In vivo contrast free chronic myocardial infarction characterization using diffusion-weighted cardiovascular magnetic resonance View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-12

AUTHORS

Christopher Nguyen, Zhaoyang Fan, Yibin Xie, James Dawkins, Eleni Tseliou, Xiaoming Bi, Behzad Sharif, Rohan Dharmakumar, Eduardo Marbán, Debiao Li

ABSTRACT

BACKGROUND: Despite the established role of late gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) in characterizing chronic myocardial infarction (MI), a significant portion of chronic MI patients are contraindicative for the use of contrast agents. One promising alternative contrast free technique is diffusion weighted CMR (dwCMR), which has been shown ex vivo to be sensitive to myocardial fibrosis. We used a recently developed in vivo dwCMR in chronic MI pigs to compare apparent diffusion coefficient (ADC) maps with LGE imaging for infarct characterization. METHODS: In eleven mini pigs, chronic MI was induced by complete occlusion of the left anterior descending artery for 150 minutes. LGE, cine, and dwCMR imaging was performed 8 weeks post MI. ADC maps were derived from three orthogonal diffusion directions (b = 400 s/mm2) and one non-diffusion weighted image. Two semi-automatic infarct classification methods, threshold and full width half max (FWHM), were performed in both LGE and ADC maps. Regional wall motion (RWM) analysis was performed and compared to ADC maps to determine if any observed ADC change was significantly influenced by bulk motion. RESULTS: ADC of chronic MI territories was significantly increased (threshold: 2.4 ± 0.3 μm2/ms, FWHM: 2.4 ± 0.2 μm2/ms) compared to remote myocardium (1.4 ± 0.3 μm2/ms). RWM was significantly reduced (threshold: 1.0 ± 0.4 mm, FWHM: 0.9 ± 0.4 mm) in infarcted regions delineated by ADC compared to remote myocardium (8.3 ± 0.1 mm). ADC-derived infarct volume and location had excellent agreement with LGE. Both LGE and ADC were in complete agreement when identifying transmural infarcts. Additionally, ADC was able to detect LGE-delineated infarcted segments with high sensitivity, specificity, PPV, and NPV. (threshold: 0.88, 0.93, 0.87, and 0.94, FWHM: 0.98, 0.97, 0.93, and 0.99, respectively). CONCLUSIONS: In vivo diffusion weighted CMR has potential as a contrast free alternative for LGE in characterizing chronic MI. More... »

PAGES

68

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12968-014-0068-y

DOI

http://dx.doi.org/10.1186/s12968-014-0068-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1009456208

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/25230598


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cardiorespiratory Medicine and Haematology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Automation, Laboratory", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Contrast Media", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Diffusion Magnetic Resonance Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Disease Models, Animal", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Interpretation, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Imaging, Cine", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Myocardial Contraction", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Myocardial Infarction", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Myocardium", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Observer Variation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Predictive Value of Tests", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Swine", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Swine, Miniature", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Time Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ventricular Function, Left", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of California Los Angeles", 
          "id": "https://www.grid.ac/institutes/grid.19006.3e", 
          "name": [
            "Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, 116 N. Robertson Blvd Suite 800, 90048, Los Angeles, CA, USA", 
            "Department of Bioengineering, University of California Los Angeles, 420 Westwood Plaza, Engineering V Room 5121, 90095, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nguyen", 
        "givenName": "Christopher", 
        "id": "sg:person.01331047206.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331047206.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cedars-Sinai Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.50956.3f", 
          "name": [
            "Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, 116 N. Robertson Blvd Suite 800, 90048, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fan", 
        "givenName": "Zhaoyang", 
        "id": "sg:person.01136172260.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136172260.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California Los Angeles", 
          "id": "https://www.grid.ac/institutes/grid.19006.3e", 
          "name": [
            "Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, 116 N. Robertson Blvd Suite 800, 90048, Los Angeles, CA, USA", 
            "Department of Bioengineering, University of California Los Angeles, 420 Westwood Plaza, Engineering V Room 5121, 90095, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xie", 
        "givenName": "Yibin", 
        "id": "sg:person.01320556462.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320556462.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cedars-Sinai Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.50956.3f", 
          "name": [
            "Heart Institute, Cedars-Sinai Medical Center, 127 S. San Vincente Blvd. Advanced Health Sciences Pavilion, A3600, 90048, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dawkins", 
        "givenName": "James", 
        "id": "sg:person.0644524572.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0644524572.93"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cedars-Sinai Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.50956.3f", 
          "name": [
            "Heart Institute, Cedars-Sinai Medical Center, 127 S. San Vincente Blvd. Advanced Health Sciences Pavilion, A3600, 90048, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tseliou", 
        "givenName": "Eleni", 
        "id": "sg:person.01074743476.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01074743476.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "MR Research and Development, Siemens Healthcare, 116 N. Robertson Blvd Suite 800, 90048, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bi", 
        "givenName": "Xiaoming", 
        "id": "sg:person.01066244563.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066244563.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cedars-Sinai Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.50956.3f", 
          "name": [
            "Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, 116 N. Robertson Blvd Suite 800, 90048, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sharif", 
        "givenName": "Behzad", 
        "id": "sg:person.01177572746.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01177572746.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cedars-Sinai Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.50956.3f", 
          "name": [
            "Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, 116 N. Robertson Blvd Suite 800, 90048, Los Angeles, CA, USA", 
            "Department of Bioengineering, University of California Los Angeles, 420 Westwood Plaza, Engineering V Room 5121, 90095, Los Angeles, CA, USA", 
            "Heart Institute, Cedars-Sinai Medical Center, 127 S. San Vincente Blvd. Advanced Health Sciences Pavilion, A3600, 90048, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dharmakumar", 
        "givenName": "Rohan", 
        "id": "sg:person.0610721706.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0610721706.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cedars-Sinai Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.50956.3f", 
          "name": [
            "Heart Institute, Cedars-Sinai Medical Center, 127 S. San Vincente Blvd. Advanced Health Sciences Pavilion, A3600, 90048, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Marb\u00e1n", 
        "givenName": "Eduardo", 
        "id": "sg:person.01000317527.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01000317527.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California Los Angeles", 
          "id": "https://www.grid.ac/institutes/grid.19006.3e", 
          "name": [
            "Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, 116 N. Robertson Blvd Suite 800, 90048, Los Angeles, CA, USA", 
            "Department of Bioengineering, University of California Los Angeles, 420 Westwood Plaza, Engineering V Room 5121, 90095, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Debiao", 
        "id": "sg:person.01152021525.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152021525.33"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.jacc.2004.09.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006729364"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circimaging.113.001541", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011840180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circimaging.113.001541", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011840180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circulationaha.113.005841", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015677118"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circulationaha.113.005841", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015677118"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.21350", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019621187"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.21215", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019885527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2282011860", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019981066"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.21272", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019992546"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sim.1253", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021128524"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jacc.2009.06.059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021568710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nm.3436", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023045358", 
          "https://doi.org/10.1038/nm.3436"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circulationaha.109.865352", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026000998"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejm200011163432003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027649669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(13)60595-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027658580"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.25200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029450387"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jacc.2009.07.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029809448"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-2364(91)90137-i", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030130935"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.21127", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032551133"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.25038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032903488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.24488", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038048213"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.0000095676.90936.80", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038647312"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/001316446002000104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039619716"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/001316446002000104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039619716"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(86)90837-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040287180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(86)90837-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040287180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circimaging.108.778902", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040580062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circimaging.108.778902", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040580062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.0000047527.11221.29", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043507425"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0b013e31822438e8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044634765"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0b013e31822438e8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044634765"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejcts.2006.02.064", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045584084"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.21977", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047205041"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.21977", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047205041"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1532-429x-14-37", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050894202", 
          "https://doi.org/10.1186/1532-429x-14-37"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circulationaha.113.002863", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051607710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circulationaha.113.002863", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051607710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.25097", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052144870"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-9155/58/15/5009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059029840"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0b013e3182631c37", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060344164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0b013e3182631c37", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060344164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0b013e3182631c37", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060344164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/42.796284", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061170839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1259/bjr/25893477", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064568664"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-12", 
    "datePublishedReg": "2014-12-01", 
    "description": "BACKGROUND: Despite the established role of late gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) in characterizing chronic myocardial infarction (MI), a significant portion of chronic MI patients are contraindicative for the use of contrast agents. One promising alternative contrast free technique is diffusion weighted CMR (dwCMR), which has been shown ex vivo to be sensitive to myocardial fibrosis. We used a recently developed in vivo dwCMR in chronic MI pigs to compare apparent diffusion coefficient (ADC) maps with LGE imaging for infarct characterization.\nMETHODS: In eleven mini pigs, chronic MI was induced by complete occlusion of the left anterior descending artery for 150\u00a0minutes. LGE, cine, and dwCMR imaging was performed 8\u00a0weeks post MI. ADC maps were derived from three orthogonal diffusion directions (b\u2009=\u2009400\u00a0s/mm2) and one non-diffusion weighted image. Two semi-automatic infarct classification methods, threshold and full width half max (FWHM), were performed in both LGE and ADC maps. Regional wall motion (RWM) analysis was performed and compared to ADC maps to determine if any observed ADC change was significantly influenced by bulk motion.\nRESULTS: ADC of chronic MI territories was significantly increased (threshold: 2.4\u2009\u00b1\u20090.3\u00a0\u03bcm2/ms, FWHM: 2.4\u2009\u00b1\u20090.2\u00a0\u03bcm2/ms) compared to remote myocardium (1.4\u2009\u00b1\u20090.3\u00a0\u03bcm2/ms). RWM was significantly reduced (threshold: 1.0\u2009\u00b1\u20090.4\u00a0mm, FWHM: 0.9\u2009\u00b1\u20090.4\u00a0mm) in infarcted regions delineated by ADC compared to remote myocardium (8.3\u2009\u00b1\u20090.1\u00a0mm). ADC-derived infarct volume and location had excellent agreement with LGE. Both LGE and ADC were in complete agreement when identifying transmural infarcts. Additionally, ADC was able to detect LGE-delineated infarcted segments with high sensitivity, specificity, PPV, and NPV. (threshold: 0.88, 0.93, 0.87, and 0.94, FWHM: 0.98, 0.97, 0.93, and 0.99, respectively).\nCONCLUSIONS: In vivo diffusion weighted CMR has potential as a contrast free alternative for LGE in characterizing chronic MI.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12968-014-0068-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2532607", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3801990", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2685023", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2501448", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1030439", 
        "issn": [
          "1548-7679", 
          "1879-2855"
        ], 
        "name": "Journal of Cardiovascular Magnetic Resonance", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "16"
      }
    ], 
    "name": "In vivo contrast free chronic myocardial infarction characterization using diffusion-weighted cardiovascular magnetic resonance", 
    "pagination": "68", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2d0b95f8e0219ccc45fd0c325f0a7d91f3bff7d968cb42d768c4199918fe8a97"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "25230598"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9815616"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12968-014-0068-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1009456208"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12968-014-0068-y", 
      "https://app.dimensions.ai/details/publication/pub.1009456208"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000367_0000000367/records_88251_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2Fs12968-014-0068-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12968-014-0068-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12968-014-0068-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12968-014-0068-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12968-014-0068-y'


 

This table displays all metadata directly associated to this object as RDF triples.

324 TRIPLES      21 PREDICATES      81 URIs      39 LITERALS      27 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12968-014-0068-y schema:about N0d3295288f4742f2bf335c9df0d2f1f4
2 N1801b0901e5b4d5e87679df09906274b
3 N1824bd2749384afaa025c9a8ad41c6a7
4 N19f6c9e6940e49a886e3c79d942d9883
5 N33fcf47388cf4df79d6ee1e60d9b5bd5
6 N4811df6e9add4b6b9e887ed9839e9701
7 N57d3f850d5c74da9a550e2c171dc1fc3
8 N5f1738b1f68245aa83bd041e2aef979a
9 N60cd5737767243ce96199880a7e4a2bc
10 N6a06f8c1d50848e8a7d8262b69f81d90
11 N6c0cb05c00014458a51d43d936a31979
12 N7b55e6c1857a48bc8c5c3006d63b7713
13 N8425c65741b84280a7acaec5e861e36c
14 N93f2ca0666b64a0b8ad6d9272620faca
15 N9c076a5fb79c49bd8704b5f9aab8061e
16 Nd00b542e3f5d43e4989f055ecef6329b
17 Ndfeb95a4afbd4ef89b3bfe3fa7312219
18 Nec5914d356d14999b17f050d9b73fae8
19 anzsrc-for:11
20 anzsrc-for:1102
21 schema:author N7bad9d5350244c43a3096874b9dd22d0
22 schema:citation sg:pub.10.1038/nm.3436
23 sg:pub.10.1186/1532-429x-14-37
24 https://doi.org/10.1002/mrm.21127
25 https://doi.org/10.1002/mrm.21215
26 https://doi.org/10.1002/mrm.21272
27 https://doi.org/10.1002/mrm.21350
28 https://doi.org/10.1002/mrm.21977
29 https://doi.org/10.1002/mrm.24488
30 https://doi.org/10.1002/mrm.25038
31 https://doi.org/10.1002/mrm.25097
32 https://doi.org/10.1002/mrm.25200
33 https://doi.org/10.1002/sim.1253
34 https://doi.org/10.1016/0022-2364(91)90137-i
35 https://doi.org/10.1016/j.ejcts.2006.02.064
36 https://doi.org/10.1016/j.jacc.2004.09.020
37 https://doi.org/10.1016/j.jacc.2009.06.059
38 https://doi.org/10.1016/j.jacc.2009.07.027
39 https://doi.org/10.1016/s0140-6736(13)60595-4
40 https://doi.org/10.1016/s0140-6736(86)90837-8
41 https://doi.org/10.1056/nejm200011163432003
42 https://doi.org/10.1088/0031-9155/58/15/5009
43 https://doi.org/10.1097/rli.0b013e31822438e8
44 https://doi.org/10.1097/rli.0b013e3182631c37
45 https://doi.org/10.1109/42.796284
46 https://doi.org/10.1148/radiol.2282011860
47 https://doi.org/10.1161/01.cir.0000047527.11221.29
48 https://doi.org/10.1161/01.cir.0000095676.90936.80
49 https://doi.org/10.1161/circimaging.108.778902
50 https://doi.org/10.1161/circimaging.113.001541
51 https://doi.org/10.1161/circulationaha.109.865352
52 https://doi.org/10.1161/circulationaha.113.002863
53 https://doi.org/10.1161/circulationaha.113.005841
54 https://doi.org/10.1177/001316446002000104
55 https://doi.org/10.1259/bjr/25893477
56 schema:datePublished 2014-12
57 schema:datePublishedReg 2014-12-01
58 schema:description BACKGROUND: Despite the established role of late gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) in characterizing chronic myocardial infarction (MI), a significant portion of chronic MI patients are contraindicative for the use of contrast agents. One promising alternative contrast free technique is diffusion weighted CMR (dwCMR), which has been shown ex vivo to be sensitive to myocardial fibrosis. We used a recently developed in vivo dwCMR in chronic MI pigs to compare apparent diffusion coefficient (ADC) maps with LGE imaging for infarct characterization. METHODS: In eleven mini pigs, chronic MI was induced by complete occlusion of the left anterior descending artery for 150 minutes. LGE, cine, and dwCMR imaging was performed 8 weeks post MI. ADC maps were derived from three orthogonal diffusion directions (b = 400 s/mm2) and one non-diffusion weighted image. Two semi-automatic infarct classification methods, threshold and full width half max (FWHM), were performed in both LGE and ADC maps. Regional wall motion (RWM) analysis was performed and compared to ADC maps to determine if any observed ADC change was significantly influenced by bulk motion. RESULTS: ADC of chronic MI territories was significantly increased (threshold: 2.4 ± 0.3 μm2/ms, FWHM: 2.4 ± 0.2 μm2/ms) compared to remote myocardium (1.4 ± 0.3 μm2/ms). RWM was significantly reduced (threshold: 1.0 ± 0.4 mm, FWHM: 0.9 ± 0.4 mm) in infarcted regions delineated by ADC compared to remote myocardium (8.3 ± 0.1 mm). ADC-derived infarct volume and location had excellent agreement with LGE. Both LGE and ADC were in complete agreement when identifying transmural infarcts. Additionally, ADC was able to detect LGE-delineated infarcted segments with high sensitivity, specificity, PPV, and NPV. (threshold: 0.88, 0.93, 0.87, and 0.94, FWHM: 0.98, 0.97, 0.93, and 0.99, respectively). CONCLUSIONS: In vivo diffusion weighted CMR has potential as a contrast free alternative for LGE in characterizing chronic MI.
59 schema:genre research_article
60 schema:inLanguage en
61 schema:isAccessibleForFree true
62 schema:isPartOf N4dc483d67d764de79dbb74253a685320
63 N554dca60214843b9bf4019dbfa3bfd96
64 sg:journal.1030439
65 schema:name In vivo contrast free chronic myocardial infarction characterization using diffusion-weighted cardiovascular magnetic resonance
66 schema:pagination 68
67 schema:productId N318939ae10d24c19af92619720f7cf30
68 N3cc887c36e5f4c1c936815bdedf7e4c6
69 N93a6a1e9d17c44adbb16007b021eebcf
70 Nbca8dfa165d44fe2ab057856bc6b1117
71 Nfe4d975c83a2443185bc394cf4cefcf7
72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009456208
73 https://doi.org/10.1186/s12968-014-0068-y
74 schema:sdDatePublished 2019-04-11T13:11
75 schema:sdLicense https://scigraph.springernature.com/explorer/license/
76 schema:sdPublisher Nde777db539d446f69cb10a5832edbc00
77 schema:url http://link.springer.com/10.1186%2Fs12968-014-0068-y
78 sgo:license sg:explorer/license/
79 sgo:sdDataset articles
80 rdf:type schema:ScholarlyArticle
81 N0d3295288f4742f2bf335c9df0d2f1f4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
82 schema:name Myocardium
83 rdf:type schema:DefinedTerm
84 N143c33d53cac4542a78efd1ae6af63b5 schema:name MR Research and Development, Siemens Healthcare, 116 N. Robertson Blvd Suite 800, 90048, Los Angeles, CA, USA
85 rdf:type schema:Organization
86 N1801b0901e5b4d5e87679df09906274b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Animals
88 rdf:type schema:DefinedTerm
89 N1824bd2749384afaa025c9a8ad41c6a7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name Magnetic Resonance Imaging, Cine
91 rdf:type schema:DefinedTerm
92 N19f6c9e6940e49a886e3c79d942d9883 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Ventricular Function, Left
94 rdf:type schema:DefinedTerm
95 N2b01292b004b484eba1e0b17737d77da rdf:first sg:person.01136172260.58
96 rdf:rest N4119839d44314b1e8bea0566b8f7a39e
97 N318939ae10d24c19af92619720f7cf30 schema:name pubmed_id
98 schema:value 25230598
99 rdf:type schema:PropertyValue
100 N319a7e24d9724e9d98d05d647c1c8edc rdf:first sg:person.01177572746.56
101 rdf:rest Nc29af7ebdf1b4d23a78ea841d88414c3
102 N33fcf47388cf4df79d6ee1e60d9b5bd5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Observer Variation
104 rdf:type schema:DefinedTerm
105 N3cc887c36e5f4c1c936815bdedf7e4c6 schema:name readcube_id
106 schema:value 2d0b95f8e0219ccc45fd0c325f0a7d91f3bff7d968cb42d768c4199918fe8a97
107 rdf:type schema:PropertyValue
108 N4119839d44314b1e8bea0566b8f7a39e rdf:first sg:person.01320556462.83
109 rdf:rest N6424e934361040dfaaac4337b3e6e6a2
110 N4811df6e9add4b6b9e887ed9839e9701 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Swine, Miniature
112 rdf:type schema:DefinedTerm
113 N4dc483d67d764de79dbb74253a685320 schema:volumeNumber 16
114 rdf:type schema:PublicationVolume
115 N554dca60214843b9bf4019dbfa3bfd96 schema:issueNumber 1
116 rdf:type schema:PublicationIssue
117 N57d3f850d5c74da9a550e2c171dc1fc3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Contrast Media
119 rdf:type schema:DefinedTerm
120 N5f1738b1f68245aa83bd041e2aef979a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Predictive Value of Tests
122 rdf:type schema:DefinedTerm
123 N60cd5737767243ce96199880a7e4a2bc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Reproducibility of Results
125 rdf:type schema:DefinedTerm
126 N6424e934361040dfaaac4337b3e6e6a2 rdf:first sg:person.0644524572.93
127 rdf:rest N8081ebaa99c144a9b1d6e8571dc145a7
128 N6a06f8c1d50848e8a7d8262b69f81d90 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Myocardial Infarction
130 rdf:type schema:DefinedTerm
131 N6c0cb05c00014458a51d43d936a31979 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Algorithms
133 rdf:type schema:DefinedTerm
134 N7b55e6c1857a48bc8c5c3006d63b7713 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Diffusion Magnetic Resonance Imaging
136 rdf:type schema:DefinedTerm
137 N7bad9d5350244c43a3096874b9dd22d0 rdf:first sg:person.01331047206.43
138 rdf:rest N2b01292b004b484eba1e0b17737d77da
139 N8081ebaa99c144a9b1d6e8571dc145a7 rdf:first sg:person.01074743476.95
140 rdf:rest Ndb9c8bc1eb4d409eb617391fee5cb82c
141 N8425c65741b84280a7acaec5e861e36c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Automation, Laboratory
143 rdf:type schema:DefinedTerm
144 N93a6a1e9d17c44adbb16007b021eebcf schema:name dimensions_id
145 schema:value pub.1009456208
146 rdf:type schema:PropertyValue
147 N93f2ca0666b64a0b8ad6d9272620faca schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Disease Models, Animal
149 rdf:type schema:DefinedTerm
150 N9c076a5fb79c49bd8704b5f9aab8061e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Time Factors
152 rdf:type schema:DefinedTerm
153 Nb178f0b3dc314da3945b41e2378caadf rdf:first sg:person.01000317527.22
154 rdf:rest Nd1cc6b80b5d8411d964666d150edbf93
155 Nbca8dfa165d44fe2ab057856bc6b1117 schema:name nlm_unique_id
156 schema:value 9815616
157 rdf:type schema:PropertyValue
158 Nc29af7ebdf1b4d23a78ea841d88414c3 rdf:first sg:person.0610721706.28
159 rdf:rest Nb178f0b3dc314da3945b41e2378caadf
160 Nd00b542e3f5d43e4989f055ecef6329b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
161 schema:name Swine
162 rdf:type schema:DefinedTerm
163 Nd1cc6b80b5d8411d964666d150edbf93 rdf:first sg:person.01152021525.33
164 rdf:rest rdf:nil
165 Ndb9c8bc1eb4d409eb617391fee5cb82c rdf:first sg:person.01066244563.44
166 rdf:rest N319a7e24d9724e9d98d05d647c1c8edc
167 Nde777db539d446f69cb10a5832edbc00 schema:name Springer Nature - SN SciGraph project
168 rdf:type schema:Organization
169 Ndfeb95a4afbd4ef89b3bfe3fa7312219 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
170 schema:name Image Interpretation, Computer-Assisted
171 rdf:type schema:DefinedTerm
172 Nec5914d356d14999b17f050d9b73fae8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
173 schema:name Myocardial Contraction
174 rdf:type schema:DefinedTerm
175 Nfe4d975c83a2443185bc394cf4cefcf7 schema:name doi
176 schema:value 10.1186/s12968-014-0068-y
177 rdf:type schema:PropertyValue
178 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
179 schema:name Medical and Health Sciences
180 rdf:type schema:DefinedTerm
181 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
182 schema:name Cardiorespiratory Medicine and Haematology
183 rdf:type schema:DefinedTerm
184 sg:grant.2501448 http://pending.schema.org/fundedItem sg:pub.10.1186/s12968-014-0068-y
185 rdf:type schema:MonetaryGrant
186 sg:grant.2532607 http://pending.schema.org/fundedItem sg:pub.10.1186/s12968-014-0068-y
187 rdf:type schema:MonetaryGrant
188 sg:grant.2685023 http://pending.schema.org/fundedItem sg:pub.10.1186/s12968-014-0068-y
189 rdf:type schema:MonetaryGrant
190 sg:grant.3801990 http://pending.schema.org/fundedItem sg:pub.10.1186/s12968-014-0068-y
191 rdf:type schema:MonetaryGrant
192 sg:journal.1030439 schema:issn 1548-7679
193 1879-2855
194 schema:name Journal of Cardiovascular Magnetic Resonance
195 rdf:type schema:Periodical
196 sg:person.01000317527.22 schema:affiliation https://www.grid.ac/institutes/grid.50956.3f
197 schema:familyName Marbán
198 schema:givenName Eduardo
199 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01000317527.22
200 rdf:type schema:Person
201 sg:person.01066244563.44 schema:affiliation N143c33d53cac4542a78efd1ae6af63b5
202 schema:familyName Bi
203 schema:givenName Xiaoming
204 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066244563.44
205 rdf:type schema:Person
206 sg:person.01074743476.95 schema:affiliation https://www.grid.ac/institutes/grid.50956.3f
207 schema:familyName Tseliou
208 schema:givenName Eleni
209 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01074743476.95
210 rdf:type schema:Person
211 sg:person.01136172260.58 schema:affiliation https://www.grid.ac/institutes/grid.50956.3f
212 schema:familyName Fan
213 schema:givenName Zhaoyang
214 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136172260.58
215 rdf:type schema:Person
216 sg:person.01152021525.33 schema:affiliation https://www.grid.ac/institutes/grid.19006.3e
217 schema:familyName Li
218 schema:givenName Debiao
219 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152021525.33
220 rdf:type schema:Person
221 sg:person.01177572746.56 schema:affiliation https://www.grid.ac/institutes/grid.50956.3f
222 schema:familyName Sharif
223 schema:givenName Behzad
224 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01177572746.56
225 rdf:type schema:Person
226 sg:person.01320556462.83 schema:affiliation https://www.grid.ac/institutes/grid.19006.3e
227 schema:familyName Xie
228 schema:givenName Yibin
229 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320556462.83
230 rdf:type schema:Person
231 sg:person.01331047206.43 schema:affiliation https://www.grid.ac/institutes/grid.19006.3e
232 schema:familyName Nguyen
233 schema:givenName Christopher
234 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331047206.43
235 rdf:type schema:Person
236 sg:person.0610721706.28 schema:affiliation https://www.grid.ac/institutes/grid.50956.3f
237 schema:familyName Dharmakumar
238 schema:givenName Rohan
239 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0610721706.28
240 rdf:type schema:Person
241 sg:person.0644524572.93 schema:affiliation https://www.grid.ac/institutes/grid.50956.3f
242 schema:familyName Dawkins
243 schema:givenName James
244 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0644524572.93
245 rdf:type schema:Person
246 sg:pub.10.1038/nm.3436 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023045358
247 https://doi.org/10.1038/nm.3436
248 rdf:type schema:CreativeWork
249 sg:pub.10.1186/1532-429x-14-37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050894202
250 https://doi.org/10.1186/1532-429x-14-37
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1002/mrm.21127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032551133
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1002/mrm.21215 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019885527
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1002/mrm.21272 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019992546
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1002/mrm.21350 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019621187
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1002/mrm.21977 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047205041
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1002/mrm.24488 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038048213
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1002/mrm.25038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032903488
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1002/mrm.25097 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052144870
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1002/mrm.25200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029450387
269 rdf:type schema:CreativeWork
270 https://doi.org/10.1002/sim.1253 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021128524
271 rdf:type schema:CreativeWork
272 https://doi.org/10.1016/0022-2364(91)90137-i schema:sameAs https://app.dimensions.ai/details/publication/pub.1030130935
273 rdf:type schema:CreativeWork
274 https://doi.org/10.1016/j.ejcts.2006.02.064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045584084
275 rdf:type schema:CreativeWork
276 https://doi.org/10.1016/j.jacc.2004.09.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006729364
277 rdf:type schema:CreativeWork
278 https://doi.org/10.1016/j.jacc.2009.06.059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021568710
279 rdf:type schema:CreativeWork
280 https://doi.org/10.1016/j.jacc.2009.07.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029809448
281 rdf:type schema:CreativeWork
282 https://doi.org/10.1016/s0140-6736(13)60595-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027658580
283 rdf:type schema:CreativeWork
284 https://doi.org/10.1016/s0140-6736(86)90837-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040287180
285 rdf:type schema:CreativeWork
286 https://doi.org/10.1056/nejm200011163432003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027649669
287 rdf:type schema:CreativeWork
288 https://doi.org/10.1088/0031-9155/58/15/5009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059029840
289 rdf:type schema:CreativeWork
290 https://doi.org/10.1097/rli.0b013e31822438e8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044634765
291 rdf:type schema:CreativeWork
292 https://doi.org/10.1097/rli.0b013e3182631c37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060344164
293 rdf:type schema:CreativeWork
294 https://doi.org/10.1109/42.796284 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061170839
295 rdf:type schema:CreativeWork
296 https://doi.org/10.1148/radiol.2282011860 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019981066
297 rdf:type schema:CreativeWork
298 https://doi.org/10.1161/01.cir.0000047527.11221.29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043507425
299 rdf:type schema:CreativeWork
300 https://doi.org/10.1161/01.cir.0000095676.90936.80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038647312
301 rdf:type schema:CreativeWork
302 https://doi.org/10.1161/circimaging.108.778902 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040580062
303 rdf:type schema:CreativeWork
304 https://doi.org/10.1161/circimaging.113.001541 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011840180
305 rdf:type schema:CreativeWork
306 https://doi.org/10.1161/circulationaha.109.865352 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026000998
307 rdf:type schema:CreativeWork
308 https://doi.org/10.1161/circulationaha.113.002863 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051607710
309 rdf:type schema:CreativeWork
310 https://doi.org/10.1161/circulationaha.113.005841 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015677118
311 rdf:type schema:CreativeWork
312 https://doi.org/10.1177/001316446002000104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039619716
313 rdf:type schema:CreativeWork
314 https://doi.org/10.1259/bjr/25893477 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064568664
315 rdf:type schema:CreativeWork
316 https://www.grid.ac/institutes/grid.19006.3e schema:alternateName University of California Los Angeles
317 schema:name Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, 116 N. Robertson Blvd Suite 800, 90048, Los Angeles, CA, USA
318 Department of Bioengineering, University of California Los Angeles, 420 Westwood Plaza, Engineering V Room 5121, 90095, Los Angeles, CA, USA
319 rdf:type schema:Organization
320 https://www.grid.ac/institutes/grid.50956.3f schema:alternateName Cedars-Sinai Medical Center
321 schema:name Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, 116 N. Robertson Blvd Suite 800, 90048, Los Angeles, CA, USA
322 Department of Bioengineering, University of California Los Angeles, 420 Westwood Plaza, Engineering V Room 5121, 90095, Los Angeles, CA, USA
323 Heart Institute, Cedars-Sinai Medical Center, 127 S. San Vincente Blvd. Advanced Health Sciences Pavilion, A3600, 90048, Los Angeles, CA, USA
324 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...