ms) of non-fibrotic regions. In fibrotic regions defined by ADC criterion, ECV (34 ± 5 %) was significantly (p < 0.01) higher than ECV (28 ± 3 %) in non-fibrotic regions. ADC-derived and ECV-derived fibrosis burdens were in substantial agreement (intra-class correlation = 0.83). Regional detection between ADC and ECV of diffuse fibrosis yielded substantial agreement (κ = 0.66) with high sensitivity, specificity, PPV, NPV, and accuracy (0.80, 0.85, 0.81, 0.85, and 0.83, respectively).ConclusionDW-CMR is sensitive to diffuse myocardial fibrosis and is capable of characterizing the extent of fibrosis in HCM patients.
30 schema:genre article
31 schema:isAccessibleForFree true
32 schema:isPartOf Nd13a53b4949f4e138d6edea0a9c408c9
33 Ne4a49a00b14d4c68be5c5a20d8dadb1c
34 sg:journal.1030439
35 schema:keywords ADC criteria
36 American Heart Association segments
37 CMR
38 CMR techniques
39 ECV
40 ECV maps
41 ECV values
42 HCM patients
43 MS
44 ResultsADC
45 accuracy
46 addition
47 agreement
48 apparent diffusion coefficient
49 applications
50 burden
51 cardiomyopathy patients
52 cardiovascular magnetic resonance
53 chronic myocardial infarction
54 coefficient
55 criteria
56 detection
57 diffuse fibrosis
58 diffuse myocardial fibrosis
59 diffusion coefficient
60 extent
61 extent of fibrosis
62 fibrosis
63 fibrosis burden
64 fibrotic regions
65 gadolinium
66 gold standard reference
67 high sensitivity
68 hypertrophic cardiomyopathy patients
69 infarction
70 late gadolinium
71 localizer
72 magnetic resonance
73 maps
74 mean apparent diffusion coefficient
75 method
76 myocardial fibrosis
77 myocardial infarction
78 negative predictive value
79 patients
80 performance
81 positive predictive value
82 positive region
83 predictive value
84 protocol
85 reference
86 region
87 regional detection
88 resonance
89 segments
90 sensitivity
91 specificity
92 study
93 substantial agreement
94 technique
95 values
96 μm2/ms
97 schema:name Contrast-free detection of myocardial fibrosis in hypertrophic cardiomyopathy patients with diffusion-weighted cardiovascular magnetic resonance
98 schema:pagination 107
99 schema:productId N3629b17c40b941c4bacf6c1b6fc53394
100 N4d2ec621cdad45d98d3bd7198dde2b4f
101 N6fef42bd5bbc4c6c85614b669666754a
102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033955208
103 https://doi.org/10.1186/s12968-015-0214-1
104 schema:sdDatePublished 2022-10-01T06:41
105 schema:sdLicense https://scigraph.springernature.com/explorer/license/
106 schema:sdPublisher N997ebc543780422291d2d44037bb5748
107 schema:url https://doi.org/10.1186/s12968-015-0214-1
108 sgo:license sg:explorer/license/
109 sgo:sdDataset articles
110 rdf:type schema:ScholarlyArticle
111 N1055c40866704985adc8ac8274be31d9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Fibrosis
113 rdf:type schema:DefinedTerm
114 N135f29ed11e64d7d9f4c21058a4e6225 rdf:first sg:person.01216040004.73
115 rdf:rest N16951ee76c024239bea2c13a800ab1af
116 N16951ee76c024239bea2c13a800ab1af rdf:first sg:person.01152021525.33
117 rdf:rest rdf:nil
118 N1a5ab546a82f44b4ad283ccae68e17b7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Contrast Media
120 rdf:type schema:DefinedTerm
121 N1d222315428c49a09034478635572e13 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Predictive Value of Tests
123 rdf:type schema:DefinedTerm
124 N2a94cb69832f4525964a8fb6e6657863 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Cardiomyopathy, Hypertrophic
126 rdf:type schema:DefinedTerm
127 N2cf08c2311b040228d896879e397c20a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Young Adult
129 rdf:type schema:DefinedTerm
130 N31f35071be7242d19ba1e948ac7d4e85 rdf:first sg:person.01136172260.58
131 rdf:rest Nf62c664431854d7c87bbb9229098e43e
132 N3629b17c40b941c4bacf6c1b6fc53394 schema:name pubmed_id
133 schema:value 26631061
134 rdf:type schema:PropertyValue
135 N40cc5f7e0d80457f916004821e073c4b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Humans
137 rdf:type schema:DefinedTerm
138 N4d2ec621cdad45d98d3bd7198dde2b4f schema:name dimensions_id
139 schema:value pub.1033955208
140 rdf:type schema:PropertyValue
141 N5a80a493e1c74d288eeeb3c410243444 rdf:first sg:person.01342204374.43
142 rdf:rest N135f29ed11e64d7d9f4c21058a4e6225
143 N5d75d70ce3934a828588deea651609c2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
144 schema:name Prognosis
145 rdf:type schema:DefinedTerm
146 N6fef42bd5bbc4c6c85614b669666754a schema:name doi
147 schema:value 10.1186/s12968-015-0214-1
148 rdf:type schema:PropertyValue
149 N757cf3efd6904fb3a14798fec647806a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
150 schema:name Adult
151 rdf:type schema:DefinedTerm
152 N8436264e8c404e77a444b47aa4a33362 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
153 schema:name Diffusion Magnetic Resonance Imaging
154 rdf:type schema:DefinedTerm
155 N997ebc543780422291d2d44037bb5748 schema:name Springer Nature - SN SciGraph project
156 rdf:type schema:Organization
157 Na1a4432d80884714816940b7a1e464e8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
158 schema:name Severity of Illness Index
159 rdf:type schema:DefinedTerm
160 Naae94a4437e2490a83c774f8c00d3875 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
161 schema:name Female
162 rdf:type schema:DefinedTerm
163 Nab61db4b71c24d3c91313a1b3566b3fe schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
164 schema:name Male
165 rdf:type schema:DefinedTerm
166 Nb1f650a7ad524be189f1d8e0a3330baa rdf:first sg:person.0655012311.91
167 rdf:rest N31f35071be7242d19ba1e948ac7d4e85
168 Nba7d52d5ea08480fb5bd06e9dd097c69 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
169 schema:name Middle Aged
170 rdf:type schema:DefinedTerm
171 Ncc64279447f54bfc8bc7088b666fdc26 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
172 schema:name Myocardium
173 rdf:type schema:DefinedTerm
174 Nd13a53b4949f4e138d6edea0a9c408c9 schema:volumeNumber 17
175 rdf:type schema:PublicationVolume
176 Nd7f3648d415d4782be7561867ad02028 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
177 schema:name Image Interpretation, Computer-Assisted
178 rdf:type schema:DefinedTerm
179 Ne083acc22b7343fa9b6cebf841266412 rdf:first sg:person.01331047206.43
180 rdf:rest Nb1f650a7ad524be189f1d8e0a3330baa
181 Ne4a49a00b14d4c68be5c5a20d8dadb1c schema:issueNumber 1
182 rdf:type schema:PublicationIssue
183 Nf62c664431854d7c87bbb9229098e43e rdf:first sg:person.01066244563.44
184 rdf:rest N5a80a493e1c74d288eeeb3c410243444
185 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
186 schema:name Medical and Health Sciences
187 rdf:type schema:DefinedTerm
188 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
189 schema:name Cardiorespiratory Medicine and Haematology
190 rdf:type schema:DefinedTerm
191 sg:grant.3801990 http://pending.schema.org/fundedItem sg:pub.10.1186/s12968-015-0214-1
192 rdf:type schema:MonetaryGrant
193 sg:grant.8331604 http://pending.schema.org/fundedItem sg:pub.10.1186/s12968-015-0214-1
194 rdf:type schema:MonetaryGrant
195 sg:journal.1030439 schema:issn 1548-7679
196 1879-2855
197 schema:name Journal of Cardiovascular Magnetic Resonance
198 schema:publisher Springer Nature
199 rdf:type schema:Periodical
200 sg:person.01066244563.44 schema:affiliation grid-institutes:grid.415886.6
201 schema:familyName Bi
202 schema:givenName Xiaoming
203 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066244563.44
204 rdf:type schema:Person
205 sg:person.01136172260.58 schema:affiliation grid-institutes:grid.50956.3f
206 schema:familyName Fan
207 schema:givenName Zhaoyang
208 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136172260.58
209 rdf:type schema:Person
210 sg:person.01152021525.33 schema:affiliation grid-institutes:grid.19006.3e
211 schema:familyName Li
212 schema:givenName Debiao
213 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152021525.33
214 rdf:type schema:Person
215 sg:person.01216040004.73 schema:affiliation grid-institutes:grid.506261.6
216 schema:familyName Zhao
217 schema:givenName Shihua
218 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01216040004.73
219 rdf:type schema:Person
220 sg:person.01331047206.43 schema:affiliation grid-institutes:grid.19006.3e
221 schema:familyName Nguyen
222 schema:givenName Christopher
223 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331047206.43
224 rdf:type schema:Person
225 sg:person.01342204374.43 schema:affiliation grid-institutes:grid.279885.9
226 schema:familyName Kellman
227 schema:givenName Peter
228 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01342204374.43
229 rdf:type schema:Person
230 sg:person.0655012311.91 schema:affiliation grid-institutes:grid.506261.6
231 schema:familyName Lu
232 schema:givenName Minjie
233 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0655012311.91
234 rdf:type schema:Person
235 sg:pub.10.1038/nm.3436 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023045358
236 https://doi.org/10.1038/nm.3436
237 rdf:type schema:CreativeWork
238 sg:pub.10.1186/1532-429x-14-17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001332726
239 https://doi.org/10.1186/1532-429x-14-17
240 rdf:type schema:CreativeWork
241 sg:pub.10.1186/1532-429x-14-37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050894202
242 https://doi.org/10.1186/1532-429x-14-37
243 rdf:type schema:CreativeWork
244 sg:pub.10.1186/1532-429x-14-63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008637223
245 https://doi.org/10.1186/1532-429x-14-63
246 rdf:type schema:CreativeWork
247 sg:pub.10.1186/1532-429x-14-64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002584485
248 https://doi.org/10.1186/1532-429x-14-64
249 rdf:type schema:CreativeWork
250 sg:pub.10.1186/1532-429x-15-92 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009837447
251 https://doi.org/10.1186/1532-429x-15-92
252 rdf:type schema:CreativeWork
253 sg:pub.10.1186/s12968-014-0068-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1009456208
254 https://doi.org/10.1186/s12968-014-0068-y
255 rdf:type schema:CreativeWork
256 sg:pub.10.1186/s12968-014-0087-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010680836
257 https://doi.org/10.1186/s12968-014-0087-8
258 rdf:type schema:CreativeWork
259 grid-institutes:grid.19006.3e schema:alternateName Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
260 schema:name Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
261 Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
262 rdf:type schema:Organization
263 grid-institutes:grid.279885.9 schema:alternateName National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
264 schema:name National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
265 rdf:type schema:Organization
266 grid-institutes:grid.415886.6 schema:alternateName MR R&D, Siemens Healthcare, Los Angeles, CA, USA
267 schema:name MR R&D, Siemens Healthcare, Los Angeles, CA, USA
268 rdf:type schema:Organization
269 grid-institutes:grid.506261.6 schema:alternateName National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Fuwai Hospital, Beijing, China
270 schema:name National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Fuwai Hospital, Beijing, China
271 State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Beijing, China
272 rdf:type schema:Organization
273 grid-institutes:grid.50956.3f schema:alternateName Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
274 schema:name Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
275 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...