Multi-contrast atherosclerosis characterization (MATCH) of carotid plaque with a single 5-min scan: technical development and clinical feasibility View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-12

AUTHORS

Zhaoyang Fan, Wei Yu, Yibin Xie, Li Dong, Lixin Yang, Zhanhong Wang, Antonio Hernandez Conte, Xiaoming Bi, Jing An, Tianjing Zhang, Gerhard Laub, Prediman Krishan Shah, Zhaoqi Zhang, Debiao Li

ABSTRACT

BACKGROUND: Multi-contrast weighted imaging is a commonly used cardiovascular magnetic resonance (CMR) protocol for characterization of carotid plaque composition. However, this approach is limited in several aspects including low slice resolution, long scan time, image mis-registration, and complex image interpretation. In this work, a 3D CMR technique, named Multi-contrast Atherosclerosis Characterization (MATCH), was developed to mitigate the above limitations. METHODS: MATCH employs a 3D spoiled segmented fast low angle shot readout to acquire data with three different contrast weightings in an interleaved fashion. The inherently co-registered image sets, hyper T1-weighting, gray blood, and T2-weighting, are used to detect intra-plaque hemorrhage (IPH), calcification (CA), lipid-rich necrotic core (LRNC), and loose-matrix (LM). The MATCH sequence was optimized by computer simulations and testing on four healthy volunteers and then evaluated in a pilot study of six patients with carotid plaque, using the conventional multi-contrast protocol as a reference. RESULTS: On MATCH images, the major plaque components were easy to identify. Spatial co-registration between the three image sets with MATCH was particularly helpful for the reviewer to discern co-existent components in an image and appreciate their spatial relation. Based on Cohen's kappa tests, moderate to excellent agreement in the image-based or artery-based component detection between the two protocols was obtained for LRNC, IPH, CA, and LM, respectively. Compared with the conventional multi-contrast protocol, the MATCH protocol yield significantly higher signal contrast ratio for IPH (3.1±1.3 vs. 0.4±0.3, p<0.001) and CA (1.6±1.5 vs. 0.7±0.6, p=0.012) with respect to the vessel wall. CONCLUSIONS: To the best of our knowledge, the proposed MATCH sequence is the first 3D CMR technique that acquires spatially co-registered multi-contrast image sets in a single scan for characterization of carotid plaque composition. Our pilot clinical study suggests that the MATCH-based protocol may outperform the conventional multi-contrast protocol in several respects. With further technical improvements and large-scale clinical validation, MATCH has the potential to become a CMR method for assessing the risk of plaque disruption in a clinical workup. More... »

PAGES

53

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12968-014-0053-5

DOI

http://dx.doi.org/10.1186/s12968-014-0053-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1023348486

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/25184808


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Carotid Arteries", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Carotid Stenosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Contrast Media", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Feasibility Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fibrosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hemorrhage", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Interpretation, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Imaging, Three-Dimensional", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Angiography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Cardiovascular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Necrosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pilot Projects", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Plaque, Atherosclerotic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Predictive Value of Tests", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Signal-To-Noise Ratio", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Vascular Calcification", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Cedars-Sinai Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.50956.3f", 
          "name": [
            "Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fan", 
        "givenName": "Zhaoyang", 
        "id": "sg:person.01136172260.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136172260.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Capital Medical University", 
          "id": "https://www.grid.ac/institutes/grid.24696.3f", 
          "name": [
            "Department of Radiology, Anzhen Hospital, Capital Medical University, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yu", 
        "givenName": "Wei", 
        "id": "sg:person.01143631075.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143631075.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California Los Angeles", 
          "id": "https://www.grid.ac/institutes/grid.19006.3e", 
          "name": [
            "Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA", 
            "Department of Bioengineering, University of California, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xie", 
        "givenName": "Yibin", 
        "id": "sg:person.01320556462.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320556462.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Capital Medical University", 
          "id": "https://www.grid.ac/institutes/grid.24696.3f", 
          "name": [
            "Department of Radiology, Anzhen Hospital, Capital Medical University, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dong", 
        "givenName": "Li", 
        "id": "sg:person.01161036206.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01161036206.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Capital Medical University", 
          "id": "https://www.grid.ac/institutes/grid.24696.3f", 
          "name": [
            "Department of Radiology, Anzhen Hospital, Capital Medical University, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Lixin", 
        "id": "sg:person.0643265562.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0643265562.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Capital Medical University", 
          "id": "https://www.grid.ac/institutes/grid.24696.3f", 
          "name": [
            "Department of Radiology, Anzhen Hospital, Capital Medical University, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Zhanhong", 
        "id": "sg:person.0711400762.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0711400762.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cedars-Sinai Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.50956.3f", 
          "name": [
            "Department of Anesthesiology, Cedars-Sinai Medical Center, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Conte", 
        "givenName": "Antonio Hernandez", 
        "id": "sg:person.0636352402.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0636352402.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "MR R&D, Siemens Healthcare, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bi", 
        "givenName": "Xiaoming", 
        "id": "sg:person.01066244563.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066244563.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "MR Collaborations NE Asia, Siemens Healthcare, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "An", 
        "givenName": "Jing", 
        "id": "sg:person.01340437625.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01340437625.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "MR Collaborations NE Asia, Siemens Healthcare, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Tianjing", 
        "id": "sg:person.0620532177.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0620532177.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "MR R&D, Siemens Healthcare, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Laub", 
        "givenName": "Gerhard", 
        "id": "sg:person.0603101342.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0603101342.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cedars-Sinai Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.50956.3f", 
          "name": [
            "Oppenheimer Atherosclerosis Research Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA", 
            "Atherosclerosis Prevention and Management Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shah", 
        "givenName": "Prediman Krishan", 
        "id": "sg:person.01161155735.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01161155735.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Capital Medical University", 
          "id": "https://www.grid.ac/institutes/grid.24696.3f", 
          "name": [
            "Department of Radiology, Anzhen Hospital, Capital Medical University, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Zhaoqi", 
        "id": "sg:person.014030237157.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014030237157.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California Los Angeles", 
          "id": "https://www.grid.ac/institutes/grid.19006.3e", 
          "name": [
            "Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA", 
            "Department of Bioengineering, University of California, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Debiao", 
        "id": "sg:person.01152021525.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152021525.33"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/mrm.24254", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003250586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/jama.283.11.1429", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006502106"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.22517", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006703503"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.22517", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006703503"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10976640600843413", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007390801"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/strokeaha.109.555052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008641378"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/strokeaha.109.555052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008641378"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.21160", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008730891"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.10030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008944586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.21385", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009186956"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.0000028591.44554.f9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009264013"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/strokeaha.106.479139", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009360046"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/strokeaha.106.479139", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009360046"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.24445", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011391963"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.0000074222.61572.44", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011595395"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5402/2012/180710", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015025613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/hc4201.097839", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015268610"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejvs.2012.10.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016695931"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-2364(82)90124-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019200890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2232010659", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019829323"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2523081798", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020727787"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.str.0000204638.91099.91", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021071288"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.str.0000204638.91099.91", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021071288"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.23295", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021329448"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.10618", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021851819"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.atv.0000155965.54679.79", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023396216"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.atv.0000155965.54679.79", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023396216"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/1522-2594(200012)44:6<978::aid-mrm22>3.0.co;2-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024711257"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2212001612", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027099152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mri.2008.05.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029059848"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/archsurg.1982.01380350069010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031564585"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.21758", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032729628"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.str.10.3.238", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032840412"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.21590", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032926075"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.09090535", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032991700"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jacc.2005.10.065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033735973"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejm200006083422302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035429982"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.atv.0000149867.61851.31", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036106235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.atv.0000149867.61851.31", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036106235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.22539", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036140275"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.22539", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036140275"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.str.0000125856.25309.86", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036260692"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.str.0000125856.25309.86", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036260692"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.10264", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037001356"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.str.31.3.774", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038649985"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.22058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038968064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.22058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038968064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.22142", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039225711"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.22142", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039225711"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.20599", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039529318"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.22642", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040192920"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.10294", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041464309"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.20849", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041599754"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/strokeaha.113.002551", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042467746"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/strokeaha.113.002551", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042467746"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.21360", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046344901"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1522-2594(199910)42:4<762::aid-mrm19>3.0.co;2-m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046796641"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1749-6632.2000.tb06312.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048046292"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2529310", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069974986"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-12", 
    "datePublishedReg": "2014-12-01", 
    "description": "BACKGROUND: Multi-contrast weighted imaging is a commonly used cardiovascular magnetic resonance (CMR) protocol for characterization of carotid plaque composition. However, this approach is limited in several aspects including low slice resolution, long scan time, image mis-registration, and complex image interpretation. In this work, a 3D CMR technique, named Multi-contrast Atherosclerosis Characterization (MATCH), was developed to mitigate the above limitations.\nMETHODS: MATCH employs a 3D spoiled segmented fast low angle shot readout to acquire data with three different contrast weightings in an interleaved fashion. The inherently co-registered image sets, hyper T1-weighting, gray blood, and T2-weighting, are used to detect intra-plaque hemorrhage (IPH), calcification (CA), lipid-rich necrotic core (LRNC), and loose-matrix (LM). The MATCH sequence was optimized by computer simulations and testing on four healthy volunteers and then evaluated in a pilot study of six patients with carotid plaque, using the conventional multi-contrast protocol as a reference.\nRESULTS: On MATCH images, the major plaque components were easy to identify. Spatial co-registration between the three image sets with MATCH was particularly helpful for the reviewer to discern co-existent components in an image and appreciate their spatial relation. Based on Cohen's kappa tests, moderate to excellent agreement in the image-based or artery-based component detection between the two protocols was obtained for LRNC, IPH, CA, and LM, respectively. Compared with the conventional multi-contrast protocol, the MATCH protocol yield significantly higher signal contrast ratio for IPH (3.1\u00b11.3 vs. 0.4\u00b10.3, p<0.001) and CA (1.6\u00b11.5 vs. 0.7\u00b10.6, p=0.012) with respect to the vessel wall.\nCONCLUSIONS: To the best of our knowledge, the proposed MATCH sequence is the first 3D CMR technique that acquires spatially co-registered multi-contrast image sets in a single scan for characterization of carotid plaque composition. Our pilot clinical study suggests that the MATCH-based protocol may outperform the conventional multi-contrast protocol in several respects. With further technical improvements and large-scale clinical validation, MATCH has the potential to become a CMR method for assessing the risk of plaque disruption in a clinical workup.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12968-014-0053-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2542522", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1030439", 
        "issn": [
          "1548-7679", 
          "1879-2855"
        ], 
        "name": "Journal of Cardiovascular Magnetic Resonance", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "16"
      }
    ], 
    "name": "Multi-contrast atherosclerosis characterization (MATCH) of carotid plaque with a single 5-min scan: technical development and clinical feasibility", 
    "pagination": "53", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6f3d2b54509391a23b88c1606c31fc35a2cb6c6b8c340619d3f58bc92dee00ce"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "25184808"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9815616"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12968-014-0053-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1023348486"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12968-014-0053-5", 
      "https://app.dimensions.ai/details/publication/pub.1023348486"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000367_0000000367/records_88218_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2Fs12968-014-0053-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12968-014-0053-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12968-014-0053-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12968-014-0053-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12968-014-0053-5'


 

This table displays all metadata directly associated to this object as RDF triples.

416 TRIPLES      21 PREDICATES      100 URIs      44 LITERALS      32 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12968-014-0053-5 schema:about N0a2aca3e64054de39ba8e689347b593d
2 N0f2be998603647f38baeafd25c2d32ca
3 N2aff3afc9741404aa61eb2a1a28c898d
4 N46332f61e57646daa0f6e42d5a21c2f9
5 N48433071a7504fe79c46376463c544cf
6 N519e4e0ad2c2402181aecd38ca24c73b
7 N6f41e368216b43e4876552f9e46c317c
8 N70c281a72542455eac13913264bd083a
9 N73b1a8f9f2824d179eff7cccf09d16dc
10 N7d2a7fff1c91466887e08864434e7faa
11 N8596e2c562fc4da88dfb499033ad8bb8
12 Na46808b92b8f4488ad4265c171b36283
13 Na693cf551bda4d0fab1805f88b8b26a8
14 Na696398c10a64962aecd4384d36c3a53
15 Na891ea18eb524e42a6dce8373093ed18
16 Nb23f74d25d2746ab87f4fd50182eb0e8
17 Nc0f5641fa1c34ebd894dcf7e1579dd21
18 Nc116ba86f10d48c5bda5b895097dc7a5
19 Nc6d6d33366504e6fa696da7057812a0a
20 Ndf98cda849e34fff94f87d7dc0c4a5ca
21 Ne19ac4e15cf84691811a26b42bc525f3
22 Ne2c32458f305412e9a586a285860cbb8
23 Ne43506c7326b4a8ba950b6735a090206
24 anzsrc-for:08
25 anzsrc-for:0801
26 schema:author N9171ad7f3f1541e6b262e87023721469
27 schema:citation https://doi.org/10.1001/archsurg.1982.01380350069010
28 https://doi.org/10.1001/jama.283.11.1429
29 https://doi.org/10.1002/(sici)1522-2594(199910)42:4<762::aid-mrm19>3.0.co;2-m
30 https://doi.org/10.1002/1522-2594(200012)44:6<978::aid-mrm22>3.0.co;2-9
31 https://doi.org/10.1002/jmri.10030
32 https://doi.org/10.1002/jmri.10264
33 https://doi.org/10.1002/jmri.10294
34 https://doi.org/10.1002/jmri.20599
35 https://doi.org/10.1002/jmri.20849
36 https://doi.org/10.1002/jmri.21360
37 https://doi.org/10.1002/jmri.22058
38 https://doi.org/10.1002/mrm.10618
39 https://doi.org/10.1002/mrm.21160
40 https://doi.org/10.1002/mrm.21385
41 https://doi.org/10.1002/mrm.21590
42 https://doi.org/10.1002/mrm.21758
43 https://doi.org/10.1002/mrm.22142
44 https://doi.org/10.1002/mrm.22517
45 https://doi.org/10.1002/mrm.22539
46 https://doi.org/10.1002/mrm.22642
47 https://doi.org/10.1002/mrm.23295
48 https://doi.org/10.1002/mrm.24254
49 https://doi.org/10.1002/mrm.24445
50 https://doi.org/10.1016/0022-2364(82)90124-x
51 https://doi.org/10.1016/j.ejvs.2012.10.022
52 https://doi.org/10.1016/j.jacc.2005.10.065
53 https://doi.org/10.1016/j.mri.2008.05.002
54 https://doi.org/10.1056/nejm200006083422302
55 https://doi.org/10.1080/10976640600843413
56 https://doi.org/10.1111/j.1749-6632.2000.tb06312.x
57 https://doi.org/10.1148/radiol.09090535
58 https://doi.org/10.1148/radiol.2212001612
59 https://doi.org/10.1148/radiol.2232010659
60 https://doi.org/10.1148/radiol.2523081798
61 https://doi.org/10.1161/01.atv.0000149867.61851.31
62 https://doi.org/10.1161/01.atv.0000155965.54679.79
63 https://doi.org/10.1161/01.cir.0000028591.44554.f9
64 https://doi.org/10.1161/01.cir.0000074222.61572.44
65 https://doi.org/10.1161/01.str.0000125856.25309.86
66 https://doi.org/10.1161/01.str.0000204638.91099.91
67 https://doi.org/10.1161/01.str.10.3.238
68 https://doi.org/10.1161/01.str.31.3.774
69 https://doi.org/10.1161/hc4201.097839
70 https://doi.org/10.1161/strokeaha.106.479139
71 https://doi.org/10.1161/strokeaha.109.555052
72 https://doi.org/10.1161/strokeaha.113.002551
73 https://doi.org/10.2307/2529310
74 https://doi.org/10.5402/2012/180710
75 schema:datePublished 2014-12
76 schema:datePublishedReg 2014-12-01
77 schema:description BACKGROUND: Multi-contrast weighted imaging is a commonly used cardiovascular magnetic resonance (CMR) protocol for characterization of carotid plaque composition. However, this approach is limited in several aspects including low slice resolution, long scan time, image mis-registration, and complex image interpretation. In this work, a 3D CMR technique, named Multi-contrast Atherosclerosis Characterization (MATCH), was developed to mitigate the above limitations. METHODS: MATCH employs a 3D spoiled segmented fast low angle shot readout to acquire data with three different contrast weightings in an interleaved fashion. The inherently co-registered image sets, hyper T1-weighting, gray blood, and T2-weighting, are used to detect intra-plaque hemorrhage (IPH), calcification (CA), lipid-rich necrotic core (LRNC), and loose-matrix (LM). The MATCH sequence was optimized by computer simulations and testing on four healthy volunteers and then evaluated in a pilot study of six patients with carotid plaque, using the conventional multi-contrast protocol as a reference. RESULTS: On MATCH images, the major plaque components were easy to identify. Spatial co-registration between the three image sets with MATCH was particularly helpful for the reviewer to discern co-existent components in an image and appreciate their spatial relation. Based on Cohen's kappa tests, moderate to excellent agreement in the image-based or artery-based component detection between the two protocols was obtained for LRNC, IPH, CA, and LM, respectively. Compared with the conventional multi-contrast protocol, the MATCH protocol yield significantly higher signal contrast ratio for IPH (3.1±1.3 vs. 0.4±0.3, p<0.001) and CA (1.6±1.5 vs. 0.7±0.6, p=0.012) with respect to the vessel wall. CONCLUSIONS: To the best of our knowledge, the proposed MATCH sequence is the first 3D CMR technique that acquires spatially co-registered multi-contrast image sets in a single scan for characterization of carotid plaque composition. Our pilot clinical study suggests that the MATCH-based protocol may outperform the conventional multi-contrast protocol in several respects. With further technical improvements and large-scale clinical validation, MATCH has the potential to become a CMR method for assessing the risk of plaque disruption in a clinical workup.
78 schema:genre research_article
79 schema:inLanguage en
80 schema:isAccessibleForFree true
81 schema:isPartOf N07f1042e277b4e969f5d6ae5eec80068
82 N0e586c458c904caa98a6ade9d6da55d2
83 sg:journal.1030439
84 schema:name Multi-contrast atherosclerosis characterization (MATCH) of carotid plaque with a single 5-min scan: technical development and clinical feasibility
85 schema:pagination 53
86 schema:productId N103455c41a3c4c45ba7fb9d6ee4d6eb8
87 N2dd6e3a550744a7abc3900d593c0388b
88 N5f1578080a164e458e8524821c6e5d2b
89 N76dcb07b68f84d3dabaac0becb55aede
90 Ne95567a4982a42ddba12a02dec8354e5
91 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023348486
92 https://doi.org/10.1186/s12968-014-0053-5
93 schema:sdDatePublished 2019-04-11T13:06
94 schema:sdLicense https://scigraph.springernature.com/explorer/license/
95 schema:sdPublisher Nee9b19ba86e94761ac44de79cfca6ca0
96 schema:url http://link.springer.com/10.1186%2Fs12968-014-0053-5
97 sgo:license sg:explorer/license/
98 sgo:sdDataset articles
99 rdf:type schema:ScholarlyArticle
100 N07f1042e277b4e969f5d6ae5eec80068 schema:issueNumber 1
101 rdf:type schema:PublicationIssue
102 N0a2aca3e64054de39ba8e689347b593d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Reproducibility of Results
104 rdf:type schema:DefinedTerm
105 N0e586c458c904caa98a6ade9d6da55d2 schema:volumeNumber 16
106 rdf:type schema:PublicationVolume
107 N0f2be998603647f38baeafd25c2d32ca schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Carotid Arteries
109 rdf:type schema:DefinedTerm
110 N103455c41a3c4c45ba7fb9d6ee4d6eb8 schema:name doi
111 schema:value 10.1186/s12968-014-0053-5
112 rdf:type schema:PropertyValue
113 N15a1be2f5939407db418d2b94c28f9e5 rdf:first sg:person.01143631075.45
114 rdf:rest Nf821ee89ea34489db5d2a6b98f6f8b35
115 N2aff3afc9741404aa61eb2a1a28c898d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Signal-To-Noise Ratio
117 rdf:type schema:DefinedTerm
118 N2dd6e3a550744a7abc3900d593c0388b schema:name readcube_id
119 schema:value 6f3d2b54509391a23b88c1606c31fc35a2cb6c6b8c340619d3f58bc92dee00ce
120 rdf:type schema:PropertyValue
121 N2fdc21b0c27b4fbb812b9eb03a002240 rdf:first sg:person.0620532177.31
122 rdf:rest N33d61d11eae542c980a6cd1de7f0c218
123 N33d61d11eae542c980a6cd1de7f0c218 rdf:first sg:person.0603101342.45
124 rdf:rest N96e22f630cb1443987f7110338386645
125 N3617862cc26b4c859cbe8b5b6ed724c5 rdf:first sg:person.01066244563.44
126 rdf:rest Ne34acf4bd14443e0888fc503f800b359
127 N3afd597da7ee4fccb2783e3538657e56 rdf:first sg:person.01161036206.83
128 rdf:rest Nbe98cfd598c64f1fa2a1f570272ab44c
129 N46332f61e57646daa0f6e42d5a21c2f9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Magnetic Resonance Angiography
131 rdf:type schema:DefinedTerm
132 N48433071a7504fe79c46376463c544cf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Computer Simulation
134 rdf:type schema:DefinedTerm
135 N4a50ddd698964a29ad1668191e7d6823 rdf:first sg:person.0711400762.27
136 rdf:rest Nd4748d96a83347488c5d7523656da3e9
137 N519e4e0ad2c2402181aecd38ca24c73b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Predictive Value of Tests
139 rdf:type schema:DefinedTerm
140 N5f1578080a164e458e8524821c6e5d2b schema:name pubmed_id
141 schema:value 25184808
142 rdf:type schema:PropertyValue
143 N6972e1cb8089441b906705be1560bb7e schema:name MR Collaborations NE Asia, Siemens Healthcare, Beijing, China
144 rdf:type schema:Organization
145 N6f41e368216b43e4876552f9e46c317c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Humans
147 rdf:type schema:DefinedTerm
148 N70c281a72542455eac13913264bd083a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
149 schema:name Fibrosis
150 rdf:type schema:DefinedTerm
151 N73b1a8f9f2824d179eff7cccf09d16dc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Feasibility Studies
153 rdf:type schema:DefinedTerm
154 N76dcb07b68f84d3dabaac0becb55aede schema:name dimensions_id
155 schema:value pub.1023348486
156 rdf:type schema:PropertyValue
157 N7b29851f8f9247909f23360416dc0bdd schema:name MR R&D, Siemens Healthcare, Los Angeles, CA, USA
158 rdf:type schema:Organization
159 N7d2a7fff1c91466887e08864434e7faa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
160 schema:name Imaging, Three-Dimensional
161 rdf:type schema:DefinedTerm
162 N8596e2c562fc4da88dfb499033ad8bb8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
163 schema:name Pilot Projects
164 rdf:type schema:DefinedTerm
165 N86792b0a9cc4486d98af9f5d02fc97d2 rdf:first sg:person.014030237157.28
166 rdf:rest Nb6dbff54095a40229ad40f7f411e6315
167 N9171ad7f3f1541e6b262e87023721469 rdf:first sg:person.01136172260.58
168 rdf:rest N15a1be2f5939407db418d2b94c28f9e5
169 N96e22f630cb1443987f7110338386645 rdf:first sg:person.01161155735.08
170 rdf:rest N86792b0a9cc4486d98af9f5d02fc97d2
171 Na46808b92b8f4488ad4265c171b36283 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
172 schema:name Hemorrhage
173 rdf:type schema:DefinedTerm
174 Na693cf551bda4d0fab1805f88b8b26a8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
175 schema:name Models, Cardiovascular
176 rdf:type schema:DefinedTerm
177 Na696398c10a64962aecd4384d36c3a53 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
178 schema:name Carotid Stenosis
179 rdf:type schema:DefinedTerm
180 Na891ea18eb524e42a6dce8373093ed18 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
181 schema:name Algorithms
182 rdf:type schema:DefinedTerm
183 Nb23f74d25d2746ab87f4fd50182eb0e8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
184 schema:name Aged
185 rdf:type schema:DefinedTerm
186 Nb6dbff54095a40229ad40f7f411e6315 rdf:first sg:person.01152021525.33
187 rdf:rest rdf:nil
188 Nbe98cfd598c64f1fa2a1f570272ab44c rdf:first sg:person.0643265562.19
189 rdf:rest N4a50ddd698964a29ad1668191e7d6823
190 Nc0f5641fa1c34ebd894dcf7e1579dd21 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
191 schema:name Contrast Media
192 rdf:type schema:DefinedTerm
193 Nc116ba86f10d48c5bda5b895097dc7a5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
194 schema:name Middle Aged
195 rdf:type schema:DefinedTerm
196 Nc6d6d33366504e6fa696da7057812a0a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
197 schema:name Plaque, Atherosclerotic
198 rdf:type schema:DefinedTerm
199 Nd4748d96a83347488c5d7523656da3e9 rdf:first sg:person.0636352402.71
200 rdf:rest N3617862cc26b4c859cbe8b5b6ed724c5
201 Ndf98cda849e34fff94f87d7dc0c4a5ca schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
202 schema:name Image Interpretation, Computer-Assisted
203 rdf:type schema:DefinedTerm
204 Ne17613a846b2409ab47658433bf9209b schema:name MR R&D, Siemens Healthcare, Los Angeles, CA, USA
205 rdf:type schema:Organization
206 Ne19ac4e15cf84691811a26b42bc525f3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
207 schema:name Vascular Calcification
208 rdf:type schema:DefinedTerm
209 Ne2c32458f305412e9a586a285860cbb8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
210 schema:name Necrosis
211 rdf:type schema:DefinedTerm
212 Ne34acf4bd14443e0888fc503f800b359 rdf:first sg:person.01340437625.65
213 rdf:rest N2fdc21b0c27b4fbb812b9eb03a002240
214 Ne43506c7326b4a8ba950b6735a090206 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
215 schema:name Male
216 rdf:type schema:DefinedTerm
217 Ne95567a4982a42ddba12a02dec8354e5 schema:name nlm_unique_id
218 schema:value 9815616
219 rdf:type schema:PropertyValue
220 Nee9b19ba86e94761ac44de79cfca6ca0 schema:name Springer Nature - SN SciGraph project
221 rdf:type schema:Organization
222 Nf2e65f82563f4d6f8723714f48bcf969 schema:name MR Collaborations NE Asia, Siemens Healthcare, Beijing, China
223 rdf:type schema:Organization
224 Nf821ee89ea34489db5d2a6b98f6f8b35 rdf:first sg:person.01320556462.83
225 rdf:rest N3afd597da7ee4fccb2783e3538657e56
226 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
227 schema:name Information and Computing Sciences
228 rdf:type schema:DefinedTerm
229 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
230 schema:name Artificial Intelligence and Image Processing
231 rdf:type schema:DefinedTerm
232 sg:grant.2542522 http://pending.schema.org/fundedItem sg:pub.10.1186/s12968-014-0053-5
233 rdf:type schema:MonetaryGrant
234 sg:journal.1030439 schema:issn 1548-7679
235 1879-2855
236 schema:name Journal of Cardiovascular Magnetic Resonance
237 rdf:type schema:Periodical
238 sg:person.01066244563.44 schema:affiliation N7b29851f8f9247909f23360416dc0bdd
239 schema:familyName Bi
240 schema:givenName Xiaoming
241 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066244563.44
242 rdf:type schema:Person
243 sg:person.01136172260.58 schema:affiliation https://www.grid.ac/institutes/grid.50956.3f
244 schema:familyName Fan
245 schema:givenName Zhaoyang
246 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136172260.58
247 rdf:type schema:Person
248 sg:person.01143631075.45 schema:affiliation https://www.grid.ac/institutes/grid.24696.3f
249 schema:familyName Yu
250 schema:givenName Wei
251 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143631075.45
252 rdf:type schema:Person
253 sg:person.01152021525.33 schema:affiliation https://www.grid.ac/institutes/grid.19006.3e
254 schema:familyName Li
255 schema:givenName Debiao
256 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152021525.33
257 rdf:type schema:Person
258 sg:person.01161036206.83 schema:affiliation https://www.grid.ac/institutes/grid.24696.3f
259 schema:familyName Dong
260 schema:givenName Li
261 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01161036206.83
262 rdf:type schema:Person
263 sg:person.01161155735.08 schema:affiliation https://www.grid.ac/institutes/grid.50956.3f
264 schema:familyName Shah
265 schema:givenName Prediman Krishan
266 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01161155735.08
267 rdf:type schema:Person
268 sg:person.01320556462.83 schema:affiliation https://www.grid.ac/institutes/grid.19006.3e
269 schema:familyName Xie
270 schema:givenName Yibin
271 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320556462.83
272 rdf:type schema:Person
273 sg:person.01340437625.65 schema:affiliation N6972e1cb8089441b906705be1560bb7e
274 schema:familyName An
275 schema:givenName Jing
276 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01340437625.65
277 rdf:type schema:Person
278 sg:person.014030237157.28 schema:affiliation https://www.grid.ac/institutes/grid.24696.3f
279 schema:familyName Zhang
280 schema:givenName Zhaoqi
281 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014030237157.28
282 rdf:type schema:Person
283 sg:person.0603101342.45 schema:affiliation Ne17613a846b2409ab47658433bf9209b
284 schema:familyName Laub
285 schema:givenName Gerhard
286 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0603101342.45
287 rdf:type schema:Person
288 sg:person.0620532177.31 schema:affiliation Nf2e65f82563f4d6f8723714f48bcf969
289 schema:familyName Zhang
290 schema:givenName Tianjing
291 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0620532177.31
292 rdf:type schema:Person
293 sg:person.0636352402.71 schema:affiliation https://www.grid.ac/institutes/grid.50956.3f
294 schema:familyName Conte
295 schema:givenName Antonio Hernandez
296 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0636352402.71
297 rdf:type schema:Person
298 sg:person.0643265562.19 schema:affiliation https://www.grid.ac/institutes/grid.24696.3f
299 schema:familyName Yang
300 schema:givenName Lixin
301 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0643265562.19
302 rdf:type schema:Person
303 sg:person.0711400762.27 schema:affiliation https://www.grid.ac/institutes/grid.24696.3f
304 schema:familyName Wang
305 schema:givenName Zhanhong
306 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0711400762.27
307 rdf:type schema:Person
308 https://doi.org/10.1001/archsurg.1982.01380350069010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031564585
309 rdf:type schema:CreativeWork
310 https://doi.org/10.1001/jama.283.11.1429 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006502106
311 rdf:type schema:CreativeWork
312 https://doi.org/10.1002/(sici)1522-2594(199910)42:4<762::aid-mrm19>3.0.co;2-m schema:sameAs https://app.dimensions.ai/details/publication/pub.1046796641
313 rdf:type schema:CreativeWork
314 https://doi.org/10.1002/1522-2594(200012)44:6<978::aid-mrm22>3.0.co;2-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024711257
315 rdf:type schema:CreativeWork
316 https://doi.org/10.1002/jmri.10030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008944586
317 rdf:type schema:CreativeWork
318 https://doi.org/10.1002/jmri.10264 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037001356
319 rdf:type schema:CreativeWork
320 https://doi.org/10.1002/jmri.10294 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041464309
321 rdf:type schema:CreativeWork
322 https://doi.org/10.1002/jmri.20599 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039529318
323 rdf:type schema:CreativeWork
324 https://doi.org/10.1002/jmri.20849 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041599754
325 rdf:type schema:CreativeWork
326 https://doi.org/10.1002/jmri.21360 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046344901
327 rdf:type schema:CreativeWork
328 https://doi.org/10.1002/jmri.22058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038968064
329 rdf:type schema:CreativeWork
330 https://doi.org/10.1002/mrm.10618 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021851819
331 rdf:type schema:CreativeWork
332 https://doi.org/10.1002/mrm.21160 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008730891
333 rdf:type schema:CreativeWork
334 https://doi.org/10.1002/mrm.21385 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009186956
335 rdf:type schema:CreativeWork
336 https://doi.org/10.1002/mrm.21590 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032926075
337 rdf:type schema:CreativeWork
338 https://doi.org/10.1002/mrm.21758 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032729628
339 rdf:type schema:CreativeWork
340 https://doi.org/10.1002/mrm.22142 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039225711
341 rdf:type schema:CreativeWork
342 https://doi.org/10.1002/mrm.22517 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006703503
343 rdf:type schema:CreativeWork
344 https://doi.org/10.1002/mrm.22539 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036140275
345 rdf:type schema:CreativeWork
346 https://doi.org/10.1002/mrm.22642 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040192920
347 rdf:type schema:CreativeWork
348 https://doi.org/10.1002/mrm.23295 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021329448
349 rdf:type schema:CreativeWork
350 https://doi.org/10.1002/mrm.24254 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003250586
351 rdf:type schema:CreativeWork
352 https://doi.org/10.1002/mrm.24445 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011391963
353 rdf:type schema:CreativeWork
354 https://doi.org/10.1016/0022-2364(82)90124-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1019200890
355 rdf:type schema:CreativeWork
356 https://doi.org/10.1016/j.ejvs.2012.10.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016695931
357 rdf:type schema:CreativeWork
358 https://doi.org/10.1016/j.jacc.2005.10.065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033735973
359 rdf:type schema:CreativeWork
360 https://doi.org/10.1016/j.mri.2008.05.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029059848
361 rdf:type schema:CreativeWork
362 https://doi.org/10.1056/nejm200006083422302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035429982
363 rdf:type schema:CreativeWork
364 https://doi.org/10.1080/10976640600843413 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007390801
365 rdf:type schema:CreativeWork
366 https://doi.org/10.1111/j.1749-6632.2000.tb06312.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1048046292
367 rdf:type schema:CreativeWork
368 https://doi.org/10.1148/radiol.09090535 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032991700
369 rdf:type schema:CreativeWork
370 https://doi.org/10.1148/radiol.2212001612 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027099152
371 rdf:type schema:CreativeWork
372 https://doi.org/10.1148/radiol.2232010659 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019829323
373 rdf:type schema:CreativeWork
374 https://doi.org/10.1148/radiol.2523081798 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020727787
375 rdf:type schema:CreativeWork
376 https://doi.org/10.1161/01.atv.0000149867.61851.31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036106235
377 rdf:type schema:CreativeWork
378 https://doi.org/10.1161/01.atv.0000155965.54679.79 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023396216
379 rdf:type schema:CreativeWork
380 https://doi.org/10.1161/01.cir.0000028591.44554.f9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009264013
381 rdf:type schema:CreativeWork
382 https://doi.org/10.1161/01.cir.0000074222.61572.44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011595395
383 rdf:type schema:CreativeWork
384 https://doi.org/10.1161/01.str.0000125856.25309.86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036260692
385 rdf:type schema:CreativeWork
386 https://doi.org/10.1161/01.str.0000204638.91099.91 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021071288
387 rdf:type schema:CreativeWork
388 https://doi.org/10.1161/01.str.10.3.238 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032840412
389 rdf:type schema:CreativeWork
390 https://doi.org/10.1161/01.str.31.3.774 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038649985
391 rdf:type schema:CreativeWork
392 https://doi.org/10.1161/hc4201.097839 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015268610
393 rdf:type schema:CreativeWork
394 https://doi.org/10.1161/strokeaha.106.479139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009360046
395 rdf:type schema:CreativeWork
396 https://doi.org/10.1161/strokeaha.109.555052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008641378
397 rdf:type schema:CreativeWork
398 https://doi.org/10.1161/strokeaha.113.002551 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042467746
399 rdf:type schema:CreativeWork
400 https://doi.org/10.2307/2529310 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069974986
401 rdf:type schema:CreativeWork
402 https://doi.org/10.5402/2012/180710 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015025613
403 rdf:type schema:CreativeWork
404 https://www.grid.ac/institutes/grid.19006.3e schema:alternateName University of California Los Angeles
405 schema:name Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
406 Department of Bioengineering, University of California, Los Angeles, CA, USA
407 rdf:type schema:Organization
408 https://www.grid.ac/institutes/grid.24696.3f schema:alternateName Capital Medical University
409 schema:name Department of Radiology, Anzhen Hospital, Capital Medical University, Beijing, China
410 rdf:type schema:Organization
411 https://www.grid.ac/institutes/grid.50956.3f schema:alternateName Cedars-Sinai Medical Center
412 schema:name Atherosclerosis Prevention and Management Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
413 Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
414 Department of Anesthesiology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
415 Oppenheimer Atherosclerosis Research Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
416 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...