Multi-parametric MRI phenotype with trustworthy machine learning for differentiating CNS demyelinating diseases View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-09-06

AUTHORS

Jing Huang, Bowen Xin, Xiuying Wang, Zhigang Qi, Huiqing Dong, Kuncheng Li, Yun Zhou, Jie Lu

ABSTRACT

BackgroundMisdiagnosis of multiple sclerosis (MS) and neuromyelitis optica (NMO) may delay the treatment, resulting in poor prognosis. However, the precise identification of these two diseases is still challenging in clinical practice. We aimed to evaluate the value of quantitative radiomic features extracted from the brain white matter lesions for differential diagnosis of MS and NMO.MethodsWe recruited 116 CNS demyelinating patients including 78 MS, and 38 NMO. Three neuroradiologists performed visual differential diagnosis based on brain MRI for comparison purpose. A multi-level scheme was designed to harness the selection of discriminative and stable radiomics features extracted from brain while mater lesions in T1-MPRAGE, T2 sequences and clinical factors. Based on the imaging phenotype composed of the selected radiomic and clinical features, Multi-parametric Multivariate Random Forest (MM-RF) model was constructed and verified with both 10-fold cross-validation and independent testing. Result interpretation was provided to build trust in diagnostic decisions.ResultsEighty-six patients were randomly selected to form the training set while the rest 30 patients for independent testing. On the training set, our MM-RF model achieved accuracy 0.849 and AUC 0.826 in 10-fold cross-validation, which were significantly higher than clinical visual analysis (0.709 and 0.683, p < 0.05). In the independent testing, the MM-RF model achieved AUC 0.902, accuracy 0.871, sensitivity 0.873, specificity 0.869, respectively. Furthermore, age, sex and EDSS were found mildly correlated with the radiomic features (p of all < 0.05).ConclusionsMulti-parametric radiomic features have potential as practical quantitative imaging biomarkers for differentiating MS from NMO. More... »

PAGES

377

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12967-021-03015-w

DOI

http://dx.doi.org/10.1186/s12967-021-03015-w

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1140919948

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/34488799


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Machine Learning", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neuromyelitis Optica", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phenotype", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Retrospective Studies", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Capital Medical University, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.24696.3f", 
          "name": [
            "Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xuanwu District, 100053, Beijing, China", 
            "Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Capital Medical University, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Huang", 
        "givenName": "Jing", 
        "id": "sg:person.0704010427.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0704010427.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Computer Science, The University of Sydney, Building J12/1 Cleveland Street, 2006, Sydney, NSW, Australia", 
          "id": "http://www.grid.ac/institutes/grid.1013.3", 
          "name": [
            "School of Computer Science, The University of Sydney, Building J12/1 Cleveland Street, 2006, Sydney, NSW, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xin", 
        "givenName": "Bowen", 
        "id": "sg:person.015164136317.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015164136317.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Computer Science, The University of Sydney, Building J12/1 Cleveland Street, 2006, Sydney, NSW, Australia", 
          "id": "http://www.grid.ac/institutes/grid.1013.3", 
          "name": [
            "School of Computer Science, The University of Sydney, Building J12/1 Cleveland Street, 2006, Sydney, NSW, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Xiuying", 
        "id": "sg:person.0604362320.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0604362320.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Capital Medical University, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.24696.3f", 
          "name": [
            "Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xuanwu District, 100053, Beijing, China", 
            "Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Capital Medical University, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Qi", 
        "givenName": "Zhigang", 
        "id": "sg:person.0722421056.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0722421056.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.24696.3f", 
          "name": [
            "Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dong", 
        "givenName": "Huiqing", 
        "id": "sg:person.01163570326.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01163570326.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Capital Medical University, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.24696.3f", 
          "name": [
            "Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xuanwu District, 100053, Beijing, China", 
            "Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Capital Medical University, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Kuncheng", 
        "id": "sg:person.01326527402.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326527402.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mallinckrodt Institute of Radiology, Washington University in St. Louis School of Medicine, 63110, St. Louis, MO, USA", 
          "id": "http://www.grid.ac/institutes/grid.4367.6", 
          "name": [
            "Mallinckrodt Institute of Radiology, Washington University in St. Louis School of Medicine, 63110, St. Louis, MO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhou", 
        "givenName": "Yun", 
        "id": "sg:person.0631105275.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0631105275.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Capital Medical University, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.24696.3f", 
          "name": [
            "Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xuanwu District, 100053, Beijing, China", 
            "Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Capital Medical University, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lu", 
        "givenName": "Jie", 
        "id": "sg:person.01227354030.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01227354030.20"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/ncomms5006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009469125", 
          "https://doi.org/10.1038/ncomms5006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12967-021-02804-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1136669306", 
          "https://doi.org/10.1186/s12967-021-02804-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10115-013-0679-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028169001", 
          "https://doi.org/10.1007/s10115-013-0679-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1012487302797", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048573168", 
          "https://doi.org/10.1023/a:1012487302797"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41551-018-0304-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107306519", 
          "https://doi.org/10.1038/s41551-018-0304-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00521-012-0814-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024051201", 
          "https://doi.org/10.1007/s00521-012-0814-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-018-5583-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105772818", 
          "https://doi.org/10.1007/s00330-018-5583-z"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-09-06", 
    "datePublishedReg": "2021-09-06", 
    "description": "BackgroundMisdiagnosis of multiple sclerosis (MS) and neuromyelitis optica (NMO) may delay the treatment, resulting in poor prognosis. However, the precise identification of these two diseases is still challenging in clinical practice. We aimed to evaluate the value of quantitative radiomic features extracted from the brain white matter lesions for differential diagnosis of MS and NMO.MethodsWe recruited 116 CNS demyelinating patients including 78 MS, and 38 NMO. Three neuroradiologists performed visual differential diagnosis based on brain MRI for comparison purpose. A multi-level scheme was designed to harness the selection of discriminative and stable radiomics features extracted from brain while mater lesions in T1-MPRAGE, T2 sequences and clinical factors. Based on the imaging phenotype composed of the selected radiomic and clinical features, Multi-parametric Multivariate Random Forest (MM-RF) model was constructed and verified with both 10-fold cross-validation and independent testing. Result interpretation was provided to build trust in diagnostic decisions.ResultsEighty-six patients were randomly selected to form the training set while the rest 30 patients for independent testing. On the training set, our MM-RF model achieved accuracy 0.849 and AUC 0.826 in 10-fold cross-validation, which were significantly higher than clinical visual analysis (0.709 and 0.683, p\u2009<\u20090.05). In the independent testing, the MM-RF model achieved AUC 0.902, accuracy 0.871, sensitivity 0.873, specificity 0.869, respectively. Furthermore, age, sex and EDSS were found mildly correlated with the radiomic features (p of all\u2009<\u20090.05).ConclusionsMulti-parametric radiomic features have potential as practical quantitative imaging biomarkers for differentiating MS from NMO.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s12967-021-03015-w", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1032886", 
        "issn": [
          "1479-5876"
        ], 
        "name": "Journal of Translational Medicine", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "19"
      }
    ], 
    "keywords": [
      "neuromyelitis optica", 
      "multiple sclerosis", 
      "radiomic features", 
      "differential diagnosis", 
      "brain white matter lesions", 
      "rest 30 patients", 
      "white matter lesions", 
      "stable radiomics features", 
      "multivariate random forest model", 
      "quantitative radiomic features", 
      "clinical factors", 
      "clinical features", 
      "poor prognosis", 
      "matter lesions", 
      "MRI phenotypes", 
      "brain MRI", 
      "quantitative imaging biomarkers", 
      "clinical practice", 
      "imaging biomarkers", 
      "T1-MPRAGE", 
      "patients", 
      "T2 sequences", 
      "lesions", 
      "disease", 
      "diagnosis", 
      "phenotype", 
      "optica", 
      "EDSS", 
      "sclerosis", 
      "diagnostic decisions", 
      "prognosis", 
      "CNS", 
      "MethodsWe", 
      "independent testing", 
      "neuroradiologists", 
      "testing", 
      "MRI", 
      "brain", 
      "biomarkers", 
      "result interpretation", 
      "precise identification", 
      "age", 
      "sex", 
      "treatment", 
      "visual analysis", 
      "CN", 
      "factors", 
      "features", 
      "random forest model", 
      "training", 
      "practice", 
      "purpose", 
      "identification", 
      "forest model", 
      "model", 
      "analysis", 
      "values", 
      "training set", 
      "decisions", 
      "selection", 
      "trust", 
      "sequence", 
      "interpretation", 
      "comparison purposes", 
      "trustworthy machine", 
      "set", 
      "machine", 
      "multi-level scheme", 
      "scheme"
    ], 
    "name": "Multi-parametric MRI phenotype with trustworthy machine learning for differentiating CNS demyelinating diseases", 
    "pagination": "377", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1140919948"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12967-021-03015-w"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "34488799"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12967-021-03015-w", 
      "https://app.dimensions.ai/details/publication/pub.1140919948"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:49", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_908.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s12967-021-03015-w"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12967-021-03015-w'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12967-021-03015-w'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12967-021-03015-w'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12967-021-03015-w'


 

This table displays all metadata directly associated to this object as RDF triples.

239 TRIPLES      21 PREDICATES      107 URIs      92 LITERALS      13 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12967-021-03015-w schema:about N0e89619cbad547fb8a8794ff85b55448
2 N1d62944827ec4d4fbcc9c49fdb739bbf
3 N2ff0a255e934463b945cab0d1d6ec296
4 N67f46afb1e2b4a6da200ff33c4979a1d
5 N6ab63f0d3e3e4ffeb870f351f64a4c70
6 Na1da1c58dfc143adb0dd7d140148f2ed
7 anzsrc-for:11
8 anzsrc-for:1109
9 schema:author N24a4341bea4142c6a264ef999201431d
10 schema:citation sg:pub.10.1007/s00330-018-5583-z
11 sg:pub.10.1007/s00521-012-0814-8
12 sg:pub.10.1007/s10115-013-0679-x
13 sg:pub.10.1023/a:1012487302797
14 sg:pub.10.1038/ncomms5006
15 sg:pub.10.1038/s41551-018-0304-0
16 sg:pub.10.1186/s12967-021-02804-7
17 schema:datePublished 2021-09-06
18 schema:datePublishedReg 2021-09-06
19 schema:description BackgroundMisdiagnosis of multiple sclerosis (MS) and neuromyelitis optica (NMO) may delay the treatment, resulting in poor prognosis. However, the precise identification of these two diseases is still challenging in clinical practice. We aimed to evaluate the value of quantitative radiomic features extracted from the brain white matter lesions for differential diagnosis of MS and NMO.MethodsWe recruited 116 CNS demyelinating patients including 78 MS, and 38 NMO. Three neuroradiologists performed visual differential diagnosis based on brain MRI for comparison purpose. A multi-level scheme was designed to harness the selection of discriminative and stable radiomics features extracted from brain while mater lesions in T1-MPRAGE, T2 sequences and clinical factors. Based on the imaging phenotype composed of the selected radiomic and clinical features, Multi-parametric Multivariate Random Forest (MM-RF) model was constructed and verified with both 10-fold cross-validation and independent testing. Result interpretation was provided to build trust in diagnostic decisions.ResultsEighty-six patients were randomly selected to form the training set while the rest 30 patients for independent testing. On the training set, our MM-RF model achieved accuracy 0.849 and AUC 0.826 in 10-fold cross-validation, which were significantly higher than clinical visual analysis (0.709 and 0.683, p < 0.05). In the independent testing, the MM-RF model achieved AUC 0.902, accuracy 0.871, sensitivity 0.873, specificity 0.869, respectively. Furthermore, age, sex and EDSS were found mildly correlated with the radiomic features (p of all < 0.05).ConclusionsMulti-parametric radiomic features have potential as practical quantitative imaging biomarkers for differentiating MS from NMO.
20 schema:genre article
21 schema:isAccessibleForFree true
22 schema:isPartOf N6750215179df4efa86ea76d7ded1daa9
23 N823f2934c1cd47daa3c154efe4101920
24 sg:journal.1032886
25 schema:keywords CN
26 CNS
27 EDSS
28 MRI
29 MRI phenotypes
30 MethodsWe
31 T1-MPRAGE
32 T2 sequences
33 age
34 analysis
35 biomarkers
36 brain
37 brain MRI
38 brain white matter lesions
39 clinical factors
40 clinical features
41 clinical practice
42 comparison purposes
43 decisions
44 diagnosis
45 diagnostic decisions
46 differential diagnosis
47 disease
48 factors
49 features
50 forest model
51 identification
52 imaging biomarkers
53 independent testing
54 interpretation
55 lesions
56 machine
57 matter lesions
58 model
59 multi-level scheme
60 multiple sclerosis
61 multivariate random forest model
62 neuromyelitis optica
63 neuroradiologists
64 optica
65 patients
66 phenotype
67 poor prognosis
68 practice
69 precise identification
70 prognosis
71 purpose
72 quantitative imaging biomarkers
73 quantitative radiomic features
74 radiomic features
75 random forest model
76 rest 30 patients
77 result interpretation
78 scheme
79 sclerosis
80 selection
81 sequence
82 set
83 sex
84 stable radiomics features
85 testing
86 training
87 training set
88 treatment
89 trust
90 trustworthy machine
91 values
92 visual analysis
93 white matter lesions
94 schema:name Multi-parametric MRI phenotype with trustworthy machine learning for differentiating CNS demyelinating diseases
95 schema:pagination 377
96 schema:productId N131d054b34e4469e8ea30e4cef84a5ca
97 N564875b9fcb741568619f6dbbdf459e9
98 N8b040cd9247b4af4a6bfd72ac8b242c7
99 schema:sameAs https://app.dimensions.ai/details/publication/pub.1140919948
100 https://doi.org/10.1186/s12967-021-03015-w
101 schema:sdDatePublished 2022-10-01T06:49
102 schema:sdLicense https://scigraph.springernature.com/explorer/license/
103 schema:sdPublisher N900dad51f96b4277bef20b8f7f3450f4
104 schema:url https://doi.org/10.1186/s12967-021-03015-w
105 sgo:license sg:explorer/license/
106 sgo:sdDataset articles
107 rdf:type schema:ScholarlyArticle
108 N0a1b6800fab94043907dad6701a15fe1 rdf:first sg:person.01227354030.20
109 rdf:rest rdf:nil
110 N0e89619cbad547fb8a8794ff85b55448 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Retrospective Studies
112 rdf:type schema:DefinedTerm
113 N131d054b34e4469e8ea30e4cef84a5ca schema:name dimensions_id
114 schema:value pub.1140919948
115 rdf:type schema:PropertyValue
116 N1d62944827ec4d4fbcc9c49fdb739bbf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Neuromyelitis Optica
118 rdf:type schema:DefinedTerm
119 N24a4341bea4142c6a264ef999201431d rdf:first sg:person.0704010427.58
120 rdf:rest N4763c08268004930a0308bfeaa6850ea
121 N2cd034472a1645aaade4c43ae30c2fd6 rdf:first sg:person.0604362320.27
122 rdf:rest Ne2e6ef86c88540e69de7fc3ad8ff60ad
123 N2ff0a255e934463b945cab0d1d6ec296 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Phenotype
125 rdf:type schema:DefinedTerm
126 N4763c08268004930a0308bfeaa6850ea rdf:first sg:person.015164136317.11
127 rdf:rest N2cd034472a1645aaade4c43ae30c2fd6
128 N4e2c10d1041141a18caa44aa62298791 rdf:first sg:person.01326527402.59
129 rdf:rest Na9a8f5d211814f5c98ae376eb367ad22
130 N55579827a171413781622ea3d377f658 rdf:first sg:person.01163570326.85
131 rdf:rest N4e2c10d1041141a18caa44aa62298791
132 N564875b9fcb741568619f6dbbdf459e9 schema:name doi
133 schema:value 10.1186/s12967-021-03015-w
134 rdf:type schema:PropertyValue
135 N6750215179df4efa86ea76d7ded1daa9 schema:issueNumber 1
136 rdf:type schema:PublicationIssue
137 N67f46afb1e2b4a6da200ff33c4979a1d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Machine Learning
139 rdf:type schema:DefinedTerm
140 N6ab63f0d3e3e4ffeb870f351f64a4c70 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Magnetic Resonance Imaging
142 rdf:type schema:DefinedTerm
143 N823f2934c1cd47daa3c154efe4101920 schema:volumeNumber 19
144 rdf:type schema:PublicationVolume
145 N8b040cd9247b4af4a6bfd72ac8b242c7 schema:name pubmed_id
146 schema:value 34488799
147 rdf:type schema:PropertyValue
148 N900dad51f96b4277bef20b8f7f3450f4 schema:name Springer Nature - SN SciGraph project
149 rdf:type schema:Organization
150 Na1da1c58dfc143adb0dd7d140148f2ed schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Humans
152 rdf:type schema:DefinedTerm
153 Na9a8f5d211814f5c98ae376eb367ad22 rdf:first sg:person.0631105275.40
154 rdf:rest N0a1b6800fab94043907dad6701a15fe1
155 Ne2e6ef86c88540e69de7fc3ad8ff60ad rdf:first sg:person.0722421056.30
156 rdf:rest N55579827a171413781622ea3d377f658
157 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
158 schema:name Medical and Health Sciences
159 rdf:type schema:DefinedTerm
160 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
161 schema:name Neurosciences
162 rdf:type schema:DefinedTerm
163 sg:journal.1032886 schema:issn 1479-5876
164 schema:name Journal of Translational Medicine
165 schema:publisher Springer Nature
166 rdf:type schema:Periodical
167 sg:person.01163570326.85 schema:affiliation grid-institutes:grid.24696.3f
168 schema:familyName Dong
169 schema:givenName Huiqing
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01163570326.85
171 rdf:type schema:Person
172 sg:person.01227354030.20 schema:affiliation grid-institutes:grid.24696.3f
173 schema:familyName Lu
174 schema:givenName Jie
175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01227354030.20
176 rdf:type schema:Person
177 sg:person.01326527402.59 schema:affiliation grid-institutes:grid.24696.3f
178 schema:familyName Li
179 schema:givenName Kuncheng
180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326527402.59
181 rdf:type schema:Person
182 sg:person.015164136317.11 schema:affiliation grid-institutes:grid.1013.3
183 schema:familyName Xin
184 schema:givenName Bowen
185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015164136317.11
186 rdf:type schema:Person
187 sg:person.0604362320.27 schema:affiliation grid-institutes:grid.1013.3
188 schema:familyName Wang
189 schema:givenName Xiuying
190 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0604362320.27
191 rdf:type schema:Person
192 sg:person.0631105275.40 schema:affiliation grid-institutes:grid.4367.6
193 schema:familyName Zhou
194 schema:givenName Yun
195 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0631105275.40
196 rdf:type schema:Person
197 sg:person.0704010427.58 schema:affiliation grid-institutes:grid.24696.3f
198 schema:familyName Huang
199 schema:givenName Jing
200 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0704010427.58
201 rdf:type schema:Person
202 sg:person.0722421056.30 schema:affiliation grid-institutes:grid.24696.3f
203 schema:familyName Qi
204 schema:givenName Zhigang
205 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0722421056.30
206 rdf:type schema:Person
207 sg:pub.10.1007/s00330-018-5583-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1105772818
208 https://doi.org/10.1007/s00330-018-5583-z
209 rdf:type schema:CreativeWork
210 sg:pub.10.1007/s00521-012-0814-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024051201
211 https://doi.org/10.1007/s00521-012-0814-8
212 rdf:type schema:CreativeWork
213 sg:pub.10.1007/s10115-013-0679-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1028169001
214 https://doi.org/10.1007/s10115-013-0679-x
215 rdf:type schema:CreativeWork
216 sg:pub.10.1023/a:1012487302797 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048573168
217 https://doi.org/10.1023/a:1012487302797
218 rdf:type schema:CreativeWork
219 sg:pub.10.1038/ncomms5006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009469125
220 https://doi.org/10.1038/ncomms5006
221 rdf:type schema:CreativeWork
222 sg:pub.10.1038/s41551-018-0304-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107306519
223 https://doi.org/10.1038/s41551-018-0304-0
224 rdf:type schema:CreativeWork
225 sg:pub.10.1186/s12967-021-02804-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1136669306
226 https://doi.org/10.1186/s12967-021-02804-7
227 rdf:type schema:CreativeWork
228 grid-institutes:grid.1013.3 schema:alternateName School of Computer Science, The University of Sydney, Building J12/1 Cleveland Street, 2006, Sydney, NSW, Australia
229 schema:name School of Computer Science, The University of Sydney, Building J12/1 Cleveland Street, 2006, Sydney, NSW, Australia
230 rdf:type schema:Organization
231 grid-institutes:grid.24696.3f schema:alternateName Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Capital Medical University, Beijing, China
232 Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
233 schema:name Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Capital Medical University, Beijing, China
234 Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
235 Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xuanwu District, 100053, Beijing, China
236 rdf:type schema:Organization
237 grid-institutes:grid.4367.6 schema:alternateName Mallinckrodt Institute of Radiology, Washington University in St. Louis School of Medicine, 63110, St. Louis, MO, USA
238 schema:name Mallinckrodt Institute of Radiology, Washington University in St. Louis School of Medicine, 63110, St. Louis, MO, USA
239 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...