Scan-rescan reproducibility of quantitative assessment of inflammatory carotid atherosclerotic plaque using dynamic contrast-enhanced 3T CMR in a multi-center study View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-12

AUTHORS

Huijun Chen, Jie Sun, William S Kerwin, Niranjan Balu, Moni B Neradilek, Daniel S Hippe, Daniel Isquith, Yunjing Xue, Kiyofumi Yamada, Suzanne Peck, Chun Yuan, Kevin D O’Brien, Xue-Qiao Zhao

ABSTRACT

BACKGROUND: The aim of this study is to investigate the inter-scan reproducibility of kinetic parameters in atherosclerotic plaque using dynamic contrast-enhanced (DCE) cardiovascular magnetic resonance (CMR) in a multi-center setting at 3T. METHODS: Carotid arteries of 51 subjects from 15 sites were scanned twice within two weeks on 3T scanners using a previously described DCE-CMR protocol. Imaging data with protocol compliance and sufficient image quality were analyzed to generate kinetic parameters of vessel wall, expressed as transfer constant (K trans ) and plasma volume (v p ). The inter-scan reproducibility was evaluated using intra-class correlation coefficient (ICC) and coefficient of variation (CV). Power analysis was carried out to provide sample size estimations for future prospective study. RESULTS: Ten (19.6%) subjects were found to suffer from protocol violation, and another 6 (11.8%) had poor image quality (n=6) in at least one scan. In the 35 (68.6%) subjects with complete data, the ICCs of K trans and v p were 0.65 and 0.28, respectively. The CVs were 25% and 62%, respectively. The ICC and CV for v p improved to 0.73 and 28% in larger lesions with analyzed area larger than 25 mm2. Power analysis based on the measured CV showed that 50 subjects per arm are sufficient to detect a 20% difference in change of K trans over time between treatment arms with 80% power without consideration of the dropout rate. CONCLUSION: The result of this study indicates that quantitative measurement from DCE-CMR is feasible to detect changes with a relatively modest sample size in a prospective multi-center study despite the limitations. The relative high dropout rate suggested the critical needs for intensive operator training, optimized imaging protocol, and strict quality control in future studies. More... »

PAGES

51

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12968-014-0051-7

DOI

http://dx.doi.org/10.1186/s12968-014-0051-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1021742597

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/25084698


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cardiorespiratory Medicine and Haematology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Carotid Arteries", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Carotid Artery Diseases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "China", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Contrast Media", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Feasibility Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gadolinium DTPA", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Interpretation, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Inflammation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Angiography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "North America", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Patient Dropouts", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Plaque, Atherosclerotic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Predictive Value of Tests", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Time Factors", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Washington", 
          "id": "https://www.grid.ac/institutes/grid.34477.33", 
          "name": [
            "Department of Biomedical Engineering, Center for Biomedical Imaging Research, School of Medicine, Tsinghua University, 100084, Beijing, China", 
            "Department of Radiology, University of Washington, 850 Republican St, 98109, Seattle, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Huijun", 
        "id": "sg:person.01200257270.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01200257270.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Washington", 
          "id": "https://www.grid.ac/institutes/grid.34477.33", 
          "name": [
            "Department of Radiology, University of Washington, 850 Republican St, 98109, Seattle, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sun", 
        "givenName": "Jie", 
        "id": "sg:person.0744610650.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0744610650.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Washington", 
          "id": "https://www.grid.ac/institutes/grid.34477.33", 
          "name": [
            "Department of Radiology, University of Washington, 850 Republican St, 98109, Seattle, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kerwin", 
        "givenName": "William S", 
        "id": "sg:person.0640513500.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640513500.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Washington", 
          "id": "https://www.grid.ac/institutes/grid.34477.33", 
          "name": [
            "Department of Radiology, University of Washington, 850 Republican St, 98109, Seattle, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Balu", 
        "givenName": "Niranjan", 
        "id": "sg:person.0665143653.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0665143653.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "The Mountain-Whisper-Light Statistics, 1827 23rd Ave. East, 98112, Seattle, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Neradilek", 
        "givenName": "Moni B", 
        "id": "sg:person.01236221173.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01236221173.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Washington", 
          "id": "https://www.grid.ac/institutes/grid.34477.33", 
          "name": [
            "Department of Radiology, University of Washington, 850 Republican St, 98109, Seattle, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hippe", 
        "givenName": "Daniel S", 
        "id": "sg:person.0764104440.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0764104440.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Division of Cardiology, University of Washington School of Medicine, 325 9th Ave, Harborview Medical Center, 98104, Seattle, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Isquith", 
        "givenName": "Daniel", 
        "id": "sg:person.0576732420.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0576732420.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Washington", 
          "id": "https://www.grid.ac/institutes/grid.34477.33", 
          "name": [
            "Department of Radiology, University of Washington, 850 Republican St, 98109, Seattle, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xue", 
        "givenName": "Yunjing", 
        "id": "sg:person.0643667345.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0643667345.93"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Washington", 
          "id": "https://www.grid.ac/institutes/grid.34477.33", 
          "name": [
            "Department of Radiology, University of Washington, 850 Republican St, 98109, Seattle, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yamada", 
        "givenName": "Kiyofumi", 
        "id": "sg:person.01220701324.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01220701324.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Division of Cardiology, University of Washington School of Medicine, 325 9th Ave, Harborview Medical Center, 98104, Seattle, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Peck", 
        "givenName": "Suzanne", 
        "id": "sg:person.0761274220.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761274220.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Washington", 
          "id": "https://www.grid.ac/institutes/grid.34477.33", 
          "name": [
            "Department of Biomedical Engineering, Center for Biomedical Imaging Research, School of Medicine, Tsinghua University, 100084, Beijing, China", 
            "Department of Radiology, University of Washington, 850 Republican St, 98109, Seattle, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yuan", 
        "givenName": "Chun", 
        "id": "sg:person.011712252247.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011712252247.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Division of Cardiology, University of Washington School of Medicine, 325 9th Ave, Harborview Medical Center, 98104, Seattle, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "O\u2019Brien", 
        "givenName": "Kevin D", 
        "id": "sg:person.01314077246.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01314077246.79"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Division of Cardiology, University of Washington School of Medicine, 325 9th Ave, Harborview Medical Center, 98104, Seattle, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhao", 
        "givenName": "Xue-Qiao", 
        "id": "sg:person.016153744457.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016153744457.55"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/mrm.22819", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000362204"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01323", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001371417", 
          "https://doi.org/10.1038/nature01323"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01323", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001371417", 
          "https://doi.org/10.1038/nature01323"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.24415", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006465386"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0002-9149(02)02381-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007183313"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rmr.0b013e3181598d9d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013328216"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rmr.0b013e3181598d9d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013328216"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/jcbfm.1983.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018753419"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/jcbfm.1983.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018753419"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2523081798", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020727787"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa1107579", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021736323"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/atvbaha.108.166173", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022624689"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/atvbaha.108.166173", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022624689"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/strokeaha.114.005147", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023126482"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/strokeaha.114.005147", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023126482"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0741-5214(99)70136-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025641205"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.12120499", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025705007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jvs.2006.08.072", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027385421"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcmg.2011.04.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030098562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrd3444", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030884803", 
          "https://doi.org/10.1038/nrd3444"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.0000048145.52309.31", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031999640"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/strokeaha.111.000435", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035209656"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/strokeaha.111.000435", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035209656"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.21532", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036928446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1532-429x-14-43", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038334561", 
          "https://doi.org/10.1186/1532-429x-14-43"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.0007-1323.2001.01823.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039911673"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nm.2538", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041064711", 
          "https://doi.org/10.1038/nm.2538"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.11101264", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049364603"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2412051336", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052798067"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10976640500287703", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058381088"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-12", 
    "datePublishedReg": "2014-12-01", 
    "description": "BACKGROUND: The aim of this study is to investigate the inter-scan reproducibility of kinetic parameters in atherosclerotic plaque using dynamic contrast-enhanced (DCE) cardiovascular magnetic resonance (CMR) in a multi-center setting at 3T.\nMETHODS: Carotid arteries of 51 subjects from 15 sites were scanned twice within two weeks on 3T scanners using a previously described DCE-CMR protocol. Imaging data with protocol compliance and sufficient image quality were analyzed to generate kinetic parameters of vessel wall, expressed as transfer constant (K trans ) and plasma volume (v p ). The inter-scan reproducibility was evaluated using intra-class correlation coefficient (ICC) and coefficient of variation (CV). Power analysis was carried out to provide sample size estimations for future prospective study.\nRESULTS: Ten (19.6%) subjects were found to suffer from protocol violation, and another 6 (11.8%) had poor image quality (n=6) in at least one scan. In the 35 (68.6%) subjects with complete data, the ICCs of K trans and v p were 0.65 and 0.28, respectively. The CVs were 25% and 62%, respectively. The ICC and CV for v p improved to 0.73 and 28% in larger lesions with analyzed area larger than 25 mm2. Power analysis based on the measured CV showed that 50 subjects per arm are sufficient to detect a 20% difference in change of K trans over time between treatment arms with 80% power without consideration of the dropout rate.\nCONCLUSION: The result of this study indicates that quantitative measurement from DCE-CMR is feasible to detect changes with a relatively modest sample size in a prospective multi-center study despite the limitations. The relative high dropout rate suggested the critical needs for intensive operator training, optimized imaging protocol, and strict quality control in future studies.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12968-014-0051-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2541482", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2541656", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1030439", 
        "issn": [
          "1548-7679", 
          "1879-2855"
        ], 
        "name": "Journal of Cardiovascular Magnetic Resonance", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "16"
      }
    ], 
    "name": "Scan-rescan reproducibility of quantitative assessment of inflammatory carotid atherosclerotic plaque using dynamic contrast-enhanced 3T CMR in a multi-center study", 
    "pagination": "51", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "67972db2cbc49b8b195362d227e156b01332097553867cb2dafcc4b293b1d14d"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "25084698"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9815616"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12968-014-0051-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1021742597"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12968-014-0051-7", 
      "https://app.dimensions.ai/details/publication/pub.1021742597"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000367_0000000367/records_88221_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2Fs12968-014-0051-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12968-014-0051-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12968-014-0051-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12968-014-0051-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12968-014-0051-7'


 

This table displays all metadata directly associated to this object as RDF triples.

328 TRIPLES      21 PREDICATES      74 URIs      42 LITERALS      30 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12968-014-0051-7 schema:about N23bbd4fee0be4d20a013b23a1abe5506
2 N2d84f9aeaa1447678c13c66aebbefc05
3 N3fc97bd0c2eb4887aca8dc6619f6750a
4 N4323931d83b74786850563db5f83d1e0
5 N49d92f223bf24448b4bb5f2020ea3410
6 N4cf9c8be74d54fb08c9f6386d5cf0a70
7 N587b80f008b94e0da2b2d9225fe7b28f
8 N5a2c11b29082419c87e72bff2272a0e9
9 N659a0cc9a5d34e2f8a5f1a48557d7ea7
10 N67f711d08b4248bbb1b6734e76406fb5
11 N6be4105ff3fe4002a036cf306173eadc
12 N718182a62b4b42dda24cda42231b077f
13 N72abb714852e4f8c99abdaa3fa52cf3c
14 N877a5956829d4b758bc62f692431eae2
15 N9e434029f5124d9a8c85bcbe4e22f023
16 Ncdf0711f3a0a4690959cbe75a5dbaab9
17 Ne36644a5f7904fda9be8819cd629aa88
18 Ne99df02664764cc48899c0587aacc9e6
19 Ned8c7a37608e42b3b5b6f47705a351ab
20 Nef1e7f944f52490790801039e02e5576
21 Nf55974fdae234c66bf171994319952aa
22 anzsrc-for:11
23 anzsrc-for:1102
24 schema:author Nf54e143cd9e543ebbd36767b043ecf91
25 schema:citation sg:pub.10.1038/nature01323
26 sg:pub.10.1038/nm.2538
27 sg:pub.10.1038/nrd3444
28 sg:pub.10.1186/1532-429x-14-43
29 https://doi.org/10.1002/mrm.21532
30 https://doi.org/10.1002/mrm.22819
31 https://doi.org/10.1002/mrm.24415
32 https://doi.org/10.1016/j.jcmg.2011.04.020
33 https://doi.org/10.1016/j.jvs.2006.08.072
34 https://doi.org/10.1016/s0002-9149(02)02381-0
35 https://doi.org/10.1016/s0741-5214(99)70136-9
36 https://doi.org/10.1038/jcbfm.1983.1
37 https://doi.org/10.1046/j.0007-1323.2001.01823.x
38 https://doi.org/10.1056/nejmoa1107579
39 https://doi.org/10.1080/10976640500287703
40 https://doi.org/10.1097/rmr.0b013e3181598d9d
41 https://doi.org/10.1148/radiol.11101264
42 https://doi.org/10.1148/radiol.12120499
43 https://doi.org/10.1148/radiol.2412051336
44 https://doi.org/10.1148/radiol.2523081798
45 https://doi.org/10.1161/01.cir.0000048145.52309.31
46 https://doi.org/10.1161/atvbaha.108.166173
47 https://doi.org/10.1161/strokeaha.111.000435
48 https://doi.org/10.1161/strokeaha.114.005147
49 schema:datePublished 2014-12
50 schema:datePublishedReg 2014-12-01
51 schema:description BACKGROUND: The aim of this study is to investigate the inter-scan reproducibility of kinetic parameters in atherosclerotic plaque using dynamic contrast-enhanced (DCE) cardiovascular magnetic resonance (CMR) in a multi-center setting at 3T. METHODS: Carotid arteries of 51 subjects from 15 sites were scanned twice within two weeks on 3T scanners using a previously described DCE-CMR protocol. Imaging data with protocol compliance and sufficient image quality were analyzed to generate kinetic parameters of vessel wall, expressed as transfer constant (K trans ) and plasma volume (v p ). The inter-scan reproducibility was evaluated using intra-class correlation coefficient (ICC) and coefficient of variation (CV). Power analysis was carried out to provide sample size estimations for future prospective study. RESULTS: Ten (19.6%) subjects were found to suffer from protocol violation, and another 6 (11.8%) had poor image quality (n=6) in at least one scan. In the 35 (68.6%) subjects with complete data, the ICCs of K trans and v p were 0.65 and 0.28, respectively. The CVs were 25% and 62%, respectively. The ICC and CV for v p improved to 0.73 and 28% in larger lesions with analyzed area larger than 25 mm2. Power analysis based on the measured CV showed that 50 subjects per arm are sufficient to detect a 20% difference in change of K trans over time between treatment arms with 80% power without consideration of the dropout rate. CONCLUSION: The result of this study indicates that quantitative measurement from DCE-CMR is feasible to detect changes with a relatively modest sample size in a prospective multi-center study despite the limitations. The relative high dropout rate suggested the critical needs for intensive operator training, optimized imaging protocol, and strict quality control in future studies.
52 schema:genre research_article
53 schema:inLanguage en
54 schema:isAccessibleForFree true
55 schema:isPartOf N06a795a749394973972819440d33c3a6
56 N244090d40d214ae3834cd8d6cad9727e
57 sg:journal.1030439
58 schema:name Scan-rescan reproducibility of quantitative assessment of inflammatory carotid atherosclerotic plaque using dynamic contrast-enhanced 3T CMR in a multi-center study
59 schema:pagination 51
60 schema:productId N7d2374545eba498d8c323c46c25145ef
61 N97d4e9d5ca8945e5a2b232331f71ca7d
62 N98b40ffbce8f4f75ad68d34d35600978
63 Nd7f9b60cddfd423fa8456ca8664e081c
64 Nd883aed96332457597bfe443e84ccf69
65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021742597
66 https://doi.org/10.1186/s12968-014-0051-7
67 schema:sdDatePublished 2019-04-11T13:07
68 schema:sdLicense https://scigraph.springernature.com/explorer/license/
69 schema:sdPublisher N545b7680076d411b926c60cc7d048c53
70 schema:url http://link.springer.com/10.1186%2Fs12968-014-0051-7
71 sgo:license sg:explorer/license/
72 sgo:sdDataset articles
73 rdf:type schema:ScholarlyArticle
74 N06a795a749394973972819440d33c3a6 schema:volumeNumber 16
75 rdf:type schema:PublicationVolume
76 N0e33b11a93e7422c93f9485497fbec0d rdf:first sg:person.0576732420.45
77 rdf:rest N9b57ba6765d04231aecad8bfa7844d8e
78 N16a14cfc6d564115a579e77a8831adc8 rdf:first sg:person.0764104440.34
79 rdf:rest N0e33b11a93e7422c93f9485497fbec0d
80 N23bbd4fee0be4d20a013b23a1abe5506 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
81 schema:name Female
82 rdf:type schema:DefinedTerm
83 N244090d40d214ae3834cd8d6cad9727e schema:issueNumber 1
84 rdf:type schema:PublicationIssue
85 N28637970a23e4dd5af6fb7653623da96 rdf:first sg:person.01314077246.79
86 rdf:rest Nf7f5da80e6404f3a991b47253d3523bf
87 N2d84f9aeaa1447678c13c66aebbefc05 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Reproducibility of Results
89 rdf:type schema:DefinedTerm
90 N3d0ee4ee69d947cc8c5eb283124b67e6 rdf:first sg:person.011712252247.13
91 rdf:rest N28637970a23e4dd5af6fb7653623da96
92 N3fc97bd0c2eb4887aca8dc6619f6750a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Plaque, Atherosclerotic
94 rdf:type schema:DefinedTerm
95 N4323931d83b74786850563db5f83d1e0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Patient Dropouts
97 rdf:type schema:DefinedTerm
98 N49d92f223bf24448b4bb5f2020ea3410 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Inflammation
100 rdf:type schema:DefinedTerm
101 N4cf9c8be74d54fb08c9f6386d5cf0a70 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Feasibility Studies
103 rdf:type schema:DefinedTerm
104 N545b7680076d411b926c60cc7d048c53 schema:name Springer Nature - SN SciGraph project
105 rdf:type schema:Organization
106 N55ddd9d28eff42c28657ad912397c79d rdf:first sg:person.0640513500.33
107 rdf:rest Na159175dd8824d2e8c1e66d4879d6252
108 N587b80f008b94e0da2b2d9225fe7b28f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Predictive Value of Tests
110 rdf:type schema:DefinedTerm
111 N5a2c11b29082419c87e72bff2272a0e9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Humans
113 rdf:type schema:DefinedTerm
114 N659a0cc9a5d34e2f8a5f1a48557d7ea7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Gadolinium DTPA
116 rdf:type schema:DefinedTerm
117 N67f711d08b4248bbb1b6734e76406fb5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Carotid Arteries
119 rdf:type schema:DefinedTerm
120 N6be4105ff3fe4002a036cf306173eadc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Middle Aged
122 rdf:type schema:DefinedTerm
123 N718182a62b4b42dda24cda42231b077f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Male
125 rdf:type schema:DefinedTerm
126 N72abb714852e4f8c99abdaa3fa52cf3c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Prospective Studies
128 rdf:type schema:DefinedTerm
129 N7d2374545eba498d8c323c46c25145ef schema:name doi
130 schema:value 10.1186/s12968-014-0051-7
131 rdf:type schema:PropertyValue
132 N877a5956829d4b758bc62f692431eae2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Image Interpretation, Computer-Assisted
134 rdf:type schema:DefinedTerm
135 N97d4e9d5ca8945e5a2b232331f71ca7d schema:name readcube_id
136 schema:value 67972db2cbc49b8b195362d227e156b01332097553867cb2dafcc4b293b1d14d
137 rdf:type schema:PropertyValue
138 N98890e0fc0df4d75ad680647cc0e9b37 rdf:first sg:person.01236221173.83
139 rdf:rest N16a14cfc6d564115a579e77a8831adc8
140 N98b40ffbce8f4f75ad68d34d35600978 schema:name nlm_unique_id
141 schema:value 9815616
142 rdf:type schema:PropertyValue
143 N9b57ba6765d04231aecad8bfa7844d8e rdf:first sg:person.0643667345.93
144 rdf:rest Ne304dfca546f4f5aa2dda26260989b9e
145 N9e434029f5124d9a8c85bcbe4e22f023 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Aged
147 rdf:type schema:DefinedTerm
148 Na159175dd8824d2e8c1e66d4879d6252 rdf:first sg:person.0665143653.55
149 rdf:rest N98890e0fc0df4d75ad680647cc0e9b37
150 Na63d0a7614af410f85fb148b0779d1f8 schema:name The Mountain-Whisper-Light Statistics, 1827 23rd Ave. East, 98112, Seattle, WA, USA
151 rdf:type schema:Organization
152 Na75394be3cf04e65bb53240f7701fe0c schema:name Division of Cardiology, University of Washington School of Medicine, 325 9th Ave, Harborview Medical Center, 98104, Seattle, WA, USA
153 rdf:type schema:Organization
154 Nc67f622499a242708f2694eae28fc72f rdf:first sg:person.0761274220.70
155 rdf:rest N3d0ee4ee69d947cc8c5eb283124b67e6
156 Ncb29182ebe014d3792c0920cefcbcfb3 schema:name Division of Cardiology, University of Washington School of Medicine, 325 9th Ave, Harborview Medical Center, 98104, Seattle, WA, USA
157 rdf:type schema:Organization
158 Ncdf0711f3a0a4690959cbe75a5dbaab9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
159 schema:name China
160 rdf:type schema:DefinedTerm
161 Nd0465eeb8dbf430289cc4db146cb938b schema:name Division of Cardiology, University of Washington School of Medicine, 325 9th Ave, Harborview Medical Center, 98104, Seattle, WA, USA
162 rdf:type schema:Organization
163 Nd7f9b60cddfd423fa8456ca8664e081c schema:name dimensions_id
164 schema:value pub.1021742597
165 rdf:type schema:PropertyValue
166 Nd82aa47a68264883afe1644728e86f40 rdf:first sg:person.0744610650.37
167 rdf:rest N55ddd9d28eff42c28657ad912397c79d
168 Nd883aed96332457597bfe443e84ccf69 schema:name pubmed_id
169 schema:value 25084698
170 rdf:type schema:PropertyValue
171 Ne304dfca546f4f5aa2dda26260989b9e rdf:first sg:person.01220701324.46
172 rdf:rest Nc67f622499a242708f2694eae28fc72f
173 Ne36644a5f7904fda9be8819cd629aa88 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
174 schema:name Magnetic Resonance Angiography
175 rdf:type schema:DefinedTerm
176 Ne99df02664764cc48899c0587aacc9e6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
177 schema:name Carotid Artery Diseases
178 rdf:type schema:DefinedTerm
179 Ned8c7a37608e42b3b5b6f47705a351ab schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
180 schema:name Time Factors
181 rdf:type schema:DefinedTerm
182 Nee0a615a805b4d6080fb68cad0e5c951 schema:name Division of Cardiology, University of Washington School of Medicine, 325 9th Ave, Harborview Medical Center, 98104, Seattle, WA, USA
183 rdf:type schema:Organization
184 Nef1e7f944f52490790801039e02e5576 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
185 schema:name Contrast Media
186 rdf:type schema:DefinedTerm
187 Nf54e143cd9e543ebbd36767b043ecf91 rdf:first sg:person.01200257270.89
188 rdf:rest Nd82aa47a68264883afe1644728e86f40
189 Nf55974fdae234c66bf171994319952aa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
190 schema:name North America
191 rdf:type schema:DefinedTerm
192 Nf7f5da80e6404f3a991b47253d3523bf rdf:first sg:person.016153744457.55
193 rdf:rest rdf:nil
194 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
195 schema:name Medical and Health Sciences
196 rdf:type schema:DefinedTerm
197 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
198 schema:name Cardiorespiratory Medicine and Haematology
199 rdf:type schema:DefinedTerm
200 sg:grant.2541482 http://pending.schema.org/fundedItem sg:pub.10.1186/s12968-014-0051-7
201 rdf:type schema:MonetaryGrant
202 sg:grant.2541656 http://pending.schema.org/fundedItem sg:pub.10.1186/s12968-014-0051-7
203 rdf:type schema:MonetaryGrant
204 sg:journal.1030439 schema:issn 1548-7679
205 1879-2855
206 schema:name Journal of Cardiovascular Magnetic Resonance
207 rdf:type schema:Periodical
208 sg:person.011712252247.13 schema:affiliation https://www.grid.ac/institutes/grid.34477.33
209 schema:familyName Yuan
210 schema:givenName Chun
211 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011712252247.13
212 rdf:type schema:Person
213 sg:person.01200257270.89 schema:affiliation https://www.grid.ac/institutes/grid.34477.33
214 schema:familyName Chen
215 schema:givenName Huijun
216 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01200257270.89
217 rdf:type schema:Person
218 sg:person.01220701324.46 schema:affiliation https://www.grid.ac/institutes/grid.34477.33
219 schema:familyName Yamada
220 schema:givenName Kiyofumi
221 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01220701324.46
222 rdf:type schema:Person
223 sg:person.01236221173.83 schema:affiliation Na63d0a7614af410f85fb148b0779d1f8
224 schema:familyName Neradilek
225 schema:givenName Moni B
226 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01236221173.83
227 rdf:type schema:Person
228 sg:person.01314077246.79 schema:affiliation Nee0a615a805b4d6080fb68cad0e5c951
229 schema:familyName O’Brien
230 schema:givenName Kevin D
231 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01314077246.79
232 rdf:type schema:Person
233 sg:person.016153744457.55 schema:affiliation Ncb29182ebe014d3792c0920cefcbcfb3
234 schema:familyName Zhao
235 schema:givenName Xue-Qiao
236 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016153744457.55
237 rdf:type schema:Person
238 sg:person.0576732420.45 schema:affiliation Na75394be3cf04e65bb53240f7701fe0c
239 schema:familyName Isquith
240 schema:givenName Daniel
241 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0576732420.45
242 rdf:type schema:Person
243 sg:person.0640513500.33 schema:affiliation https://www.grid.ac/institutes/grid.34477.33
244 schema:familyName Kerwin
245 schema:givenName William S
246 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640513500.33
247 rdf:type schema:Person
248 sg:person.0643667345.93 schema:affiliation https://www.grid.ac/institutes/grid.34477.33
249 schema:familyName Xue
250 schema:givenName Yunjing
251 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0643667345.93
252 rdf:type schema:Person
253 sg:person.0665143653.55 schema:affiliation https://www.grid.ac/institutes/grid.34477.33
254 schema:familyName Balu
255 schema:givenName Niranjan
256 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0665143653.55
257 rdf:type schema:Person
258 sg:person.0744610650.37 schema:affiliation https://www.grid.ac/institutes/grid.34477.33
259 schema:familyName Sun
260 schema:givenName Jie
261 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0744610650.37
262 rdf:type schema:Person
263 sg:person.0761274220.70 schema:affiliation Nd0465eeb8dbf430289cc4db146cb938b
264 schema:familyName Peck
265 schema:givenName Suzanne
266 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761274220.70
267 rdf:type schema:Person
268 sg:person.0764104440.34 schema:affiliation https://www.grid.ac/institutes/grid.34477.33
269 schema:familyName Hippe
270 schema:givenName Daniel S
271 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0764104440.34
272 rdf:type schema:Person
273 sg:pub.10.1038/nature01323 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001371417
274 https://doi.org/10.1038/nature01323
275 rdf:type schema:CreativeWork
276 sg:pub.10.1038/nm.2538 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041064711
277 https://doi.org/10.1038/nm.2538
278 rdf:type schema:CreativeWork
279 sg:pub.10.1038/nrd3444 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030884803
280 https://doi.org/10.1038/nrd3444
281 rdf:type schema:CreativeWork
282 sg:pub.10.1186/1532-429x-14-43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038334561
283 https://doi.org/10.1186/1532-429x-14-43
284 rdf:type schema:CreativeWork
285 https://doi.org/10.1002/mrm.21532 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036928446
286 rdf:type schema:CreativeWork
287 https://doi.org/10.1002/mrm.22819 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000362204
288 rdf:type schema:CreativeWork
289 https://doi.org/10.1002/mrm.24415 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006465386
290 rdf:type schema:CreativeWork
291 https://doi.org/10.1016/j.jcmg.2011.04.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030098562
292 rdf:type schema:CreativeWork
293 https://doi.org/10.1016/j.jvs.2006.08.072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027385421
294 rdf:type schema:CreativeWork
295 https://doi.org/10.1016/s0002-9149(02)02381-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007183313
296 rdf:type schema:CreativeWork
297 https://doi.org/10.1016/s0741-5214(99)70136-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025641205
298 rdf:type schema:CreativeWork
299 https://doi.org/10.1038/jcbfm.1983.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018753419
300 rdf:type schema:CreativeWork
301 https://doi.org/10.1046/j.0007-1323.2001.01823.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1039911673
302 rdf:type schema:CreativeWork
303 https://doi.org/10.1056/nejmoa1107579 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021736323
304 rdf:type schema:CreativeWork
305 https://doi.org/10.1080/10976640500287703 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058381088
306 rdf:type schema:CreativeWork
307 https://doi.org/10.1097/rmr.0b013e3181598d9d schema:sameAs https://app.dimensions.ai/details/publication/pub.1013328216
308 rdf:type schema:CreativeWork
309 https://doi.org/10.1148/radiol.11101264 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049364603
310 rdf:type schema:CreativeWork
311 https://doi.org/10.1148/radiol.12120499 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025705007
312 rdf:type schema:CreativeWork
313 https://doi.org/10.1148/radiol.2412051336 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052798067
314 rdf:type schema:CreativeWork
315 https://doi.org/10.1148/radiol.2523081798 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020727787
316 rdf:type schema:CreativeWork
317 https://doi.org/10.1161/01.cir.0000048145.52309.31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031999640
318 rdf:type schema:CreativeWork
319 https://doi.org/10.1161/atvbaha.108.166173 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022624689
320 rdf:type schema:CreativeWork
321 https://doi.org/10.1161/strokeaha.111.000435 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035209656
322 rdf:type schema:CreativeWork
323 https://doi.org/10.1161/strokeaha.114.005147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023126482
324 rdf:type schema:CreativeWork
325 https://www.grid.ac/institutes/grid.34477.33 schema:alternateName University of Washington
326 schema:name Department of Biomedical Engineering, Center for Biomedical Imaging Research, School of Medicine, Tsinghua University, 100084, Beijing, China
327 Department of Radiology, University of Washington, 850 Republican St, 98109, Seattle, WA, USA
328 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...