High resolution 3D diffusion cardiovascular magnetic resonance of carotid vessel wall to detect lipid core without contrast media View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-09-17

AUTHORS

Yibin Xie, Wei Yu, Zhaoyang Fan, Christopher Nguyen, Xiaoming Bi, Jing An, Tianjing Zhang, Zhaoqi Zhang, Debiao Li

ABSTRACT

BackgroundWithout the need of contrast media, diffusion-weighted imaging (DWI) has shown great promise for accurate detection of lipid-rich necrotic core (LRNC), a well-known feature of vulnerable plaques. However, limited resolution and poor image quality in vivo with conventional single-shot diffusion-weighted echo planar imaging (SS-DWEPI) has hindered its clinical application. The aim of this work is to develop a diffusion-prepared turbo-spin-echo (DP-TSE) technique for carotid plaque characterization with 3D high resolution and improved image quality.MethodsUnlike SS-DWEPI where the diffusion encoding is integrated in the EPI framework, DP-TSE uses a diffusion encoding module separated from the TSE framework, allowing for segmented acquisition without the sensitivity to phase errors. The interleaved, motion-compensated sequence was designed to enable 3D black-blood DWI of carotid arteries with sub-millimeter resolution. The sequence was tested on 12 healthy subjects and compared with SS-DWEPI for image quality, vessel wall visibility, and vessel wall thickness measurements. A pilot study was performed on 6 patients with carotid plaques using this sequence and compared with conventional contrast-enhanced multi-contrast 2D TSE as the reference.ResultsDP-TSE demonstrated advantages over SS-DWEPI for resolution and image quality. In the healthy subjects, vessel wall visibility was significantly higher with diffusion-prepared TSE (p < 0.001). Vessel wall thicknesses measured from diffusion-prepared TSE were on average 35% thinner than those from the EPI images due to less distortion and partial volume effect (p < 0.001). ADC measurements of healthy carotid vessel wall are 1.53 ± 0.23 × 10−3 mm2/s. In patients the mean ADC measurements in the LRNC area were significantly lower (0.60 ± 0.16×10−3 mm2/s) than those of the fibrous plaque tissue (1.27 ± 0.29 × 10−3 mm2/s, p < 0.01).ConclusionsDiffusion-prepared CMR allows, for the first time, 3D DWI of the carotid arterial wall in vivo with high spatial resolution and improved image quality over SS-DWEPI. It can potentially detect LRNC without the use of contrast agents, allowing plaque characterization in patients with renal insufficiency. More... »

PAGES

67

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12968-014-0067-z

DOI

http://dx.doi.org/10.1186/s12968-014-0067-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1005604523

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/25238168


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cardiorespiratory Medicine and Haematology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged, 80 and over", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Carotid Arteries", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Carotid Artery Diseases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Case-Control Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Contrast Media", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Diffusion Magnetic Resonance Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Interpretation, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Imaging, Three-Dimensional", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lipids", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Imaging, Cine", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Necrosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pilot Projects", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Plaque, Atherosclerotic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Predictive Value of Tests", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Bioengineering, University of California, Los Angeles, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.266100.3", 
          "name": [
            "Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA", 
            "Department of Bioengineering, University of California, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xie", 
        "givenName": "Yibin", 
        "id": "sg:person.01320556462.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320556462.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Anzhen Hospital, Capital Medical University, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.24696.3f", 
          "name": [
            "Department of Radiology, Anzhen Hospital, Capital Medical University, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yu", 
        "givenName": "Wei", 
        "id": "sg:person.01143631075.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143631075.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.50956.3f", 
          "name": [
            "Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fan", 
        "givenName": "Zhaoyang", 
        "id": "sg:person.01136172260.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136172260.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Bioengineering, University of California, Los Angeles, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.266100.3", 
          "name": [
            "Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA", 
            "Department of Bioengineering, University of California, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nguyen", 
        "givenName": "Christopher", 
        "id": "sg:person.01331047206.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331047206.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "MR R&D, Siemens Healthcare, Los Angeles, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.415886.6", 
          "name": [
            "MR R&D, Siemens Healthcare, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bi", 
        "givenName": "Xiaoming", 
        "id": "sg:person.01066244563.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066244563.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "MR Collaborations NE Asia, Siemens Healthcare, Beijing, China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "MR Collaborations NE Asia, Siemens Healthcare, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "An", 
        "givenName": "Jing", 
        "id": "sg:person.01066175422.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066175422.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "MR Collaborations NE Asia, Siemens Healthcare, Beijing, China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "MR Collaborations NE Asia, Siemens Healthcare, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Tianjing", 
        "id": "sg:person.0620532177.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0620532177.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Anzhen Hospital, Capital Medical University, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.24696.3f", 
          "name": [
            "Department of Radiology, Anzhen Hospital, Capital Medical University, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Zhaoqi", 
        "id": "sg:person.014030237157.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014030237157.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Bioengineering, University of California, Los Angeles, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.266100.3", 
          "name": [
            "Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA", 
            "Department of Bioengineering, University of California, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Debiao", 
        "id": "sg:person.01152021525.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152021525.33"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00234-010-0680-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037879287", 
          "https://doi.org/10.1007/s00234-010-0680-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00234-003-1054-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049363157", 
          "https://doi.org/10.1007/s00234-003-1054-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/j.nuclcard.2008.02.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003740346", 
          "https://doi.org/10.1016/j.nuclcard.2008.02.001"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-09-17", 
    "datePublishedReg": "2014-09-17", 
    "description": "BackgroundWithout the need of contrast media, diffusion-weighted imaging (DWI) has shown great promise for accurate detection of lipid-rich necrotic core (LRNC), a well-known feature of vulnerable plaques. However, limited resolution and poor image quality in vivo with conventional single-shot diffusion-weighted echo planar imaging (SS-DWEPI) has hindered its clinical application. The aim of this work is to develop a diffusion-prepared turbo-spin-echo (DP-TSE) technique for carotid plaque characterization with 3D high resolution and improved image quality.MethodsUnlike SS-DWEPI where the diffusion encoding is integrated in the EPI framework, DP-TSE uses a diffusion encoding module separated from the TSE framework, allowing for segmented acquisition without the sensitivity to phase errors. The interleaved, motion-compensated sequence was designed to enable 3D black-blood DWI of carotid arteries with sub-millimeter resolution. The sequence was tested on 12 healthy subjects and compared with SS-DWEPI for image quality, vessel wall visibility, and vessel wall thickness measurements. A pilot study was performed on 6 patients with carotid plaques using this sequence and compared with conventional contrast-enhanced multi-contrast 2D TSE as the reference.ResultsDP-TSE demonstrated advantages over SS-DWEPI for resolution and image quality. In the healthy subjects, vessel wall visibility was significantly higher with diffusion-prepared TSE (p < 0.001). Vessel wall thicknesses measured from diffusion-prepared TSE were on average 35% thinner than those from the EPI images due to less distortion and partial volume effect (p < 0.001). ADC measurements of healthy carotid vessel wall are 1.53 \u00b1 0.23 \u00d7 10\u22123 mm2/s. In patients the mean ADC measurements in the LRNC area were significantly lower (0.60 \u00b1 0.16\u00d710\u22123 mm2/s) than those of the fibrous plaque tissue (1.27 \u00b1 0.29 \u00d7 10\u22123 mm2/s, p < 0.01).ConclusionsDiffusion-prepared CMR allows, for the first time, 3D DWI of the carotid arterial wall in vivo with high spatial resolution and improved image quality over SS-DWEPI. It can potentially detect LRNC without the use of contrast agents, allowing plaque characterization in patients with renal insufficiency.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s12968-014-0067-z", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2542522", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3801990", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1030439", 
        "issn": [
          "1548-7679", 
          "1879-2855"
        ], 
        "name": "Journal of Cardiovascular Magnetic Resonance", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "16"
      }
    ], 
    "keywords": [
      "sub-millimeter resolution", 
      "high resolution", 
      "high spatial resolution", 
      "lipid-rich necrotic core", 
      "image quality", 
      "diffusion-weighted imaging", 
      "wall thickness measurements", 
      "diffusion encoding", 
      "spatial resolution", 
      "mm2/s", 
      "EPI images", 
      "less distortion", 
      "thickness measurements", 
      "wall thickness", 
      "healthy subjects", 
      "contrast medium", 
      "diffusion-weighted echo planar", 
      "carotid vessel wall", 
      "wall", 
      "plaque characterization", 
      "wall visibility", 
      "vessel wall", 
      "measurements", 
      "great promise", 
      "cardiovascular magnetic resonance", 
      "limited resolution", 
      "ADC measurements", 
      "echo technique", 
      "carotid arterial wall", 
      "resolution", 
      "vessel wall thickness measurements", 
      "vessel wall thickness", 
      "thickness", 
      "renal insufficiency", 
      "segmented acquisition", 
      "echo planar", 
      "carotid plaques", 
      "carotid artery", 
      "vulnerable plaques", 
      "carotid plaque characterization", 
      "poor image quality", 
      "necrotic core", 
      "patients", 
      "characterization", 
      "arterial wall", 
      "pilot study", 
      "plaque tissue", 
      "diffusion", 
      "accurate detection", 
      "core", 
      "clinical application", 
      "module", 
      "distortion", 
      "first time", 
      "lipid core", 
      "plaques", 
      "applications", 
      "EPIS framework", 
      "volume effects", 
      "quality", 
      "error", 
      "contrast agents", 
      "magnetic resonance", 
      "planar", 
      "advantages", 
      "vivo", 
      "technique", 
      "partial volume effects", 
      "subjects", 
      "medium", 
      "work", 
      "artery", 
      "insufficiency", 
      "BackgroundWithout", 
      "mean ADC measurements", 
      "images", 
      "ConclusionsDiffusion", 
      "resonance", 
      "CMR", 
      "framework", 
      "reference", 
      "tissue", 
      "detection", 
      "visibility", 
      "time", 
      "effect", 
      "area", 
      "imaging", 
      "sensitivity", 
      "TSE", 
      "aim", 
      "use", 
      "promise", 
      "features", 
      "agents", 
      "study", 
      "acquisition", 
      "need", 
      "sequence", 
      "encoding", 
      "TSE framework"
    ], 
    "name": "High resolution 3D diffusion cardiovascular magnetic resonance of carotid vessel wall to detect lipid core without contrast media", 
    "pagination": "67", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1005604523"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12968-014-0067-z"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "25238168"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12968-014-0067-z", 
      "https://app.dimensions.ai/details/publication/pub.1005604523"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_626.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s12968-014-0067-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12968-014-0067-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12968-014-0067-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12968-014-0067-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12968-014-0067-z'


 

This table displays all metadata directly associated to this object as RDF triples.

327 TRIPLES      21 PREDICATES      149 URIs      138 LITERALS      27 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12968-014-0067-z schema:about N011d713341a64ac6900d290bd3b398f8
2 N03b9d6cee45a469ab747a991bd912395
3 N0f977f29caf04553abc48f1b128982a7
4 N26f531b12c1742089c1fbc6d2aab3a72
5 N2f8c131566c648b0818660c83a5bd3d3
6 N4aacacf20d2f46b28f7726e0e4d8810e
7 N51b589a760f645628341f10558a6ae8b
8 N5bfd3a57d4ec46e4b88b8aa8d3acd71e
9 N5d69449335914130b158d7322bc3e7e0
10 N6a6a6d1d55df46b9925556d1dac4a26e
11 N812d27ecea2740f49253b73b9765f12e
12 N9c65ecfa301741108f0868db72aaabfe
13 N9f1531c270e44bb58432c1d55bb0dc59
14 Na362c662ec0249198100a2d2f83ceff4
15 Naa843a016e0c4e839846eda40b5513eb
16 Naf980632c3134ea7aedb8236319821e5
17 Nb8f3dae0050f493cba2a37e706b0d12b
18 Nca478089e98246708bfa26b2a07ad50f
19 Ne6b3bcb05c5f4b11b0571eb0ede7fa15
20 Nedc64f903d684d5b9da5f209f1597417
21 anzsrc-for:11
22 anzsrc-for:1102
23 schema:author N002b043f6fe34698a9a40f1228127148
24 schema:citation sg:pub.10.1007/s00234-003-1054-5
25 sg:pub.10.1007/s00234-010-0680-y
26 sg:pub.10.1016/j.nuclcard.2008.02.001
27 schema:datePublished 2014-09-17
28 schema:datePublishedReg 2014-09-17
29 schema:description BackgroundWithout the need of contrast media, diffusion-weighted imaging (DWI) has shown great promise for accurate detection of lipid-rich necrotic core (LRNC), a well-known feature of vulnerable plaques. However, limited resolution and poor image quality in vivo with conventional single-shot diffusion-weighted echo planar imaging (SS-DWEPI) has hindered its clinical application. The aim of this work is to develop a diffusion-prepared turbo-spin-echo (DP-TSE) technique for carotid plaque characterization with 3D high resolution and improved image quality.MethodsUnlike SS-DWEPI where the diffusion encoding is integrated in the EPI framework, DP-TSE uses a diffusion encoding module separated from the TSE framework, allowing for segmented acquisition without the sensitivity to phase errors. The interleaved, motion-compensated sequence was designed to enable 3D black-blood DWI of carotid arteries with sub-millimeter resolution. The sequence was tested on 12 healthy subjects and compared with SS-DWEPI for image quality, vessel wall visibility, and vessel wall thickness measurements. A pilot study was performed on 6 patients with carotid plaques using this sequence and compared with conventional contrast-enhanced multi-contrast 2D TSE as the reference.ResultsDP-TSE demonstrated advantages over SS-DWEPI for resolution and image quality. In the healthy subjects, vessel wall visibility was significantly higher with diffusion-prepared TSE (p < 0.001). Vessel wall thicknesses measured from diffusion-prepared TSE were on average 35% thinner than those from the EPI images due to less distortion and partial volume effect (p < 0.001). ADC measurements of healthy carotid vessel wall are 1.53 ± 0.23 × 10−3 mm2/s. In patients the mean ADC measurements in the LRNC area were significantly lower (0.60 ± 0.16×10−3 mm2/s) than those of the fibrous plaque tissue (1.27 ± 0.29 × 10−3 mm2/s, p < 0.01).ConclusionsDiffusion-prepared CMR allows, for the first time, 3D DWI of the carotid arterial wall in vivo with high spatial resolution and improved image quality over SS-DWEPI. It can potentially detect LRNC without the use of contrast agents, allowing plaque characterization in patients with renal insufficiency.
30 schema:genre article
31 schema:isAccessibleForFree true
32 schema:isPartOf N6e7580df47d647ed98f7fe096dd321a6
33 N7d848715bd304fca9732607d96cb60ec
34 sg:journal.1030439
35 schema:keywords ADC measurements
36 BackgroundWithout
37 CMR
38 ConclusionsDiffusion
39 EPI images
40 EPIS framework
41 TSE
42 TSE framework
43 accurate detection
44 acquisition
45 advantages
46 agents
47 aim
48 applications
49 area
50 arterial wall
51 artery
52 cardiovascular magnetic resonance
53 carotid arterial wall
54 carotid artery
55 carotid plaque characterization
56 carotid plaques
57 carotid vessel wall
58 characterization
59 clinical application
60 contrast agents
61 contrast medium
62 core
63 detection
64 diffusion
65 diffusion encoding
66 diffusion-weighted echo planar
67 diffusion-weighted imaging
68 distortion
69 echo planar
70 echo technique
71 effect
72 encoding
73 error
74 features
75 first time
76 framework
77 great promise
78 healthy subjects
79 high resolution
80 high spatial resolution
81 image quality
82 images
83 imaging
84 insufficiency
85 less distortion
86 limited resolution
87 lipid core
88 lipid-rich necrotic core
89 magnetic resonance
90 mean ADC measurements
91 measurements
92 medium
93 mm2/s
94 module
95 necrotic core
96 need
97 partial volume effects
98 patients
99 pilot study
100 planar
101 plaque characterization
102 plaque tissue
103 plaques
104 poor image quality
105 promise
106 quality
107 reference
108 renal insufficiency
109 resolution
110 resonance
111 segmented acquisition
112 sensitivity
113 sequence
114 spatial resolution
115 study
116 sub-millimeter resolution
117 subjects
118 technique
119 thickness
120 thickness measurements
121 time
122 tissue
123 use
124 vessel wall
125 vessel wall thickness
126 vessel wall thickness measurements
127 visibility
128 vivo
129 volume effects
130 vulnerable plaques
131 wall
132 wall thickness
133 wall thickness measurements
134 wall visibility
135 work
136 schema:name High resolution 3D diffusion cardiovascular magnetic resonance of carotid vessel wall to detect lipid core without contrast media
137 schema:pagination 67
138 schema:productId N2bfe87d9da5d4053b82a9dc321894965
139 N8864aee2cc8c4d7dbe0ebd3f819afb9b
140 Nd344e32b0e8c4e68bdb89f329d6134e7
141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005604523
142 https://doi.org/10.1186/s12968-014-0067-z
143 schema:sdDatePublished 2022-10-01T06:39
144 schema:sdLicense https://scigraph.springernature.com/explorer/license/
145 schema:sdPublisher N38c84c7129aa47d686f68e2cde0b4185
146 schema:url https://doi.org/10.1186/s12968-014-0067-z
147 sgo:license sg:explorer/license/
148 sgo:sdDataset articles
149 rdf:type schema:ScholarlyArticle
150 N002b043f6fe34698a9a40f1228127148 rdf:first sg:person.01320556462.83
151 rdf:rest N673f91fbfba64023a432ea483bc05a26
152 N011d713341a64ac6900d290bd3b398f8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
153 schema:name Case-Control Studies
154 rdf:type schema:DefinedTerm
155 N03b9d6cee45a469ab747a991bd912395 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
156 schema:name Carotid Arteries
157 rdf:type schema:DefinedTerm
158 N0f977f29caf04553abc48f1b128982a7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
159 schema:name Female
160 rdf:type schema:DefinedTerm
161 N1b39033e90814f91a03a2f153eb17955 rdf:first sg:person.01136172260.58
162 rdf:rest N5c6ea0cfd2f34fdbb0ab64f9846f25a1
163 N26f531b12c1742089c1fbc6d2aab3a72 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
164 schema:name Diffusion Magnetic Resonance Imaging
165 rdf:type schema:DefinedTerm
166 N2bfe87d9da5d4053b82a9dc321894965 schema:name pubmed_id
167 schema:value 25238168
168 rdf:type schema:PropertyValue
169 N2f8c131566c648b0818660c83a5bd3d3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
170 schema:name Lipids
171 rdf:type schema:DefinedTerm
172 N3136351fe8d5470f9e4efc5da33dfd85 rdf:first sg:person.01066244563.44
173 rdf:rest N357f5a40b02d4e42b67f76a1ff4a1697
174 N357f5a40b02d4e42b67f76a1ff4a1697 rdf:first sg:person.01066175422.29
175 rdf:rest N74ae96cdc0ea45a293e81c08bad7bdf7
176 N38c84c7129aa47d686f68e2cde0b4185 schema:name Springer Nature - SN SciGraph project
177 rdf:type schema:Organization
178 N4aacacf20d2f46b28f7726e0e4d8810e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
179 schema:name Aged, 80 and over
180 rdf:type schema:DefinedTerm
181 N51b589a760f645628341f10558a6ae8b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
182 schema:name Imaging, Three-Dimensional
183 rdf:type schema:DefinedTerm
184 N5bfd3a57d4ec46e4b88b8aa8d3acd71e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
185 schema:name Middle Aged
186 rdf:type schema:DefinedTerm
187 N5c6ea0cfd2f34fdbb0ab64f9846f25a1 rdf:first sg:person.01331047206.43
188 rdf:rest N3136351fe8d5470f9e4efc5da33dfd85
189 N5d69449335914130b158d7322bc3e7e0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
190 schema:name Aged
191 rdf:type schema:DefinedTerm
192 N673f91fbfba64023a432ea483bc05a26 rdf:first sg:person.01143631075.45
193 rdf:rest N1b39033e90814f91a03a2f153eb17955
194 N6a6a6d1d55df46b9925556d1dac4a26e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
195 schema:name Adult
196 rdf:type schema:DefinedTerm
197 N6e7580df47d647ed98f7fe096dd321a6 schema:issueNumber 1
198 rdf:type schema:PublicationIssue
199 N74ae96cdc0ea45a293e81c08bad7bdf7 rdf:first sg:person.0620532177.31
200 rdf:rest Na9fd1522a7934dada7c9c195b722b825
201 N7d848715bd304fca9732607d96cb60ec schema:volumeNumber 16
202 rdf:type schema:PublicationVolume
203 N812d27ecea2740f49253b73b9765f12e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
204 schema:name Pilot Projects
205 rdf:type schema:DefinedTerm
206 N8864aee2cc8c4d7dbe0ebd3f819afb9b schema:name dimensions_id
207 schema:value pub.1005604523
208 rdf:type schema:PropertyValue
209 N9c65ecfa301741108f0868db72aaabfe schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
210 schema:name Plaque, Atherosclerotic
211 rdf:type schema:DefinedTerm
212 N9f1531c270e44bb58432c1d55bb0dc59 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
213 schema:name Male
214 rdf:type schema:DefinedTerm
215 Na362c662ec0249198100a2d2f83ceff4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
216 schema:name Image Interpretation, Computer-Assisted
217 rdf:type schema:DefinedTerm
218 Na9fd1522a7934dada7c9c195b722b825 rdf:first sg:person.014030237157.28
219 rdf:rest Nfd24df9ff0084309aa60b7c7e2c5ac70
220 Naa843a016e0c4e839846eda40b5513eb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
221 schema:name Predictive Value of Tests
222 rdf:type schema:DefinedTerm
223 Naf980632c3134ea7aedb8236319821e5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
224 schema:name Contrast Media
225 rdf:type schema:DefinedTerm
226 Nb8f3dae0050f493cba2a37e706b0d12b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
227 schema:name Magnetic Resonance Imaging, Cine
228 rdf:type schema:DefinedTerm
229 Nca478089e98246708bfa26b2a07ad50f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
230 schema:name Carotid Artery Diseases
231 rdf:type schema:DefinedTerm
232 Nd344e32b0e8c4e68bdb89f329d6134e7 schema:name doi
233 schema:value 10.1186/s12968-014-0067-z
234 rdf:type schema:PropertyValue
235 Ne6b3bcb05c5f4b11b0571eb0ede7fa15 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
236 schema:name Necrosis
237 rdf:type schema:DefinedTerm
238 Nedc64f903d684d5b9da5f209f1597417 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
239 schema:name Humans
240 rdf:type schema:DefinedTerm
241 Nfd24df9ff0084309aa60b7c7e2c5ac70 rdf:first sg:person.01152021525.33
242 rdf:rest rdf:nil
243 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
244 schema:name Medical and Health Sciences
245 rdf:type schema:DefinedTerm
246 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
247 schema:name Cardiorespiratory Medicine and Haematology
248 rdf:type schema:DefinedTerm
249 sg:grant.2542522 http://pending.schema.org/fundedItem sg:pub.10.1186/s12968-014-0067-z
250 rdf:type schema:MonetaryGrant
251 sg:grant.3801990 http://pending.schema.org/fundedItem sg:pub.10.1186/s12968-014-0067-z
252 rdf:type schema:MonetaryGrant
253 sg:journal.1030439 schema:issn 1548-7679
254 1879-2855
255 schema:name Journal of Cardiovascular Magnetic Resonance
256 schema:publisher Springer Nature
257 rdf:type schema:Periodical
258 sg:person.01066175422.29 schema:affiliation grid-institutes:None
259 schema:familyName An
260 schema:givenName Jing
261 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066175422.29
262 rdf:type schema:Person
263 sg:person.01066244563.44 schema:affiliation grid-institutes:grid.415886.6
264 schema:familyName Bi
265 schema:givenName Xiaoming
266 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066244563.44
267 rdf:type schema:Person
268 sg:person.01136172260.58 schema:affiliation grid-institutes:grid.50956.3f
269 schema:familyName Fan
270 schema:givenName Zhaoyang
271 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136172260.58
272 rdf:type schema:Person
273 sg:person.01143631075.45 schema:affiliation grid-institutes:grid.24696.3f
274 schema:familyName Yu
275 schema:givenName Wei
276 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143631075.45
277 rdf:type schema:Person
278 sg:person.01152021525.33 schema:affiliation grid-institutes:grid.266100.3
279 schema:familyName Li
280 schema:givenName Debiao
281 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152021525.33
282 rdf:type schema:Person
283 sg:person.01320556462.83 schema:affiliation grid-institutes:grid.266100.3
284 schema:familyName Xie
285 schema:givenName Yibin
286 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320556462.83
287 rdf:type schema:Person
288 sg:person.01331047206.43 schema:affiliation grid-institutes:grid.266100.3
289 schema:familyName Nguyen
290 schema:givenName Christopher
291 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331047206.43
292 rdf:type schema:Person
293 sg:person.014030237157.28 schema:affiliation grid-institutes:grid.24696.3f
294 schema:familyName Zhang
295 schema:givenName Zhaoqi
296 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014030237157.28
297 rdf:type schema:Person
298 sg:person.0620532177.31 schema:affiliation grid-institutes:None
299 schema:familyName Zhang
300 schema:givenName Tianjing
301 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0620532177.31
302 rdf:type schema:Person
303 sg:pub.10.1007/s00234-003-1054-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049363157
304 https://doi.org/10.1007/s00234-003-1054-5
305 rdf:type schema:CreativeWork
306 sg:pub.10.1007/s00234-010-0680-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1037879287
307 https://doi.org/10.1007/s00234-010-0680-y
308 rdf:type schema:CreativeWork
309 sg:pub.10.1016/j.nuclcard.2008.02.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003740346
310 https://doi.org/10.1016/j.nuclcard.2008.02.001
311 rdf:type schema:CreativeWork
312 grid-institutes:None schema:alternateName MR Collaborations NE Asia, Siemens Healthcare, Beijing, China
313 schema:name MR Collaborations NE Asia, Siemens Healthcare, Beijing, China
314 rdf:type schema:Organization
315 grid-institutes:grid.24696.3f schema:alternateName Department of Radiology, Anzhen Hospital, Capital Medical University, Beijing, China
316 schema:name Department of Radiology, Anzhen Hospital, Capital Medical University, Beijing, China
317 rdf:type schema:Organization
318 grid-institutes:grid.266100.3 schema:alternateName Department of Bioengineering, University of California, Los Angeles, CA, USA
319 schema:name Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
320 Department of Bioengineering, University of California, Los Angeles, CA, USA
321 rdf:type schema:Organization
322 grid-institutes:grid.415886.6 schema:alternateName MR R&D, Siemens Healthcare, Los Angeles, CA, USA
323 schema:name MR R&D, Siemens Healthcare, Los Angeles, CA, USA
324 rdf:type schema:Organization
325 grid-institutes:grid.50956.3f schema:alternateName Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
326 schema:name Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
327 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...