High resolution 3D diffusion cardiovascular magnetic resonance of carotid vessel wall to detect lipid core without contrast media View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-12

AUTHORS

Yibin Xie, Wei Yu, Zhaoyang Fan, Christopher Nguyen, Xiaoming Bi, Jing An, Tianjing Zhang, Zhaoqi Zhang, Debiao Li

ABSTRACT

BACKGROUND: Without the need of contrast media, diffusion-weighted imaging (DWI) has shown great promise for accurate detection of lipid-rich necrotic core (LRNC), a well-known feature of vulnerable plaques. However, limited resolution and poor image quality in vivo with conventional single-shot diffusion-weighted echo planar imaging (SS-DWEPI) has hindered its clinical application. The aim of this work is to develop a diffusion-prepared turbo-spin-echo (DP-TSE) technique for carotid plaque characterization with 3D high resolution and improved image quality. METHODS: Unlike SS-DWEPI where the diffusion encoding is integrated in the EPI framework, DP-TSE uses a diffusion encoding module separated from the TSE framework, allowing for segmented acquisition without the sensitivity to phase errors. The interleaved, motion-compensated sequence was designed to enable 3D black-blood DWI of carotid arteries with sub-millimeter resolution. The sequence was tested on 12 healthy subjects and compared with SS-DWEPI for image quality, vessel wall visibility, and vessel wall thickness measurements. A pilot study was performed on 6 patients with carotid plaques using this sequence and compared with conventional contrast-enhanced multi-contrast 2D TSE as the reference. RESULTS: DP-TSE demonstrated advantages over SS-DWEPI for resolution and image quality. In the healthy subjects, vessel wall visibility was significantly higher with diffusion-prepared TSE (p < 0.001). Vessel wall thicknesses measured from diffusion-prepared TSE were on average 35% thinner than those from the EPI images due to less distortion and partial volume effect (p < 0.001). ADC measurements of healthy carotid vessel wall are 1.53 ± 0.23 × 10-3 mm2/s. In patients the mean ADC measurements in the LRNC area were significantly lower (0.60 ± 0.16 × 10-3 mm2/s) than those of the fibrous plaque tissue (1.27 ± 0.29 × 10-3 mm2/s, p < 0.01). CONCLUSIONS: Diffusion-prepared CMR allows, for the first time, 3D DWI of the carotid arterial wall in vivo with high spatial resolution and improved image quality over SS-DWEPI. It can potentially detect LRNC without the use of contrast agents, allowing plaque characterization in patients with renal insufficiency. More... »

PAGES

67

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12968-014-0067-z

DOI

http://dx.doi.org/10.1186/s12968-014-0067-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1005604523

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/25238168


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cardiorespiratory Medicine and Haematology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged, 80 and over", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Carotid Arteries", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Carotid Artery Diseases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Case-Control Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Contrast Media", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Diffusion Magnetic Resonance Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Interpretation, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Imaging, Three-Dimensional", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lipids", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Imaging, Cine", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Necrosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pilot Projects", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Plaque, Atherosclerotic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Predictive Value of Tests", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of California Los Angeles", 
          "id": "https://www.grid.ac/institutes/grid.19006.3e", 
          "name": [
            "Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA", 
            "Department of Bioengineering, University of California, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xie", 
        "givenName": "Yibin", 
        "id": "sg:person.01320556462.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320556462.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Capital Medical University", 
          "id": "https://www.grid.ac/institutes/grid.24696.3f", 
          "name": [
            "Department of Radiology, Anzhen Hospital, Capital Medical University, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yu", 
        "givenName": "Wei", 
        "id": "sg:person.01143631075.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143631075.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cedars-Sinai Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.50956.3f", 
          "name": [
            "Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fan", 
        "givenName": "Zhaoyang", 
        "id": "sg:person.01136172260.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136172260.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California Los Angeles", 
          "id": "https://www.grid.ac/institutes/grid.19006.3e", 
          "name": [
            "Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA", 
            "Department of Bioengineering, University of California, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nguyen", 
        "givenName": "Christopher", 
        "id": "sg:person.01331047206.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331047206.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "MR R&D, Siemens Healthcare, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bi", 
        "givenName": "Xiaoming", 
        "id": "sg:person.01066244563.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066244563.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "MR Collaborations NE Asia, Siemens Healthcare, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "An", 
        "givenName": "Jing", 
        "id": "sg:person.01340437625.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01340437625.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "MR Collaborations NE Asia, Siemens Healthcare, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Tianjing", 
        "id": "sg:person.0620532177.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0620532177.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Capital Medical University", 
          "id": "https://www.grid.ac/institutes/grid.24696.3f", 
          "name": [
            "Department of Radiology, Anzhen Hospital, Capital Medical University, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Zhaoqi", 
        "id": "sg:person.014030237157.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014030237157.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California Los Angeles", 
          "id": "https://www.grid.ac/institutes/grid.19006.3e", 
          "name": [
            "Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA", 
            "Department of Bioengineering, University of California, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Debiao", 
        "id": "sg:person.01152021525.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152021525.33"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/mrm.1910320418", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002745114"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/j.nuclcard.2008.02.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003740346", 
          "https://doi.org/10.1016/j.nuclcard.2008.02.001"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10976640600843413", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007390801"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.22736", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009019545"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.21385", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009186956"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2232010659", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019829323"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.10618", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021851819"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.1880030617", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027269442"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.0000087481.55887.c9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030501597"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.0000087480.94275.97", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030857438"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jacc.2005.10.065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033735973"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.21944", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034846901"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.21944", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034846901"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.1910390613", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036464811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.1910380404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037547033"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00234-010-0680-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037879287", 
          "https://doi.org/10.1007/s00234-010-0680-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00234-010-0680-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037879287", 
          "https://doi.org/10.1007/s00234-010-0680-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.22058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038968064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.22058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038968064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1046/j.1523-1755.2002.00372.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039927423", 
          "https://doi.org/10.1046/j.1523-1755.2002.00372.x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/atvbaha.107.141028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039934942"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/atvbaha.107.141028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039934942"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.104.3.249", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041984558"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1046/j.1523-1755.1999.00422.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044645547", 
          "https://doi.org/10.1046/j.1523-1755.1999.00422.x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.20525", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046641191"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.20525", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046641191"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2796.1994.tb00847.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047733418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2796.1994.tb00847.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047733418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2441051769", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048921722"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00234-003-1054-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049363157", 
          "https://doi.org/10.1007/s00234-003-1054-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.atv.17.3.542", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063334647"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1227/01.neu.0000239895.00373.e4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064435974"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077969259", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.156.3.4023236", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1080087192"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-12", 
    "datePublishedReg": "2014-12-01", 
    "description": "BACKGROUND: Without the need of contrast media, diffusion-weighted imaging (DWI) has shown great promise for accurate detection of lipid-rich necrotic core (LRNC), a well-known feature of vulnerable plaques. However, limited resolution and poor image quality in vivo with conventional single-shot diffusion-weighted echo planar imaging (SS-DWEPI) has hindered its clinical application. The aim of this work is to develop a diffusion-prepared turbo-spin-echo (DP-TSE) technique for carotid plaque characterization with 3D high resolution and improved image quality.\nMETHODS: Unlike SS-DWEPI where the diffusion encoding is integrated in the EPI framework, DP-TSE uses a diffusion encoding module separated from the TSE framework, allowing for segmented acquisition without the sensitivity to phase errors. The interleaved, motion-compensated sequence was designed to enable 3D black-blood DWI of carotid arteries with sub-millimeter resolution. The sequence was tested on 12 healthy subjects and compared with SS-DWEPI for image quality, vessel wall visibility, and vessel wall thickness measurements. A pilot study was performed on 6 patients with carotid plaques using this sequence and compared with conventional contrast-enhanced multi-contrast 2D TSE as the reference.\nRESULTS: DP-TSE demonstrated advantages over SS-DWEPI for resolution and image quality. In the healthy subjects, vessel wall visibility was significantly higher with diffusion-prepared TSE (p\u2009<\u20090.001). Vessel wall thicknesses measured from diffusion-prepared TSE were on average 35% thinner than those from the EPI images due to less distortion and partial volume effect (p\u2009<\u20090.001). ADC measurements of healthy carotid vessel wall are 1.53\u2009\u00b1\u20090.23\u2009\u00d7\u200910-3\u00a0mm2/s. In patients the mean ADC measurements in the LRNC area were significantly lower (0.60\u2009\u00b1\u20090.16\u2009\u00d7\u200910-3\u00a0mm2/s) than those of the fibrous plaque tissue (1.27\u2009\u00b1\u20090.29\u2009\u00d7\u200910-3\u00a0mm2/s, p\u2009<\u20090.01).\nCONCLUSIONS: Diffusion-prepared CMR allows, for the first time, 3D DWI of the carotid arterial wall in vivo with high spatial resolution and improved image quality over SS-DWEPI. It can potentially detect LRNC without the use of contrast agents, allowing plaque characterization in patients with renal insufficiency.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12968-014-0067-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3801990", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2542522", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1030439", 
        "issn": [
          "1548-7679", 
          "1879-2855"
        ], 
        "name": "Journal of Cardiovascular Magnetic Resonance", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "16"
      }
    ], 
    "name": "High resolution 3D diffusion cardiovascular magnetic resonance of carotid vessel wall to detect lipid core without contrast media", 
    "pagination": "67", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1ab3eac5f1930aca3d922f6f600a18908901c6522b9c7280263adc7c2c10a5ca"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "25238168"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9815616"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12968-014-0067-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1005604523"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12968-014-0067-z", 
      "https://app.dimensions.ai/details/publication/pub.1005604523"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000367_0000000367/records_88239_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2Fs12968-014-0067-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12968-014-0067-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12968-014-0067-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12968-014-0067-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12968-014-0067-z'


 

This table displays all metadata directly associated to this object as RDF triples.

310 TRIPLES      21 PREDICATES      77 URIs      41 LITERALS      29 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12968-014-0067-z schema:about N1b087db6170d4692a15c72244aa2ba0c
2 N4bb17ee3d8474a5faed92f4476da2e52
3 N4c0d6721036a42d8ba3dd2eecf7f5089
4 N67351e85fa8f48f0a5ff284078f52541
5 N673b9a73c83c4ac0bd01dd341ae7fe24
6 N8cd28e91c4f34c4b9e10e7a0edc162f9
7 N966081fa98b24c058afa908e1a9176b6
8 N98bdd47d15a642e2887ecd3b3f6770e9
9 N996620a61d6f4b7986617e08efc08c77
10 Na2ca60deaad54696bb7fcd5650cb7b2b
11 Na8170e1bacf1426b975191c32f983a62
12 Na9a60419a9d241e99df6efe77a5d1f00
13 Na9b2e076441248a6973540371f885736
14 Nb4929eda7be44f0ea41107804cf09490
15 Nc01b9fe2367d443ebd7bff9739de8cf1
16 Ncf5949d3b1c343d2b43203a4f08658aa
17 Ndd58363922a349f6899f328e3962310a
18 Ne5665b9d3ab04f8fb44f20168a607c28
19 Ned32d17530ef4dfbba90ffa4e3d26441
20 Nefc89dab39404d4d920a0b47ea98b8b1
21 anzsrc-for:11
22 anzsrc-for:1102
23 schema:author N6914684c9de84aefa5f1b7be7d4d3ade
24 schema:citation sg:pub.10.1007/s00234-003-1054-5
25 sg:pub.10.1007/s00234-010-0680-y
26 sg:pub.10.1016/j.nuclcard.2008.02.001
27 sg:pub.10.1046/j.1523-1755.1999.00422.x
28 sg:pub.10.1046/j.1523-1755.2002.00372.x
29 https://app.dimensions.ai/details/publication/pub.1077969259
30 https://doi.org/10.1002/jmri.1880030617
31 https://doi.org/10.1002/jmri.20525
32 https://doi.org/10.1002/jmri.21944
33 https://doi.org/10.1002/jmri.22058
34 https://doi.org/10.1002/jmri.22736
35 https://doi.org/10.1002/mrm.10618
36 https://doi.org/10.1002/mrm.1910320418
37 https://doi.org/10.1002/mrm.1910380404
38 https://doi.org/10.1002/mrm.1910390613
39 https://doi.org/10.1002/mrm.21385
40 https://doi.org/10.1016/j.jacc.2005.10.065
41 https://doi.org/10.1080/10976640600843413
42 https://doi.org/10.1111/j.1365-2796.1994.tb00847.x
43 https://doi.org/10.1148/radiol.2232010659
44 https://doi.org/10.1148/radiol.2441051769
45 https://doi.org/10.1148/radiology.156.3.4023236
46 https://doi.org/10.1161/01.atv.17.3.542
47 https://doi.org/10.1161/01.cir.0000087480.94275.97
48 https://doi.org/10.1161/01.cir.0000087481.55887.c9
49 https://doi.org/10.1161/01.cir.104.3.249
50 https://doi.org/10.1161/atvbaha.107.141028
51 https://doi.org/10.1227/01.neu.0000239895.00373.e4
52 schema:datePublished 2014-12
53 schema:datePublishedReg 2014-12-01
54 schema:description BACKGROUND: Without the need of contrast media, diffusion-weighted imaging (DWI) has shown great promise for accurate detection of lipid-rich necrotic core (LRNC), a well-known feature of vulnerable plaques. However, limited resolution and poor image quality in vivo with conventional single-shot diffusion-weighted echo planar imaging (SS-DWEPI) has hindered its clinical application. The aim of this work is to develop a diffusion-prepared turbo-spin-echo (DP-TSE) technique for carotid plaque characterization with 3D high resolution and improved image quality. METHODS: Unlike SS-DWEPI where the diffusion encoding is integrated in the EPI framework, DP-TSE uses a diffusion encoding module separated from the TSE framework, allowing for segmented acquisition without the sensitivity to phase errors. The interleaved, motion-compensated sequence was designed to enable 3D black-blood DWI of carotid arteries with sub-millimeter resolution. The sequence was tested on 12 healthy subjects and compared with SS-DWEPI for image quality, vessel wall visibility, and vessel wall thickness measurements. A pilot study was performed on 6 patients with carotid plaques using this sequence and compared with conventional contrast-enhanced multi-contrast 2D TSE as the reference. RESULTS: DP-TSE demonstrated advantages over SS-DWEPI for resolution and image quality. In the healthy subjects, vessel wall visibility was significantly higher with diffusion-prepared TSE (p < 0.001). Vessel wall thicknesses measured from diffusion-prepared TSE were on average 35% thinner than those from the EPI images due to less distortion and partial volume effect (p < 0.001). ADC measurements of healthy carotid vessel wall are 1.53 ± 0.23 × 10-3 mm2/s. In patients the mean ADC measurements in the LRNC area were significantly lower (0.60 ± 0.16 × 10-3 mm2/s) than those of the fibrous plaque tissue (1.27 ± 0.29 × 10-3 mm2/s, p < 0.01). CONCLUSIONS: Diffusion-prepared CMR allows, for the first time, 3D DWI of the carotid arterial wall in vivo with high spatial resolution and improved image quality over SS-DWEPI. It can potentially detect LRNC without the use of contrast agents, allowing plaque characterization in patients with renal insufficiency.
55 schema:genre research_article
56 schema:inLanguage en
57 schema:isAccessibleForFree true
58 schema:isPartOf N26c046fe0f2541f39663de27cee4eefb
59 N84f439983a504349858508440ca2d3fc
60 sg:journal.1030439
61 schema:name High resolution 3D diffusion cardiovascular magnetic resonance of carotid vessel wall to detect lipid core without contrast media
62 schema:pagination 67
63 schema:productId N2c1baa88fadf4b2a9e9331d7e6de61d3
64 N3d21b08e3637437db2daf96d632d0e20
65 Nb6fd0cee5278425fb8510179b7198338
66 Ncea02eb17f1f4984a7f3f0ff875dff74
67 Ne81b3999576b4172812df8e5c4100e95
68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005604523
69 https://doi.org/10.1186/s12968-014-0067-z
70 schema:sdDatePublished 2019-04-11T13:09
71 schema:sdLicense https://scigraph.springernature.com/explorer/license/
72 schema:sdPublisher N4ef559d40d384c5081428b55038adc04
73 schema:url http://link.springer.com/10.1186%2Fs12968-014-0067-z
74 sgo:license sg:explorer/license/
75 sgo:sdDataset articles
76 rdf:type schema:ScholarlyArticle
77 N1b087db6170d4692a15c72244aa2ba0c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
78 schema:name Carotid Artery Diseases
79 rdf:type schema:DefinedTerm
80 N26c046fe0f2541f39663de27cee4eefb schema:volumeNumber 16
81 rdf:type schema:PublicationVolume
82 N277dd054fa564d468ef19d29587a3291 rdf:first sg:person.01331047206.43
83 rdf:rest N6d8d6346d6f84d0990304c82b9e21d18
84 N292218b9af834662bf0c8a8fd77fb72b rdf:first sg:person.014030237157.28
85 rdf:rest Nfa76686c730b4245aaa2bd0651551205
86 N2c1baa88fadf4b2a9e9331d7e6de61d3 schema:name pubmed_id
87 schema:value 25238168
88 rdf:type schema:PropertyValue
89 N35d5375277c84ae486da2e2e966ed71c rdf:first sg:person.01143631075.45
90 rdf:rest N3f8c6e6d589d44dcbf6f8c1477157d91
91 N3d21b08e3637437db2daf96d632d0e20 schema:name doi
92 schema:value 10.1186/s12968-014-0067-z
93 rdf:type schema:PropertyValue
94 N3f8c6e6d589d44dcbf6f8c1477157d91 rdf:first sg:person.01136172260.58
95 rdf:rest N277dd054fa564d468ef19d29587a3291
96 N4bb17ee3d8474a5faed92f4476da2e52 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Lipids
98 rdf:type schema:DefinedTerm
99 N4c0d6721036a42d8ba3dd2eecf7f5089 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Carotid Arteries
101 rdf:type schema:DefinedTerm
102 N4ef559d40d384c5081428b55038adc04 schema:name Springer Nature - SN SciGraph project
103 rdf:type schema:Organization
104 N67351e85fa8f48f0a5ff284078f52541 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Humans
106 rdf:type schema:DefinedTerm
107 N673b9a73c83c4ac0bd01dd341ae7fe24 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Pilot Projects
109 rdf:type schema:DefinedTerm
110 N6914684c9de84aefa5f1b7be7d4d3ade rdf:first sg:person.01320556462.83
111 rdf:rest N35d5375277c84ae486da2e2e966ed71c
112 N6d8d6346d6f84d0990304c82b9e21d18 rdf:first sg:person.01066244563.44
113 rdf:rest Na9e41f236ffc4d2194fdb01f7b180e0d
114 N7db4d964ff2f40bc88b9de6ef29ae21d schema:name MR Collaborations NE Asia, Siemens Healthcare, Beijing, China
115 rdf:type schema:Organization
116 N84f439983a504349858508440ca2d3fc schema:issueNumber 1
117 rdf:type schema:PublicationIssue
118 N8cd28e91c4f34c4b9e10e7a0edc162f9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Adult
120 rdf:type schema:DefinedTerm
121 N8cdfc988c8ca429ba7730a7fceb23672 schema:name MR Collaborations NE Asia, Siemens Healthcare, Beijing, China
122 rdf:type schema:Organization
123 N966081fa98b24c058afa908e1a9176b6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Aged, 80 and over
125 rdf:type schema:DefinedTerm
126 N98bdd47d15a642e2887ecd3b3f6770e9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Case-Control Studies
128 rdf:type schema:DefinedTerm
129 N996620a61d6f4b7986617e08efc08c77 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Aged
131 rdf:type schema:DefinedTerm
132 Na2ca60deaad54696bb7fcd5650cb7b2b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Female
134 rdf:type schema:DefinedTerm
135 Na8170e1bacf1426b975191c32f983a62 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Male
137 rdf:type schema:DefinedTerm
138 Na9a60419a9d241e99df6efe77a5d1f00 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Contrast Media
140 rdf:type schema:DefinedTerm
141 Na9b2e076441248a6973540371f885736 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Diffusion Magnetic Resonance Imaging
143 rdf:type schema:DefinedTerm
144 Na9e41f236ffc4d2194fdb01f7b180e0d rdf:first sg:person.01340437625.65
145 rdf:rest Nd62b932004a34926b613980ef3b5d349
146 Nb4929eda7be44f0ea41107804cf09490 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name Image Interpretation, Computer-Assisted
148 rdf:type schema:DefinedTerm
149 Nb6fd0cee5278425fb8510179b7198338 schema:name readcube_id
150 schema:value 1ab3eac5f1930aca3d922f6f600a18908901c6522b9c7280263adc7c2c10a5ca
151 rdf:type schema:PropertyValue
152 Nc01b9fe2367d443ebd7bff9739de8cf1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
153 schema:name Predictive Value of Tests
154 rdf:type schema:DefinedTerm
155 Ncea02eb17f1f4984a7f3f0ff875dff74 schema:name dimensions_id
156 schema:value pub.1005604523
157 rdf:type schema:PropertyValue
158 Nceaa5c4c7af84ac785ef0c2b3939356d schema:name MR R&D, Siemens Healthcare, Los Angeles, CA, USA
159 rdf:type schema:Organization
160 Ncf5949d3b1c343d2b43203a4f08658aa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
161 schema:name Middle Aged
162 rdf:type schema:DefinedTerm
163 Nd62b932004a34926b613980ef3b5d349 rdf:first sg:person.0620532177.31
164 rdf:rest N292218b9af834662bf0c8a8fd77fb72b
165 Ndd58363922a349f6899f328e3962310a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
166 schema:name Magnetic Resonance Imaging, Cine
167 rdf:type schema:DefinedTerm
168 Ne5665b9d3ab04f8fb44f20168a607c28 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
169 schema:name Plaque, Atherosclerotic
170 rdf:type schema:DefinedTerm
171 Ne81b3999576b4172812df8e5c4100e95 schema:name nlm_unique_id
172 schema:value 9815616
173 rdf:type schema:PropertyValue
174 Ned32d17530ef4dfbba90ffa4e3d26441 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
175 schema:name Necrosis
176 rdf:type schema:DefinedTerm
177 Nefc89dab39404d4d920a0b47ea98b8b1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
178 schema:name Imaging, Three-Dimensional
179 rdf:type schema:DefinedTerm
180 Nfa76686c730b4245aaa2bd0651551205 rdf:first sg:person.01152021525.33
181 rdf:rest rdf:nil
182 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
183 schema:name Medical and Health Sciences
184 rdf:type schema:DefinedTerm
185 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
186 schema:name Cardiorespiratory Medicine and Haematology
187 rdf:type schema:DefinedTerm
188 sg:grant.2542522 http://pending.schema.org/fundedItem sg:pub.10.1186/s12968-014-0067-z
189 rdf:type schema:MonetaryGrant
190 sg:grant.3801990 http://pending.schema.org/fundedItem sg:pub.10.1186/s12968-014-0067-z
191 rdf:type schema:MonetaryGrant
192 sg:journal.1030439 schema:issn 1548-7679
193 1879-2855
194 schema:name Journal of Cardiovascular Magnetic Resonance
195 rdf:type schema:Periodical
196 sg:person.01066244563.44 schema:affiliation Nceaa5c4c7af84ac785ef0c2b3939356d
197 schema:familyName Bi
198 schema:givenName Xiaoming
199 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066244563.44
200 rdf:type schema:Person
201 sg:person.01136172260.58 schema:affiliation https://www.grid.ac/institutes/grid.50956.3f
202 schema:familyName Fan
203 schema:givenName Zhaoyang
204 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136172260.58
205 rdf:type schema:Person
206 sg:person.01143631075.45 schema:affiliation https://www.grid.ac/institutes/grid.24696.3f
207 schema:familyName Yu
208 schema:givenName Wei
209 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143631075.45
210 rdf:type schema:Person
211 sg:person.01152021525.33 schema:affiliation https://www.grid.ac/institutes/grid.19006.3e
212 schema:familyName Li
213 schema:givenName Debiao
214 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152021525.33
215 rdf:type schema:Person
216 sg:person.01320556462.83 schema:affiliation https://www.grid.ac/institutes/grid.19006.3e
217 schema:familyName Xie
218 schema:givenName Yibin
219 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320556462.83
220 rdf:type schema:Person
221 sg:person.01331047206.43 schema:affiliation https://www.grid.ac/institutes/grid.19006.3e
222 schema:familyName Nguyen
223 schema:givenName Christopher
224 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331047206.43
225 rdf:type schema:Person
226 sg:person.01340437625.65 schema:affiliation N7db4d964ff2f40bc88b9de6ef29ae21d
227 schema:familyName An
228 schema:givenName Jing
229 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01340437625.65
230 rdf:type schema:Person
231 sg:person.014030237157.28 schema:affiliation https://www.grid.ac/institutes/grid.24696.3f
232 schema:familyName Zhang
233 schema:givenName Zhaoqi
234 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014030237157.28
235 rdf:type schema:Person
236 sg:person.0620532177.31 schema:affiliation N8cdfc988c8ca429ba7730a7fceb23672
237 schema:familyName Zhang
238 schema:givenName Tianjing
239 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0620532177.31
240 rdf:type schema:Person
241 sg:pub.10.1007/s00234-003-1054-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049363157
242 https://doi.org/10.1007/s00234-003-1054-5
243 rdf:type schema:CreativeWork
244 sg:pub.10.1007/s00234-010-0680-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1037879287
245 https://doi.org/10.1007/s00234-010-0680-y
246 rdf:type schema:CreativeWork
247 sg:pub.10.1016/j.nuclcard.2008.02.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003740346
248 https://doi.org/10.1016/j.nuclcard.2008.02.001
249 rdf:type schema:CreativeWork
250 sg:pub.10.1046/j.1523-1755.1999.00422.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1044645547
251 https://doi.org/10.1046/j.1523-1755.1999.00422.x
252 rdf:type schema:CreativeWork
253 sg:pub.10.1046/j.1523-1755.2002.00372.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1039927423
254 https://doi.org/10.1046/j.1523-1755.2002.00372.x
255 rdf:type schema:CreativeWork
256 https://app.dimensions.ai/details/publication/pub.1077969259 schema:CreativeWork
257 https://doi.org/10.1002/jmri.1880030617 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027269442
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1002/jmri.20525 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046641191
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1002/jmri.21944 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034846901
262 rdf:type schema:CreativeWork
263 https://doi.org/10.1002/jmri.22058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038968064
264 rdf:type schema:CreativeWork
265 https://doi.org/10.1002/jmri.22736 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009019545
266 rdf:type schema:CreativeWork
267 https://doi.org/10.1002/mrm.10618 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021851819
268 rdf:type schema:CreativeWork
269 https://doi.org/10.1002/mrm.1910320418 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002745114
270 rdf:type schema:CreativeWork
271 https://doi.org/10.1002/mrm.1910380404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037547033
272 rdf:type schema:CreativeWork
273 https://doi.org/10.1002/mrm.1910390613 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036464811
274 rdf:type schema:CreativeWork
275 https://doi.org/10.1002/mrm.21385 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009186956
276 rdf:type schema:CreativeWork
277 https://doi.org/10.1016/j.jacc.2005.10.065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033735973
278 rdf:type schema:CreativeWork
279 https://doi.org/10.1080/10976640600843413 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007390801
280 rdf:type schema:CreativeWork
281 https://doi.org/10.1111/j.1365-2796.1994.tb00847.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1047733418
282 rdf:type schema:CreativeWork
283 https://doi.org/10.1148/radiol.2232010659 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019829323
284 rdf:type schema:CreativeWork
285 https://doi.org/10.1148/radiol.2441051769 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048921722
286 rdf:type schema:CreativeWork
287 https://doi.org/10.1148/radiology.156.3.4023236 schema:sameAs https://app.dimensions.ai/details/publication/pub.1080087192
288 rdf:type schema:CreativeWork
289 https://doi.org/10.1161/01.atv.17.3.542 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063334647
290 rdf:type schema:CreativeWork
291 https://doi.org/10.1161/01.cir.0000087480.94275.97 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030857438
292 rdf:type schema:CreativeWork
293 https://doi.org/10.1161/01.cir.0000087481.55887.c9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030501597
294 rdf:type schema:CreativeWork
295 https://doi.org/10.1161/01.cir.104.3.249 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041984558
296 rdf:type schema:CreativeWork
297 https://doi.org/10.1161/atvbaha.107.141028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039934942
298 rdf:type schema:CreativeWork
299 https://doi.org/10.1227/01.neu.0000239895.00373.e4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064435974
300 rdf:type schema:CreativeWork
301 https://www.grid.ac/institutes/grid.19006.3e schema:alternateName University of California Los Angeles
302 schema:name Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
303 Department of Bioengineering, University of California, Los Angeles, CA, USA
304 rdf:type schema:Organization
305 https://www.grid.ac/institutes/grid.24696.3f schema:alternateName Capital Medical University
306 schema:name Department of Radiology, Anzhen Hospital, Capital Medical University, Beijing, China
307 rdf:type schema:Organization
308 https://www.grid.ac/institutes/grid.50956.3f schema:alternateName Cedars-Sinai Medical Center
309 schema:name Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
310 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...